CN109831867A - 一种介质阻挡放电装置及其汞分析方法 - Google Patents

一种介质阻挡放电装置及其汞分析方法 Download PDF

Info

Publication number
CN109831867A
CN109831867A CN201910098059.1A CN201910098059A CN109831867A CN 109831867 A CN109831867 A CN 109831867A CN 201910098059 A CN201910098059 A CN 201910098059A CN 109831867 A CN109831867 A CN 109831867A
Authority
CN
China
Prior art keywords
dielectric
discharge electrode
discharge
electrode
dielectric barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910098059.1A
Other languages
English (en)
Other versions
CN109831867B (zh
Inventor
刘霁欣
毛雪飞
刘腾鹏
钱永忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Original Assignee
Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS filed Critical Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Priority to CN201910098059.1A priority Critical patent/CN109831867B/zh
Publication of CN109831867A publication Critical patent/CN109831867A/zh
Application granted granted Critical
Publication of CN109831867B publication Critical patent/CN109831867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种介质阻挡放电装置及其汞分析方法,其包括高压放电电源、一放电电极组、一电介质以及蒸发器和原子光谱仪器;所述放电电极组包括第一、第二两放电电极,所述第一放电电极和第二放电电极分别与所述高压放电电源的两极相连;所述电介质设置在所述第一放电电极和第二放电电极之间,且所述电介质在两所述第一、第二放电电极之间形成放电空腔;所述放电空腔两端分别设置有载气入口和载气出口,且所述载气入口用于与所述蒸发器相连,所述载气出口用于与所述原子光谱仪器相连。本发明结构简单、小型化、功耗低,可以广泛应用于化学分析领域。

Description

一种介质阻挡放电装置及其汞分析方法
技术领域
本发明涉及一种测汞用基体干扰消除的介质阻挡放电装置及其汞分析方法,属于化学分析领域。
背景技术
汞元素分析是食品、环境、农业、医药、地矿等行业检测工作的重要内容,当前以电感耦合等离子体质谱(ICP-MS)、氢化物发生电感耦合等离子体发射光谱(HG-ICP-OES)、氢化物发生原子荧光(HG-AFS)、氢化物发生原子吸收(HG-AAS)等原子光谱仪器为主的实验室确证性方法,已成为国家、行业标准的主要技术手段。然而,上述方法通常需要复杂、耗时的样品制备和消解处理,易造成样品污染或汞元素损失,因此难以应用到土壤和食品的现场及快速检测,从而无法为环境质量和食品安全的源头控制提供有效的检测手段。在原子光谱仪器发展的同时,配套的固体进样技术也是研究者关注的焦点,主要包括电热蒸发(ETV)、激光烧蚀(LA)、样品直接插入(DSI)及直接原子化技术等。此外,仪器中子活化分析(INAA)、X射线荧光光谱(XRF)等放射分析技术也可实现直接固体进样检测。其中,ETV技术是近年来研究的热点,并已应用到不少商品化检测仪器中。相比而言,固体进样分析技术可降低方法检出限(直接固体进样)、简化样品前处理、缩短分析时间、避免痕量元素分析过程中可能的损失,同时减少有害化学试剂的使用,更加环保和安全,因此在元素检测方面的应用越来越广泛。
ETV固体进样技术有利于仪器的小型化和现场化,与原子吸收、原子荧光、发射光谱等传统原子光谱仪器联用后,可以实现样品直接导入的元素现场快速分析。但是,由于样品中元素的含量跨度大、基体复杂,在实际直接进样检测元素时依然存在基体干扰严重、分析灵敏度不足等问题。特别是食品和土壤样品中,富含有机物质,在电热蒸发进样时灼烧挥发或随载气带出的有机物和其他无机元素会严重干扰汞元素的原子化和光谱检测,因此利用ETV装置直接导入固体样品中的汞元素进入原子光谱仪器分析时,急需一种高效、简单、快速的基体干扰消除系统。目前大多使用催化燃烧装置用于消除电热蒸发带出的有机质,但催化燃烧装置能耗高、体积大、阻力大,还需要定期更换催化剂,使用非常不便;更为严重的是,催化燃烧装置还容易吸附待测汞元素,造成测量结果偏差。
介质阻挡放电(DBD)也称无声放电,是一种典型的非平衡态交流气体放电技术,可在常温常压下产生非平衡态的微等离子体,也是一种低温等离子体(NTP)。DBD装置一般分为平板型和同轴型,结构简单,通常仅需在2个电极之间放置玻璃、石英、陶瓷或聚合物等阻挡介质,放电区充满氩气、氦气、氮气、氧气等或混合工作气体即可。当电极两端施加的高压交流电超过帕邢击穿电压时,工作气体被击穿而产生电子,从而激发或解离气体分子,并产生包含紫外辐射以及大量自由基、离子、激发态原子、分子碎片等化学性质异常活跃物质的NTP。DBD产生的辐射和活性物质,能够为所需的化学反应提供足够的能量,这也是DBD能够用于消除原子光谱仪器元素导入分析时基体干扰的理论基础。目前,DBD因其简单、低廉、易控制、能耗少、用途广而成为放电技术研究的热点。已有研究利用DBD降解土壤和空气中农药残留、兽药残留、有机物污染物等,并用于砷等元素的预富集,但是目前尚无报道或专利利用DBD装置作为原子光谱仪器导入汞元素分析时的基体干扰消除系统。
发明内容
针对上述问题,本发明的目的是提供一种介质阻挡放电装置及其汞分析方法,该装置能够对原子光谱仪器导入汞元素分析时的基体干扰进行消除,且装置小巧、简单,非常适合于小型化重金属汞速测仪器的基体干扰消除,作为关键部件,将会进一步推动土壤、食品等测汞仪的研制。
为实现上述目的,本发明采取以下技术方案:
本发明的第一个方面,提供一种介质阻挡放电装置,其包括高压放电电源、一放电电极组、一电介质以及蒸发器和原子光谱仪器;所述放电电极组包括同轴型结构或平板型结构设置的第一、第二两放电电极,所述第一放电电极和第二放电电极分别与所述高压放电电源的两极相连;所述电介质设置在所述第一放电电极和第二放电电极之间,且所述电介质在两所述第一、第二放电电极之间形成放电空腔;所述放电空腔两端分别设置有载气入口和载气出口,且所述载气入口用于与所述蒸发器相连,所述载气出口用于与所述原子光谱仪器相连。
进一步地,所述同轴型结构是指所述第一放电电极采用圆筒形网状放电电极,所述第二放电电极采用柱状放电电极,且所述第一放电电极套设在所述第二放电电极外侧。
进一步地,所述电介质为一管状电介质,所述管状电介质内衬于所述第一放电电极内部,且所述管状电介质内壁与所述第二放电电极外壁之间的环空作为所述放电空腔。
进一步地,所述电介质包括第一管状电介质和第二管状电介质,所述第一管状电介质内衬于所述第一放电电极内部,所述第二管状电介质包覆于所述第二放电电极外,所述第一管状电介质内壁与所述第二管状电介质外壁之间的环空作为所述放电空腔。
进一步地,所述平板型结构是指所述第一放电电极和第二放电电极均采用丝状或片状放电电极,且所述第一放电电极和第二放电电极上下并排设置。
进一步地,所述电介质为一管状电介质,所述管状电介质内衬于所述第一、第二两放电电极内,所述管状电介质内部作为所述放电空腔。
进一步地,所述电介质包括第一、第二平板状电介质,所述第一、第二平板电介质四周采用绝缘胶密封,所述第一、第二平板电介质和绝缘胶之间形成所述放电空腔。
进一步地,所述高压放电电源提供的电压等级和电压频率为5~30kV、10~40kHz。
本发明的另一个方面,是提供一种采用介质阻挡放电装置的汞分析方法,其包括以下步骤:
1)设置一介质阻挡放电装置,并将该介质阻挡放电装置与蒸发器和原子光谱仪器的原子化器或激发源或光路相连,所述介质阻挡放电装置包括高压放电电源、一放电电极组、一电介质以及蒸发器和原子光谱仪器;所述放电电极组包括第一、第二两放电电极,所述电介质设置在所述第一放电电极和第二放电电极之间,且所述电介质在两所述第一、第二放电电极之间形成放电空腔;
2)分别配制一系列不同浓度的含有待测汞元素的标准溶液;
3)将含有待测汞元素的标准溶液以电热蒸发形式被载气导入放电空腔,经介质阻挡放电装置消除干扰后,进行原子荧光光谱、原子吸收光谱或发射光谱检测,得到待测汞元素的标定值范围;
4)将含有待测汞元素的标准溶液加到有机样品上,待测汞元素和有机/无机干扰物质以电热蒸发的形式被载气带入放电空腔,经介质阻挡放电装置进行有机物基体干扰消除,以及无机干扰元素被吸附与待测汞元素分离后,通过原子荧光光谱、原子吸收光谱或原子发射光谱测得汞元素的测定值,将测定值和标定值进行比较,得到介质阻挡放电装置对基体干扰进行消除后汞分析的准确性。
本发明由于采取以上技术方案,其具有以下优点:1、本发明由于介质阻挡放电装置分别与已有蒸发器和原子光谱仪器相连,含汞待测物和有机物或无机物杂质从DBD的内部通过,在内部的等离子体中被消除干扰,能够很好的解决固体直接进样分析元素时带入的大量基体干扰的消除问题。2、本发明中的介质阻挡放电装置放电结构简单,且高压放电电源的电压等级和电压频率为10~40kHz、5~30kV,相比于常用的基于催化燃烧的测汞仪,具有结构简单、气阻小,运行在常温常压下,且稳定性好、功耗低等优点。3、本发明DBD装置中形成的低温等离子体中存在具有较高动能的电子,亚稳态的离子、原子和分子,这些离子在与被测样品粒子碰撞过程中,可以有效地将大分子有机干扰物降解、消除,同时为吸附无机干扰元素提供能量和条件。4、本发明装置具有结构简单、小型化、功耗低的特点,非常适合小型化仪器使用。因此,本发明可以广泛应用于测汞用基体干扰消除领域。
附图说明
图1是本发明实施例一结构示意图;
图2是本发明实施例二结构示意图;
图3是本发明实施例三结构示意图;
图4是本发明基质阻挡放电装置消除烟丝样品导入的有机干扰物示意图;
图5是本发明基质阻挡放电装置消除大米样品导入的有机干扰物示意图。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
如图1~图3所示,本发明提供的一种介质阻挡放电装置,其包括一高压放电电源1、一放电电极组2、一电介质3以及已有蒸发器4和原子光谱仪器的原子化器或激发源或光路或其他部件5。其中,放电电极组2包括第一、第二两放电电极21、22,第一放电电极21和第二放电电极22分别与高压放电电源1的两极相连;电介质3设置在第一放电电极21和第二放电电极22之间,且电介质3在两放电电极21、22之间形成放电空腔6,放电空腔6两端分别设置有载气入口7和载气出口8,且载气入口7用于与已有蒸发器4相连,载气出口8用于与现有原子光谱仪器的原子化器或激发源或光路或其他部件5相连。由蒸发器4导入的含有待测汞元素和有机物基体干扰的混合气溶胶,随载气进入本发明介质阻挡放电装置内,并与放电空腔6内的低温等离子体反应后,输出到后续原子光谱仪器的原子化器或激发源或光路或其他部件5进行检测。
作为一个优选的实施例,放电电极组2中第一、第二两放电电极21、22采用同轴型结构或平板型结构。
作为一个优选的实施例,如图1所示,放电电极组2采用同轴型结构是指第一放电电极21采用圆筒型网状放电电极,第二放电电极22采用柱状放电电极,且第一放电电极21套设在第二放电电极22外侧,并作为地线接地。此时,电介质3为内衬于第一放电电极21内部的第一管状电介质31,第一管状电介质31内壁与第二放电电极22外壁之间的环空作为放电空腔6。优选的,第二放电电极22外部还包覆有第二管状电介质32,此时第二管状电介质32外壁与第一管状电介质31内壁之间的环空作为放电空腔6。更为优选的,第一管状电介质31呈“L”型,有利于仪器的结构布局和集成,也方便DBD石英管的制作。
作为一个优选的实施例,如图2、图3所示,放电电极组2采用平板型结构是指:第一放电电极21和第二放电电极22均采用丝状或片状放电电极,且第一放电电极21和第二放电电极22上下并排设置。当第一、第二放电电极21、22采用丝状放电电极时(如图2所示),电介质3为内衬于第一、第二放电电极21、22内的第三管状电介质33,该第三管状电介质33内部作为放电空腔6;当第一、第二放电电极21、22采用片状放电电极时(如图3所示),电介质3为分别内衬于第一、第二放电电极21、22内的两平板状电介质34、35,两平板状电介质34、35四周采用绝缘胶密封防止漏气,两平板状电介质34、35和绝缘胶之间形成的密封空间作为放电空腔6。
作为一个优选的实施例,高压放电电源1提供的电压等级和电压频率分别为5~30kV和10~40kHz。
本发明装置的使用方法为:首先将蒸发器4导入的含有待测汞元素和基体干扰的混合气溶胶与含有氧气的混合气体由载气入口7导入放电空腔6中;然后打开高压放电电源1,提供10~40kHz、5~30kV下的交流电,在放电空腔6中发生放电形成低温等离子体;低温等离子体将由蒸发器4导入的混合气溶胶中的有机干扰物质降解为简单分子物质,无机干扰元素被吸附与待测汞元素分离,实现有机和无机干扰物质的消除;基体干扰消除后的含有待测汞元素和简单分子物质的气溶胶,随载气进入原子光谱仪器的原子化器或激发源或光路或其他部件5,用于后续原子光谱仪器检测。
基于上述介质阻挡放电装置,本发明还提供一种采用介质阻挡放电装置进行汞分析的方法,包括以下步骤:
1)分别配制一系列不同浓度的含有待测汞元素的标准溶液;
2)将含有待测汞元素的标准溶液的电热蒸发气体通过蒸发器4导入放电空腔6,经介质阻挡放电装置消除干扰后,进行原子荧光光谱、原子吸收光谱或发射光谱检测,得到待测汞元素的标定值范围;
3)将含有待测汞元素的标准溶液加入到有机样品上,待测汞元素和有机/无机干扰物以电热蒸发的形式被载气带入放电空腔6,经介质阻挡放电装置进行有机物干扰物消除,无机干扰元素被吸附与待测汞元素分离后,通过原子荧光光谱、原子吸收光谱或发射光谱测得汞元素的测定值,将测定值和标定值进行比较,得到介质阻挡放电装置对基体干扰进行消除后汞分析的准确性。
下面通过具体实施例对本发明做进一步详细介绍。
实施例1
如图4、图5所示,为采用本发明介质阻挡放电装置消除不同进样量的烟丝、大米中有机物干扰的示意图,图中,纵坐标为混合气溶胶中有机物浓度。从图中可以看出,本发明装置可以有效消除30mg以上进样量的有机干扰物。
实施例2
采用100mg/L的汞元素标准溶液,2%的硝酸为稀释介质,配制系列标准溶液:0、0.025、0.05、0.1、0.15、0.2mg/L。进样测定时,采用移液枪分别移取以上系列标准溶液10μL,其所对应的元素质量为:0、0.25、0.5、1、1.5、2ng。将本发明装置用于上述元素标准溶液的电热蒸发导入,基质阻挡放电装置消除干扰,原子荧光光谱检测。汞元素的标准曲线线性回归系数(R2)>0.995,检出限≤1μg/kg。将25mg土壤标准样品(GBW07402土壤成分分析标准物质)置于蒸发器中,在使用和不使用介质阻挡放电(DBD)装置消除干扰的情况下分别连续测定3次。当不使用DBD装置时,汞的测定值为50±16μg/kg,均显著高于标定值范围(15±4μg/kg);当使用DBD装置时,汞的测定值为16±3μg/kg,在标定值范围内,表明本发明DBD装置可以有效消除基体干扰,方法准确性良好。
实施例3
采用100mg/L的汞元素标准溶液,2%的硝酸为稀释介质,配制系列标准溶液:0、0.025、0.05、0.1、0.15、0.2mg/L,进样测定时,采用移液枪分别移取以上系列标准溶液100μL,其所对应的元素质量为:0、2.5、5、10、15、20ng。将本发明装置用于上述元素标准溶液的电热蒸发导入,基质阻挡放电装置消除干扰,原子发射光谱检测。汞元素的标准曲线线性回归系数(R2)>0.995,检出限≤5μg/kg。同时导入100μL的0.05mg/L的汞、镉、砷、铅、铬、碲、铋、锑、硒元素标准溶液,按照上述方法测定,原子发射光谱可以检测到汞的光谱信号,但检测不到镉、砷、铅、铬、碲、铋、锑、硒元素的信号,表明DBD装置可以通过吸附分离效应,有效消除其他无机元素对汞元素的干扰。当不使用DBD装置时,汞的测定值为31±6μg/kg,均显著高于标定值范围(15±4μg/kg);当使用DBD装置时,汞的测定值为17±2μg/kg,在标定值范围内,表明DBD装置可以有效消除基体的有机和无机干扰,方法准确性良好。
上述各实施例仅用于说明本发明,其中各部件的结构、连接方式和制作工艺等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。

Claims (9)

1.一种介质阻挡放电装置,其特征在于:其包括高压放电电源、一放电电极组、一电介质以及蒸发器和原子光谱仪器;
所述放电电极组包括同轴型结构或平板型结构设置的第一、第二两放电电极,所述第一放电电极和第二放电电极分别与所述高压放电电源的两极相连;
所述电介质设置在所述第一放电电极和第二放电电极之间,且所述电介质在两所述第一、第二放电电极之间形成放电空腔;
所述放电空腔两端分别设置有载气入口和载气出口,且所述载气入口用于与所述蒸发器相连,所述载气出口用于与所述原子光谱仪器相连。
2.如权利要求1所述的一种介质阻挡放电装置,其特征在于:所述同轴型结构是指所述第一放电电极采用圆筒形网状放电电极,所述第二放电电极采用柱状放电电极,且所述第一放电电极套设在所述第二放电电极外侧。
3.如权利要求2所述的一种介质阻挡放电装置,其特征在于:所述电介质为一管状电介质,所述管状电介质内衬于所述第一放电电极内部,且所述管状电介质内壁与所述第二放电电极外壁之间的环空作为所述放电空腔。
4.如权利要求2所述的一种介质阻挡放电装置,其特征在于:所述电介质包括第一管状电介质和第二管状电介质,所述第一管状电介质内衬于所述第一放电电极内部,所述第二管状电介质包覆于所述第二放电电极外,所述第一管状电介质内壁与所述第二管状电介质外壁之间的环空作为所述放电空腔。
5.如权利要求1所述的一种介质阻挡放电装置,其特征在于:所述平板型结构是指所述第一放电电极和第二放电电极均采用丝状或片状放电电极,且所述第一放电电极和第二放电电极上下并排设置。
6.如权利要求5所述的一种介质阻挡放电装置,其特征在于:所述电介质为一管状电介质,所述管状电介质内衬于所述第一、第二两放电电极内,所述管状电介质内部作为所述放电空腔。
7.如权利要求5所述的一种介质阻挡放电装置,其特征在于:所述电介质包括第一、第二平板状电介质,所述第一、第二平板电介质四周采用绝缘胶密封,所述第一、第二平板电介质和绝缘胶之间形成所述放电空腔。
8.如权利要求1所述的一种介质阻挡放电装置,其特征在于:所述高压放电电源提供的电压等级和电压频率为5~30kV、10~40kHz。
9.一种采用如权利要求1~8任一项所述介质阻挡放电装置的汞分析方法,其特征在于包括以下步骤:
1)设置一介质阻挡放电装置,并将该介质阻挡放电装置与蒸发器和原子光谱仪器的原子化器或激发源或光路相连,所述介质阻挡放电装置包括高压放电电源、一放电电极组、一电介质以及蒸发器和原子光谱仪器;所述放电电极组包括第一、第二两放电电极,所述电介质设置在所述第一放电电极和第二放电电极之间,且所述电介质在两所述第一、第二放电电极之间形成放电空腔;
2)分别配制一系列不同浓度的含有待测汞元素的标准溶液;
3)将含有待测汞元素的标准溶液以电热蒸发形式被载气导入放电空腔,经介质阻挡放电装置消除干扰后,进行原子荧光光谱、原子吸收光谱或发射光谱检测,得到待测汞元素的标定值范围;
4)将含有待测汞元素的标准溶液加入到有机样品上,待测汞元素和有机/无机干扰物以电热蒸发的形式被载气带入放电空腔,经介质阻挡放电装置进行有机物基体干扰消除,无机干扰元素被吸附与待测汞元素分离后,通过原子荧光光谱、原子吸收光谱或原子发射光谱测得汞元素的测定值,将测定值和标定值进行比较,得到介质阻挡放电装置对基体干扰进行消除后汞分析的准确性。
CN201910098059.1A 2019-01-31 2019-01-31 一种介质阻挡放电装置及其汞分析方法 Active CN109831867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910098059.1A CN109831867B (zh) 2019-01-31 2019-01-31 一种介质阻挡放电装置及其汞分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910098059.1A CN109831867B (zh) 2019-01-31 2019-01-31 一种介质阻挡放电装置及其汞分析方法

Publications (2)

Publication Number Publication Date
CN109831867A true CN109831867A (zh) 2019-05-31
CN109831867B CN109831867B (zh) 2024-03-01

Family

ID=66862868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910098059.1A Active CN109831867B (zh) 2019-01-31 2019-01-31 一种介质阻挡放电装置及其汞分析方法

Country Status (1)

Country Link
CN (1) CN109831867B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114177879A (zh) * 2021-12-15 2022-03-15 中国科学院大学 一种纳米硒等离子体改性的陶瓷纳米汞吸附材料的制备方法
CN114286486A (zh) * 2021-12-31 2022-04-05 中国人民解放军战略支援部队航天工程大学 大气压介质阻挡放电等离子体活性产物测量装置和方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473162A (en) * 1987-10-26 1995-12-05 Baylor University Infrared emission detection of a gas
US5892364A (en) * 1997-09-11 1999-04-06 Monagle; Matthew Trace constituent detection in inert gases
JP2001050895A (ja) * 1999-08-04 2001-02-23 Shimadzu Corp グロー放電発光分光分析装置
JP2004170074A (ja) * 2002-11-15 2004-06-17 Nec Lighting Ltd 紫外面光源及びこれを用いた蛍光トランスイルミネーター
CN1763520A (zh) * 2005-09-27 2006-04-26 清华大学 介质阻挡放电原子化/离子化方法及其装置
CN101281135A (zh) * 2008-05-16 2008-10-08 东北大学 低温等离子体原子发射光谱测定微量汞的装置及方法
CN101344485A (zh) * 2007-07-10 2009-01-14 中国船舶重工集团公司第七二五研究所 Tft基板玻璃锑、钡、砷、锌、锶、锆快速测定方法
CN101474631A (zh) * 2008-12-26 2009-07-08 中国科学院南京土壤研究所 土壤中有机污染物的冷等离子体去除方法
US20100118301A1 (en) * 2008-11-13 2010-05-13 Petroleum Analyzer Company, L.P. System for analyzing a sample or a sample component and method for making and using same
CN103149195A (zh) * 2013-03-06 2013-06-12 河海大学 一种介质阻挡放电的光谱检测方法及装置
CN203534972U (zh) * 2013-11-12 2014-04-09 四川大学 一种基于电热蒸发-介质阻挡放电的原子发射光谱分析装置
CN108844927A (zh) * 2018-04-20 2018-11-20 中国地质大学(武汉) 一种样品引入系统及其原子荧光光谱仪
CN108918720A (zh) * 2018-07-26 2018-11-30 四川大学 一种基于尖端放电原子光谱的气相色谱检测装置
CN209897330U (zh) * 2019-01-31 2020-01-03 中国农业科学院农业质量标准与检测技术研究所 一种测汞用基体干扰消除的介质阻挡放电装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473162A (en) * 1987-10-26 1995-12-05 Baylor University Infrared emission detection of a gas
US5892364A (en) * 1997-09-11 1999-04-06 Monagle; Matthew Trace constituent detection in inert gases
JP2001050895A (ja) * 1999-08-04 2001-02-23 Shimadzu Corp グロー放電発光分光分析装置
JP2004170074A (ja) * 2002-11-15 2004-06-17 Nec Lighting Ltd 紫外面光源及びこれを用いた蛍光トランスイルミネーター
CN1763520A (zh) * 2005-09-27 2006-04-26 清华大学 介质阻挡放电原子化/离子化方法及其装置
CN101344485A (zh) * 2007-07-10 2009-01-14 中国船舶重工集团公司第七二五研究所 Tft基板玻璃锑、钡、砷、锌、锶、锆快速测定方法
CN101281135A (zh) * 2008-05-16 2008-10-08 东北大学 低温等离子体原子发射光谱测定微量汞的装置及方法
US20100118301A1 (en) * 2008-11-13 2010-05-13 Petroleum Analyzer Company, L.P. System for analyzing a sample or a sample component and method for making and using same
CN101474631A (zh) * 2008-12-26 2009-07-08 中国科学院南京土壤研究所 土壤中有机污染物的冷等离子体去除方法
CN103149195A (zh) * 2013-03-06 2013-06-12 河海大学 一种介质阻挡放电的光谱检测方法及装置
CN203534972U (zh) * 2013-11-12 2014-04-09 四川大学 一种基于电热蒸发-介质阻挡放电的原子发射光谱分析装置
CN108844927A (zh) * 2018-04-20 2018-11-20 中国地质大学(武汉) 一种样品引入系统及其原子荧光光谱仪
CN108918720A (zh) * 2018-07-26 2018-11-30 四川大学 一种基于尖端放电原子光谱的气相色谱检测装置
CN209897330U (zh) * 2019-01-31 2020-01-03 中国农业科学院农业质量标准与检测技术研究所 一种测汞用基体干扰消除的介质阻挡放电装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘霁欣: "《介质阻挡放电微等离子体在元素分析中的应用研究》", 《农产品质量与安全》, no. 24, pages 18 - 24 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114177879A (zh) * 2021-12-15 2022-03-15 中国科学院大学 一种纳米硒等离子体改性的陶瓷纳米汞吸附材料的制备方法
CN114177879B (zh) * 2021-12-15 2023-11-21 中国科学院大学 一种纳米硒等离子体改性的陶瓷纳米汞吸附材料的制备方法
CN114286486A (zh) * 2021-12-31 2022-04-05 中国人民解放军战略支援部队航天工程大学 大气压介质阻挡放电等离子体活性产物测量装置和方法

Also Published As

Publication number Publication date
CN109831867B (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US8334505B2 (en) Chemical ionization reaction or proton transfer reaction mass spectrometry
Poole Ionization-based detectors for gas chromatography
Chong et al. Inductively coupled plasma-mass spectrometry for elemental analysis and isotope ratio determinations in individual organic compounds separated by gas chromatography
KR101260631B1 (ko) 사중극 또는 비행시간형 질량 분석기를 이용한 화학적 이온화 반응 또는 양자 전이 반응 질량 분석법
Dane et al. Selective ionization of melamine in powdered milk by using argon direct analysis in real time (DART) mass spectrometry
US7973279B2 (en) Method and device for generating positively and/or negatively ionized gas analytes for gas analysis
JP2008508511A (ja) コロナ放電イオン化エレメントを備えたイオン移動度分光器
CN102353799A (zh) 介质阻挡放电微等离子体诱导的蒸发进样方法
Wu et al. Dielectric barrier discharge non-thermal micro-plasma for the excitation and emission spectrometric detection of ammonia
CN105717092B (zh) 一种dbd激发源、dbd-aes系统及其检测分析方法
CN109831867A (zh) 一种介质阻挡放电装置及其汞分析方法
Yu et al. Iodine excitation in a dielectric barrier discharge micro-plasma and its determination by optical emission spectrometry
JPWO2014125610A1 (ja) 放電イオン化電流検出器及びその調整方法
Drees et al. Stepwise optimization of a Flexible Microtube Plasma (FµTP) as an ionization source for Ion Mobility Spectrometry
Huang et al. Kinetic understanding of the ultrahigh ionization efficiencies (up to 28%) of excited-state CH2Cl2-induced associative ionization: A case study with nitro compounds
Wang et al. Rapid identification of illegal drugs and explosives using resonance excitation in miniaturized photoionization ion trap mass spectrometry
Petersson et al. Real‐time trace detection and identification of chemical warfare agent simulants using recent advances in proton transfer reaction time‐of‐flight mass spectrometry
Kostarev et al. Detection of explosives in vapor phase by field asymmetric ion mobility spectrometry with dopant-assisted laser ionization
Chen et al. Super‐atmospheric pressure chemical ionization mass spectrometry
CN209897330U (zh) 一种测汞用基体干扰消除的介质阻挡放电装置
Spesyvyi et al. In‐tube collision‐induced dissociation for selected ion flow‐drift tube mass spectrometry, SIFDT‐MS: a case study of NO+ reactions with isomeric monoterpenes
Bouza et al. A flowing atmospheric pressure afterglow as an ion source coupled to a differential mobility analyzer for volatile organic compound detection
Li et al. Ambient ionization and direct identification of volatile organic compounds with microwave‐induced plasma mass spectrometry
US20130260473A1 (en) Ionisation method for a universal gas analyzer
WO2013090157A1 (en) Atmospheric pressure chemical ionization detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant