CN109828575A - 一种有效提高农机作业效率的路径规划方法 - Google Patents

一种有效提高农机作业效率的路径规划方法 Download PDF

Info

Publication number
CN109828575A
CN109828575A CN201910134092.5A CN201910134092A CN109828575A CN 109828575 A CN109828575 A CN 109828575A CN 201910134092 A CN201910134092 A CN 201910134092A CN 109828575 A CN109828575 A CN 109828575A
Authority
CN
China
Prior art keywords
agricultural machinery
operating
coordinate
working
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910134092.5A
Other languages
English (en)
Inventor
赵晓杰
董振振
唐勇伟
王浩
孙瑞瑞
郝凤琦
赵景波
蔡成恩
郭佳乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Computer Science Center National Super Computing Center in Jinan
Shandong Computer Science Center
Original Assignee
Shandong Computer Science Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Computer Science Center filed Critical Shandong Computer Science Center
Priority to CN201910134092.5A priority Critical patent/CN109828575A/zh
Publication of CN109828575A publication Critical patent/CN109828575A/zh
Pending legal-status Critical Current

Links

Abstract

本发明的有效提高农机作业效率的路径规划方法,包括:a).生成作业区域平面图;b).建立直角坐标系O‑XY;c).规则作业面积求取;d).坐标变换;e).求子作业区域个数;f).求起点、终点坐标;g).不规则作业面积求取;h).作业角度求取,当作业区域为矩形时,则选取长边或短边为作业方向;当为不规则形状时,则选取最小作业面积对应方向为作业方向。本发明的路径规划方法,针对农机作业轨迹进行路径规划方式研究,分析作业区域边界及农机作业幅宽,得出最优作业路径,使农机以固定方向进行自主作业,农机工作具有规划性,减小农机手人认为决定作业方向造成的误差,使作业更具科学性、准确性,作业效率更高。

Description

一种有效提高农机作业效率的路径规划方法
技术领域
本发明涉及一种农机路径规划方法,更具体的说,尤其涉及一种有效提高农机作业效率的路径规划方法。
背景技术
近年国家聚焦三农发展问题,明确提出加大农业科技投入,发展现代化农业,建设以农业智能化装备为重点的农业全程信息化和机械化技术体系。农机自动驾驶控制技术推动了现代农业信息化水平的发展,对保障我国粮食供给,推动农业生产技术有重大作用。
农机自动驾驶控制技术可视为非线性、不确定的系统,面对复杂的作业环境,可以提高土地利用率和土地使用效率,全天候不间断作业,不受恶劣条件限制,快速、精准、高效率完成整地、起垄等作业;降低驾驶员劳动强度及驾驶技术要求,无需实时操控方向盘,驾驶员更方便检查农机具作业情况,有效减小机械化作业损失。
农机自动驾驶作业中,决定农机作业方向由人为操纵为主,实际操纵作业时农机行驶直线,农机行驶的起始作业方向人为即时决定。农机手人为决定作业方向,作业的路径与最佳理论路径有偏差,作业重耕率往往偏高。本发明在农机耕地作业之前,绘制出作业区边界地图,依据农机作业路径及作业机具的宽度,计算统计得到最低重耕率时的作业方向,即最优作业角度,使农机使用效率最高。
发明内容
本发明为了克服上述技术问题的缺点,提供了一种有效提高农机作业效率的路径规划方法。
本发明的有效提高农机作业效率的路径规划方法,其特征在于,通过以下步骤来实现:
a).生成作业区域平面图,农机沿农田边界运行一周,农机的车载GPS装置周期性地采集定位坐标,绘制出作业区域的平面图;
b).建立直角坐标系O-XY,设农机作业区域的边数为n1,其各顶点依次为A1、A2、...、An1,农机作业区域所形成的平面图形记为A1A2...An1;以正北方向为纵轴正向、正东方向为横轴正向、农机作业区域完全位于第一象限内的约束条件,建立直角坐标系O-XY;
c).规则作业面积求取,当农机作业区域为矩形时,农机的作业方向规划为与矩形作业区域的短边方向一致,设农机沿短边方向作业时与两长边的交点依次为(x1,y1)、(x2,y2)、...、(xn2,yn2),则通过公式(1)求取农机的实际作业面积S
其中,d为农机机具幅宽;
d).坐标变换,当农机作业区域不是矩形时,则对直角坐标系O-XY进行变换,设农机的作业方向为则以变换后坐标系的横轴正向与方向一致、纵轴进行相应的旋转、农机作业区域仍旧位于变换后坐标系的第一象限内为约束条件,将坐标系O-XY变换为直角坐标系O′-X′Y′;坐标变换后,农机作业区域的平面图形记为A′1A′2...A′n1
e).求子作业区域个数,坐标变换后,首先求取农机作业区域A′1A′2...A′n1纵坐标的最大值y′max和最小值y′min,然后求取满足不等式(2)的正整数m:
d为农机机具幅宽;
求取正整数m后,则表明农机按照方向作业时会产生m个子作业区域和m+1条分割线;
f).求起点、终点坐标,每个子作业区域由农机的1条耕地轨迹产生,根据作业区域A′1A′2...A′n1的边界,可求取第i条耕地轨迹对应的起点坐标为:终点坐标为:x′imin、x′imax为直线与作业区域A′1A′2...A′n1边界的两个交点;
g).不规则作业面积求取,由于农机在工作过程中是来回往复覆盖作业,因此将相邻两条作业轨迹作为一个周期进行规划,设农机作业的周期数为T,则在一个周期内,农机作业点坐标可用下式(3)表示:
其中,t=1,2,...,T;当子作业区域个数m为奇数时,周期T=(m+1)/2,此时最后的作业点为U4T-2;当子作业区域个数m为偶数时,周期T=m/2,此时最后的作业点为U4T
在农机作业区域为不规则形状时,农机实际作业面积通过公式(4)进行求取:
其中,当子作业区域个数m为奇数时p=(m+1)/2,q=(m-1)/2;当m为偶数时,p=q=m/2;
h).作业角度求取,令作业方向的初始值为0,每次角度增量为α,每次角度增加后均通过步骤d)至g)求取相应的作业面积,设分别为S′0、S′1、S′2、...、S′n
当农机作业区域为矩形时,则选取作业区域的长边或短边方向为作业方向;当农机作业区域为不规则形状时,则选取S′0、S′1、S′2、...、S′n中最小作业面积对应方向为作业方向。
本发明的有效提高农机作业效率的路径规划方法,设步骤d)中农机的作业方向与Y轴正向的夹角为γ,则通过以下步骤进行坐标转化:
d-1).当分别过平面图形A1A2...An1的横坐标最值xmax和xmin所处坐标点做直线x=xmax和x=xmin,过(xmax,0)做平行于的X′轴,X′轴与x=xmin的交点为O′,即建立了直角坐标系O′-X′Y′;
d-2).当分别过平面图形A1A2...An1的横坐标最值ymax和ymin所处坐标点做直线y=ymax和y=ymin,过(ymin,0)做平行于的X′轴,X′轴与y=ymax的交点为O′,即建立了直角坐标系O′-X′Y′;
d-3).当π<γ≤2π时,此时农机作业方向与γ-π表示的作业方向相反,此时令γ=γ-π,再按照步骤d-1)和步骤d-2)进行坐标转换,路径规划后,农机按照相反的路径经过各坐标点即可。
本发明的有效提高农机作业效率的路径规划方法,步骤d)中,坐标系O-XY至O′-X′Y′的转换方程为:
其中,xo′、yo′分别为坐标系O-XY的坐标原点(0,0)在O′-X′Y′坐标系中的横坐标值、纵坐标值。
本发明的有效提高农机作业效率的路径规划方法,步骤h)中所述的角度增量为α的取值范围为:1°≤α≤10°。
本发明的有益效果是:本发明的有效提高农机作业效率的路径规划方法,当农机作业区域为规则的矩形时,则沿矩形区域的长边或短边作为农机的作业方向;当作业区域为不规则形状时,则首先根据设定的作业方向进行坐标变换,然后根据作业区域在纵轴上的长度、作业机具的宽度求取作业区域个数,并依据相邻两条作业轨迹为一个周期求取每个作业方向下的作业面积S′0、S′1、...、S′n,选取最小作业面积对应方向为作业方向,得到最低重耕率时的作业方向,即最优作业角度,使农机使用效率最高。
附图说明
图1为本发明中农机作业区域为矩形时的路径规划示意图;
图2为本发明中农机作业区域为不规则形状时的路径规划示意图;
图3为本发明中作业方向与Y轴正向的夹角为锐角时的坐标转换示意图;
图4为本发明中作业方向与Y轴正向的夹角为钝角时的坐标转换示意图。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
本发明的有效提高农机作业效率的路径规划方法,通过以下步骤来实现:
a).生成作业区域平面图,农机沿农田边界运行一周,农机的车载GPS装置周期性地采集定位坐标,绘制出作业区域的平面图;
b).建立直角坐标系O-XY,设农机作业区域的边数为n1,其各顶点依次为A1、A2、...、An1,农机作业区域所形成的平面图形记为A1A2...An1;以正北方向为纵轴正向、正东方向为横轴正向、农机作业区域完全位于第一象限内的约束条件,建立直角坐标系O-XY;
c).规则作业面积求取,当农机作业区域为矩形时,农机的作业方向规划为与矩形作业区域的短边方向一致,设农机沿短边方向作业时与两长边的交点依次为(x1,y1)、(x2,y2)、...、(xn2,yn2),则通过公式(1)求取农机的实际作业面积S
其中,d为农机机具幅宽;
如图1所示,给出了本发明中农机作业区域为矩形时的路径规划示意图,当农机作业区域为矩形时,则选取作业区域的长边或短边方向为作业方向,此时的重耕率最低。
d).坐标变换,当农机作业区域不是矩形时,则对直角坐标系O-XY进行变换,设农机的作业方向为则以变换后坐标系的横轴正向与方向一致、纵轴进行相应的旋转、农机作业区域仍旧位于变换后坐标系的第一象限内为约束条件,将坐标系O-XY变换为直角坐标系O′-X′Y′;坐标变换后,农机作业区域的平面图形记为A′1A′2...A′n1
该步骤中,设农机的作业方向与Y轴正向的夹角为γ,则通过以下步骤进行坐标转化:
d-1).当分别过平面图形A1A2...An1的横坐标最值xmax和xmin所处坐标点做直线x=xmax和x=xmin,过(xmax,0)做平行于的X′轴,X′轴与x=xmin的交点为O′,即建立了直角坐标系O′-X′Y′;
如图3所示,给出了本发明中作业方向与Y轴正向的夹角为锐角时的坐标转换示意图。
d-2).当分别过平面图形A1A2...An1的横坐标最值ymax和ymin所处坐标点做直线y=ymax和y=ymin,过(ymin,0)做平行于的X′轴,X′轴与y=ymax的交点为O′,即建立了直角坐标系O′-X′Y′;
如图4所示,给出了本发明中作业方向与Y轴正向的夹角为钝角时的坐标转换示意图。
d-3).当π<γ≤2π时,此时农机作业方向与γ-π表示的作业方向相反,此时令γ=γ-π,再按照步骤d-1)和步骤d-2)进行坐标转换,路径规划后,农机按照相反的路径经过各坐标点即可。
e).求子作业区域个数,坐标变换后,首先求取农机作业区域A′1A′2...A′n1纵坐标的最大值y′max和最小值y′min,然后求取满足不等式(2)的正整数m:
d为农机机具幅宽;
如图2所示,给出了本发明中农机作业区域为不规则形状时的路径规划示意图,此时需要求解农机沿那个角度作业时会使重耕率最低。
求取正整数m后,则表明农机按照方向作业时会产生m个子作业区域和m+1条分割线;
f).求起点、终点坐标,每个子作业区域由农机的1条耕地轨迹产生,根据作业区域A′1A′2...A′n1的边界,可求取第i条耕地轨迹对应的起点坐标为:终点坐标为:x′imin、x′imax为直线与作业区域A′1A′2...A′n1边界的两个交点;
g).不规则作业面积求取,由于农机在工作过程中是来回往复覆盖作业,因此将相邻两条作业轨迹作为一个周期进行规划,设农机作业的周期数为T,则在一个周期内,农机作业点坐标可用下式(3)表示:
其中,t=1,2,...,T;当子作业区域个数m为奇数时,周期T=(m+1)/2,此时最后的作业点为U4T-2;当子作业区域个数m为偶数时,周期T=m/2,此时最后的作业点为U4T
在农机作业区域为不规则形状时,农机实际作业面积通过公式(4)进行求取:
其中,当子作业区域个数m为奇数时p=(m+1)/2,q=(m-1)/2;当m为偶数时,p=q=m/2;
h).作业角度求取,令作业方向的初始值为0,每次角度增量为α,每次角度增加后均通过步骤d)至g)求取相应的作业面积,设分别为S′0、S′1、S′2、...、S′n
当农机作业区域为矩形时,则选取作业区域的长边或短边方向为作业方向;当农机作业区域为不规则形状时,则选取S′0、S′1、S′2、...、S′n中最小作业面积对应方向为作业方向。
步骤d)中,坐标系O-XY至O′-X′Y′的转换方程为:
其中,xo′、yo′分别为坐标系O-XY的坐标原点(0,0)在O′-X′Y′坐标系中的横坐标值、纵坐标值。
步骤h)中所述的角度增量为α的取值范围为:1°≤α≤10°。
在农机作业中,普遍采用的方式为套耕法,回耕法,梭形耕法,耕地作业重耕率较高。并且实际作业中,回耕法在作业区域中央掉头作业时遗漏较大;梭形耕法在转弯掉头时为无效作业,增加作业时间;套耕法增加了农机手对作业方向的判断能力,耕地时产生较大误差。
本发明解决了此三种方式重耕率较高且效率低下的问题,针对农机作业轨迹进行路径规划方式研究,分析作业区域边界及农机作业幅宽,得出最优作业路径,使农机以固定方向进行自主作业,农机工作具有规划性,减小农机手人认为决定作业方向造成的误差,使作业更具科学性、准确性,作业效率更高。

Claims (4)

1.一种有效提高农机作业效率的路径规划方法,其特征在于,通过以下步骤来实现:
a).生成作业区域平面图,农机沿农田边界运行一周,农机的车载GPS装置周期性地采集定位坐标,绘制出作业区域的平面图;
b).建立直角坐标系O-XY,设农机作业区域的边数为n1,其各顶点依次为A1、A2、...、An1,农机作业区域所形成的平面图形记为A1A2...An1;以正北方向为纵轴正向、正东方向为横轴正向、农机作业区域完全位于第一象限内的约束条件,建立直角坐标系O-XY;
c).规则作业面积求取,当农机作业区域为矩形时,农机的作业方向规划为与矩形作业区域的短边方向一致,设农机沿短边方向作业时与两长边的交点依次为(x1,y1)、(x2,y2)、...、(xn2,yn2),则通过公式(1)求取农机的实际作业面积S
其中,d为农机机具幅宽;
d).坐标变换,当农机作业区域不是矩形时,则对直角坐标系O-XY进行变换,设农机的作业方向为则以变换后坐标系的横轴正向与方向一致、纵轴进行相应的旋转、农机作业区域仍旧位于变换后坐标系的第一象限内为约束条件,将坐标系O-XY变换为直角坐标系O′-X′Y′;坐标变换后,农机作业区域的平面图形记为A′1A′2...A′n1
e).求子作业区域个数,坐标变换后,首先求取农机作业区域A′1A′2...A′n1纵坐标的最大值y′max和最小值y′min,然后求取满足不等式(2)的正整数m:
d为农机机具幅宽;
求取正整数m后,则表明农机按照方向作业时会产生m个子作业区域和m+1条分割线;
f).求起点、终点坐标,每个子作业区域由农机的1条耕地轨迹产生,根据作业区域A′1A′2...A′n1的边界,可求取第i条耕地轨迹对应的起点坐标为:终点坐标为:x′imin、x′imax为直线与作业区域A′1A′2...A′n1边界的两个交点;
g).不规则作业面积求取,由于农机在工作过程中是来回往复覆盖作业,因此将相邻两条作业轨迹作为一个周期进行规划,设农机作业的周期数为T,则在一个周期内,农机作业点坐标可用下式(3)表示:
其中,t=1,2,...,T;当子作业区域个数m为奇数时,周期T=(m+1)/2,此时最后的作业点为U4T-2;当子作业区域个数m为偶数时,周期T=m/2,此时最后的作业点为U4T
在农机作业区域为不规则形状时,农机实际作业面积通过公式(4)进行求取:
其中,当子作业区域个数m为奇数时p=(m+1)/2,q=(m-1)/2;当m为偶数时,p=q=m/2;
h).作业角度求取,令作业方向的初始值为0,每次角度增量为α,每次角度增加后均通过步骤d)至g)求取相应的作业面积,设分别为S′0、S′1、S′2、...、S′n
当农机作业区域为矩形时,则选取作业区域的长边或短边方向为作业方向;当农机作业区域为不规则形状时,则选取S′0、S′1、S′2、...、S′n中最小作业面积对应方向为作业方向。
2.根据权利要求1所述的有效提高农机作业效率的路径规划方法,其特征在于,设步骤d)中农机的作业方向与Y轴正向的夹角为γ,则通过以下步骤进行坐标转化:
d-1).当分别过平面图形A1A2...An1的横坐标最值xmax和xmin所处坐标点做直线x=xmax和x=xmin,过(xmax,0)做平行于的X′轴,X′轴与x=xmin的交点为O′,即建立了直角坐标系O′-X′Y′;
d-2).当分别过平面图形A1A2...An1的横坐标最值ymax和ymin所处坐标点做直线y=ymax和y=ymin,过(ymin,0)做平行于的X′轴,X′轴与y=ymax的交点为O′,即建立了直角坐标系O′-X′Y′;
d-3).当π<γ≤2π时,此时农机作业方向与γ-π表示的作业方向相反,此时令γ=γ-π,再按照步骤d-1)和步骤d-2)进行坐标转换,路径规划后,农机按照相反的路径经过各坐标点即可。
3.根据权利要求1所述的有效提高农机作业效率的路径规划方法,其特征在于,步骤d)中,坐标系O-XY至O′-X′Y′的转换方程为:
其中,xo′、yo′分别为坐标系O-XY的坐标原点(0,0)在O′-X′Y′坐标系中的横坐标值、纵坐标值。
4.根据权利要求1或2所述的有效提高农机作业效率的路径规划方法,其特征在于:步骤h)中所述的角度增量为α的取值范围为:1°≤α≤10°。
CN201910134092.5A 2019-02-22 2019-02-22 一种有效提高农机作业效率的路径规划方法 Pending CN109828575A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910134092.5A CN109828575A (zh) 2019-02-22 2019-02-22 一种有效提高农机作业效率的路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910134092.5A CN109828575A (zh) 2019-02-22 2019-02-22 一种有效提高农机作业效率的路径规划方法

Publications (1)

Publication Number Publication Date
CN109828575A true CN109828575A (zh) 2019-05-31

Family

ID=66864251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910134092.5A Pending CN109828575A (zh) 2019-02-22 2019-02-22 一种有效提高农机作业效率的路径规划方法

Country Status (1)

Country Link
CN (1) CN109828575A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110675414A (zh) * 2019-09-30 2020-01-10 广州极飞科技有限公司 地块分割方法、装置、电子设备及存储介质
CN110715657A (zh) * 2019-09-26 2020-01-21 南京林业大学 一种航空施药区域全覆盖路径规划方法
CN111061270A (zh) * 2019-12-18 2020-04-24 深圳拓邦股份有限公司 一种全面覆盖方法、系统及作业机器人
CN111220786A (zh) * 2020-03-09 2020-06-02 生态环境部华南环境科学研究所 一种深水沉积物有机污染快速监测方法
CN111220410A (zh) * 2020-03-09 2020-06-02 生态环境部华南环境科学研究所 一种快速采样的深水沉积物取样系统
CN111750861A (zh) * 2020-05-29 2020-10-09 广州极飞科技有限公司 优选路径规划方法、装置及电子设备
CN111897336A (zh) * 2020-08-02 2020-11-06 珠海市一微半导体有限公司 一种机器人沿边行为结束的判断方法、芯片及机器人
CN113686344A (zh) * 2021-08-30 2021-11-23 中车大连电力牵引研发中心有限公司 一种农机覆盖路径规划方法
CN113848880A (zh) * 2021-08-30 2021-12-28 中车大连电力牵引研发中心有限公司 一种基于改进Q-learning的农机路径优化方法
CN114431018A (zh) * 2022-03-22 2022-05-06 南方电网电力科技股份有限公司 一种树障清理方法、装置及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088644A (en) * 1998-08-12 2000-07-11 Caterpillar Inc. Method and apparatus for determining a path to be traversed by a mobile machine
CN105116913A (zh) * 2015-08-12 2015-12-02 北京农业智能装备技术研究中心 植保无人机作业航线规划方法及装置
CN106017400A (zh) * 2016-07-13 2016-10-12 哈尔滨工业大学 基于耕作轨迹等效矩形累加的农机作业面积测量方法
CN106202931A (zh) * 2016-07-08 2016-12-07 浙江联辉智能科技有限公司 一种农机作业面积算法
CN108919792A (zh) * 2018-05-30 2018-11-30 华南农业大学 一种自动导航系统路径规划控制方法
CN109220089A (zh) * 2018-10-25 2019-01-18 山东省计算中心(国家超级计算济南中心) 基于北斗卫星定位的小区播种路径对齐方法
CN109238284A (zh) * 2018-08-29 2019-01-18 北京农业智能装备技术研究中心 一种农机自动导航中机具作业点的确定方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088644A (en) * 1998-08-12 2000-07-11 Caterpillar Inc. Method and apparatus for determining a path to be traversed by a mobile machine
CN105116913A (zh) * 2015-08-12 2015-12-02 北京农业智能装备技术研究中心 植保无人机作业航线规划方法及装置
CN106202931A (zh) * 2016-07-08 2016-12-07 浙江联辉智能科技有限公司 一种农机作业面积算法
CN106017400A (zh) * 2016-07-13 2016-10-12 哈尔滨工业大学 基于耕作轨迹等效矩形累加的农机作业面积测量方法
CN108919792A (zh) * 2018-05-30 2018-11-30 华南农业大学 一种自动导航系统路径规划控制方法
CN109238284A (zh) * 2018-08-29 2019-01-18 北京农业智能装备技术研究中心 一种农机自动导航中机具作业点的确定方法及系统
CN109220089A (zh) * 2018-10-25 2019-01-18 山东省计算中心(国家超级计算济南中心) 基于北斗卫星定位的小区播种路径对齐方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110715657A (zh) * 2019-09-26 2020-01-21 南京林业大学 一种航空施药区域全覆盖路径规划方法
CN110715657B (zh) * 2019-09-26 2020-06-26 南京林业大学 一种航空施药区域全覆盖路径规划方法
CN110675414A (zh) * 2019-09-30 2020-01-10 广州极飞科技有限公司 地块分割方法、装置、电子设备及存储介质
CN111061270B (zh) * 2019-12-18 2023-12-29 深圳拓邦股份有限公司 一种全面覆盖方法、系统及作业机器人
CN111061270A (zh) * 2019-12-18 2020-04-24 深圳拓邦股份有限公司 一种全面覆盖方法、系统及作业机器人
CN111220786A (zh) * 2020-03-09 2020-06-02 生态环境部华南环境科学研究所 一种深水沉积物有机污染快速监测方法
CN111220410A (zh) * 2020-03-09 2020-06-02 生态环境部华南环境科学研究所 一种快速采样的深水沉积物取样系统
CN111750861A (zh) * 2020-05-29 2020-10-09 广州极飞科技有限公司 优选路径规划方法、装置及电子设备
CN111750861B (zh) * 2020-05-29 2024-04-09 广州极飞科技股份有限公司 优选路径规划方法、装置及电子设备
CN111897336A (zh) * 2020-08-02 2020-11-06 珠海市一微半导体有限公司 一种机器人沿边行为结束的判断方法、芯片及机器人
CN113686344A (zh) * 2021-08-30 2021-11-23 中车大连电力牵引研发中心有限公司 一种农机覆盖路径规划方法
CN113686344B (zh) * 2021-08-30 2023-08-18 中车大连电力牵引研发中心有限公司 一种农机覆盖路径规划方法
CN113848880B (zh) * 2021-08-30 2023-12-22 中车大连电力牵引研发中心有限公司 一种基于改进Q-learning的农机路径优化方法
CN113848880A (zh) * 2021-08-30 2021-12-28 中车大连电力牵引研发中心有限公司 一种基于改进Q-learning的农机路径优化方法
CN114431018B (zh) * 2022-03-22 2023-01-31 南方电网电力科技股份有限公司 一种树障清理方法、装置及系统
CN114431018A (zh) * 2022-03-22 2022-05-06 南方电网电力科技股份有限公司 一种树障清理方法、装置及系统

Similar Documents

Publication Publication Date Title
CN109828575A (zh) 一种有效提高农机作业效率的路径规划方法
CN111256700B (zh) 用于自动驾驶农机作业路径规划的收边规划方法
EP3384243B1 (en) Path planning for area coverage
CN106643719B (zh) 一种智能割草车的路径规划算法
CN109240284A (zh) 一种无人驾驶农机的自主路径规划方法及装置
CN110793524B (zh) 一种割草机路径规划的方法
CN106247926B (zh) 基于单元格扫描和gps轨迹插值的农机耕作面积测算方法
CN102288158B (zh) 基于法截面子午线椭球控制高斯投影变形的方法
CN109238298A (zh) 一种无人驾驶带避障的路径规划方法
CN104700617A (zh) 基于低精度gps轨迹数据的高精度车道信息提取方法
CN109000660A (zh) 基于超宽带定位的全自动压路机施工路径规划方法
CN106017400A (zh) 基于耕作轨迹等效矩形累加的农机作业面积测量方法
CN110715657B (zh) 一种航空施药区域全覆盖路径规划方法
CN107985400A (zh) 作业区域路径规划方法和装置
CN105139668A (zh) 一种基于路段速度区间的城市干线双向绿波控制优化方法
CN113032876B (zh) 铁路沿线自动改移既有道路的立交通道布设方法及系统
CN104240260A (zh) 一种基于叉路识别的道路智能提取方法
CN105180811A (zh) 基于同名特征地物的移动测量系统激光扫描仪标定方法
CN109859514A (zh) 基于公交车停靠站电子围栏的公交车驶入驶出判断方法
WO2023025105A1 (zh) 一种耙地作业的路径规划方法及装置
CN106910219B (zh) 一种基于几何方式统计农机工作面积的方法
CN115855067B (zh) 一种曲形农田边界的路径规划方法
CN106568412A (zh) 一种不规则形状地块的面积测量方法
CN112985401A (zh) 一种headline全路径规划和跟踪方法
CN104615880A (zh) 一种三维激光雷达点云匹配的快速icp方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190531