CN109825669A - Lf炉低能耗冶炼工艺 - Google Patents

Lf炉低能耗冶炼工艺 Download PDF

Info

Publication number
CN109825669A
CN109825669A CN201910240581.9A CN201910240581A CN109825669A CN 109825669 A CN109825669 A CN 109825669A CN 201910240581 A CN201910240581 A CN 201910240581A CN 109825669 A CN109825669 A CN 109825669A
Authority
CN
China
Prior art keywords
furnace
electric arc
electrode
energy consumption
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910240581.9A
Other languages
English (en)
Inventor
顾志玉
周国忠
石斌龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Delong Nickel Industry Co Ltd
Original Assignee
Jiangsu Delong Nickel Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Delong Nickel Industry Co Ltd filed Critical Jiangsu Delong Nickel Industry Co Ltd
Priority to CN201910240581.9A priority Critical patent/CN109825669A/zh
Publication of CN109825669A publication Critical patent/CN109825669A/zh
Pending legal-status Critical Current

Links

Abstract

本发明属于铜排加工技术领域,尤其涉及LF炉低能耗冶炼工艺,针对现有的工艺操作的安全性低、钢液的脱氧和脱硫不彻底和冶炼质量不佳的问题,现如今提出如下方案:(1)LF炉检查:对密封部位进行检查,观察是否有损坏,及时修补和更换;(2)加料:选取合适大小的炉料,并将生石灰、小快料、大快料和易导电材料从下至上的顺序依次堆叠,后加入钢液;(3)通电熔化:采用三相电弧加热实现LF炉的低能耗加热,通过上下移动电极调节电弧长度,电弧发生在电极与炉料之间,炉料受电弧直接加热熔化。本发明,LF炉冶炼时的安全性得到增强,钢液的脱氧和脱硫效果佳且可除去非金属夹杂物,同时,还原性强从而提高了冶炼质量。

Description

LF炉低能耗冶炼工艺
技术领域
本发明涉及冶炼工艺领域,尤其涉及LF炉低能耗冶炼工艺。
背景技术
LF炉即钢包精炼炉,是钢铁生产中主要的炉外精炼设备,LF炉一般指钢铁行业中的精炼炉,主要任务是用于脱硫,是连铸车间特别是合金钢连铸生产线上不可缺少的控制设备,联合生产线上钢的还原精炼主要是靠LF炉的冶炼来完成的,LF炉所处理的钢种几乎涉及从特钢到普钢的所有钢种,应用较为广泛。
现有的冶炼工艺有很多,吹氧助熔时容易吹坏炉墙,且炉料的坍塌方向不定容易导致炉料沸腾喷溅和电极和炉料之间断开而停止加热,冶炼时的安全性低,钢液的脱氧和脱硫反应进行不彻底且冶炼得到的钢液含有不纯,还有非金属杂质,还原效果不佳影响了冶炼质量。
发明内容
本发明提出的LF炉低能耗冶炼工艺,解决了传统工艺操作的安全性低、钢液的脱氧和脱硫不彻底和冶炼质量不佳的问题。
为了实现上述目的,本发明采用了如下技术方案:
LF炉低能耗冶炼工艺,包括以下步骤:
(1)LF炉检查:对密封部位进行检查,观察是否有损坏,及时修补和更换;
(2)加料:选取合适大小的炉料,并将生石灰、小快料、大快料和易导电材料从下至上的顺序依次堆叠,后加入钢液;
(3)通电熔化:采用三相电弧加热实现LF炉的低能耗加热,通过上下移动电极调节电弧长度,电弧发生在电极与炉料之间,炉料受电弧直接加热熔化:
(4)吹氧助熔控制:往炉内吹入氧气以加速炉料熔化,吹氧初期,控制氧压为0.35~0.4MPa,并注意吹氧方向和控制炉料的坍塌方向;
(5)取样测温:炉料熔化后,从电极之间的熔池深度的1/3处采集熔清样分析测温,当熔清样中碳含量达不到0.45%时,增碳继续进行步骤(3);
(6)氧化期:吹氧后钢液沸腾进行氧化,氧化时控制熔池温度为1560~1600℃;
(7)静沸腾并预脱氧:达到氧化温度后,矿石或石灰分批少量加入以保证沸腾良好,炉料燃烧后变成的白渣在精炼作用下降低钢中氧、硫及夹杂物含量,并通过对氧化物的吸附作用进行脱氧;
(8)还原期:在低氧的气氛中,向炉内吹氩气以实现炉渣中氧化物的还原;
(9)搅拌:吹氩气的过程中进行搅拌以加速炉渣和钢之间的化学反应;
(10)温度补偿:采用电弧加热进行温度补偿,加热时,电极与炉渣中FeO、MnO和C等氧化物作用生成CO气体,以增加炉气的还原性;
(11)出料:冶炼完成后倾斜炉体,钢液和炉渣分批从LF炉的两侧导出并收集,钢液收集以便进行浇注或精炼。
作为优选技术方案,步骤(2)中所述炉料摆放下紧上松,所述易导电材料选用中料块或生铁。
作为优选技术方案,步骤(3)中所述电极选用碳素电极或石墨电极,且电极的数量为三组。
与现有技术相比,本发明的有益效果是:
本发明的冶炼工艺与传统的工艺不同,通过控制吹氧方向以防止吹坏炉墙,并通过控制炉料的坍塌方向以防止炉料沸腾喷溅和电极和炉料之间断开而停止加热,增强了冶炼时的安全性;通过搅拌氩气加速渣一钢之间的化学反应,从而有较长时间的精炼时间,钢液的脱氧和脱硫反应进行彻底且可除去非金属夹杂物,同时,可加速炉渣中氧化物的还原和使炉内成份均匀;通过还原过程中进行温度补偿,增强炉气还原性的同时,催化石墨电极和炉内氧气作用生成碳一氧化物,从而可阻止炉气中的氧向金属传递,避免再次氧化且提高了冶炼质量。
具体实施方式
下面对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
实施例一
LF炉低能耗冶炼工艺,包括以下步骤:
(1)LF炉检查:对密封部位进行检查,观察是否有损坏,及时修补和更换;
(2)加料:选取合适大小的炉料,并将生石灰、小快料、大快料和生铁从下至上的顺序依次堆叠,后加入钢液,炉料摆放下紧上松;
(3)通电熔化:采用三相电弧加热实现LF炉的低能耗加热,通过上下移动石墨电极调节电弧长度,电弧发生在三组石墨电极与炉料之间,炉料受电弧直接加热熔化:
(4)吹氧助熔控制:往炉内吹入氧气以加速炉料熔化,吹氧初期,控制氧压为0.4MPa,并注意吹氧方向和控制炉料的坍塌方向;
(5)取样测温:炉料熔化后,从石墨电极之间的熔池深度的1/3处采集熔清样分析测温,当熔清样中碳含量达不到0.45%时,增碳继续进行步骤(3);
(6)氧化期:吹氧后钢液沸腾进行氧化,氧化时控制熔池温度为1580℃;
(7)静沸腾并预脱氧:达到氧化温度后,矿石或石灰分批少量加入以保证沸腾良好,炉料燃烧后变成的白渣在精炼作用下降低钢中氧、硫及夹杂物含量,并通过对氧化物的吸附作用进行脱氧;
(8)还原期:在低氧的气氛中,向炉内吹氩气以实现炉渣中氧化物的还原;
(9)搅拌:吹氩气的过程中进行搅拌以加速炉渣和钢之间的化学反应;
(10)温度补偿:采用电弧加热进行温度补偿,加热时,石墨电极与炉渣中FeO、MnO和C等氧化物作用生成CO气体,以增加炉气的还原性;
(11)出料:冶炼完成后倾斜炉体,钢液和炉渣分批从LF炉的两侧导出并收集,钢液收集以便进行浇注或精炼。
实施例二
LF炉低能耗冶炼工艺,包括以下步骤:
(1)LF炉检查:对密封部位进行检查,观察是否有损坏,及时修补和更换;
(2)加料:选取合适大小的炉料,并将生石灰、小快料、大快料和中料块从下至上的顺序依次堆叠,后加入钢液,炉料摆放下紧上松;
(3)通电熔化:采用三相电弧加热实现LF炉的低能耗加热,通过上下移动碳素电极调节电弧长度,电弧发生在三组碳素电极与炉料之间,炉料受电弧直接加热熔化:
(4)吹氧助熔控制:往炉内吹入氧气以加速炉料熔化,吹氧初期,控制氧压为0.35MPa,并注意吹氧方向和控制炉料的坍塌方向;
(5)取样测温:炉料熔化后,从碳素电极之间的熔池深度的1/3处采集熔清样分析测温,当熔清样中碳含量达不到0.45%时,增碳继续进行步骤(3);
(6)氧化期:吹氧后钢液沸腾进行氧化,氧化时控制熔池温度为1600℃;
(7)静沸腾并预脱氧:达到氧化温度后,矿石或石灰分批少量加入以保证沸腾良好,炉料燃烧后变成的白渣在精炼作用下降低钢中氧、硫及夹杂物含量,并通过对氧化物的吸附作用进行脱氧;
(8)还原期:在低氧的气氛中,向炉内吹氩气以实现炉渣中氧化物的还原;
(9)搅拌:吹氩气的过程中进行搅拌以加速炉渣和钢之间的化学反应;
(10)温度补偿:采用电弧加热进行温度补偿,加热时,碳素电极与炉渣中FeO、MnO和C等氧化物作用生成CO气体,以增加炉气的还原性;
(11)出料:冶炼完成后倾斜炉体,钢液和炉渣分批从LF炉的两侧导出并收集,钢液收集以便进行浇注或精炼。
本发明提出的LF炉低能耗冶炼工艺,通过控制吹氧方向以防止吹坏炉墙,并通过控制炉料的坍塌方向以防止炉料沸腾喷溅和电极和炉料之间断开而停止加热,增强了冶炼时的安全性;通过搅拌氩气加速渣一钢之间的化学反应,从而有较长时间的精炼时间,钢液的脱氧和脱硫反应进行彻底且可除去非金属夹杂物,同时,可加速炉渣中氧化物的还原和使炉内成份均匀;通过还原过程中进行温度补偿,增强炉气还原性的同时,催化石墨电极和炉内氧气作用生成碳一氧化物,从而可阻止炉气中的氧向金属传递,避免再次氧化且提高了冶炼质量。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (3)

1.LF炉低能耗冶炼工艺,其特征在于,包括以下步骤:
(1)LF炉检查:对密封部位进行检查,观察是否有损坏,及时修补和更换;
(2)加料:选取合适大小的炉料,并将生石灰、小快料、大快料和易导电材料从下至上的顺序依次堆叠,后加入钢液;
(3)通电熔化:采用三相电弧加热实现LF炉的低能耗加热,通过上下移动电极调节电弧长度,电弧发生在电极与炉料之间,炉料受电弧直接加热熔化:
(4)吹氧助熔控制:往炉内吹入氧气以加速炉料熔化,吹氧初期,控制氧压为0.35~0.4MPa,并注意吹氧方向和控制炉料的坍塌方向;
(5)取样测温:炉料熔化后,从电极之间的熔池深度的1/3处采集熔清样分析测温,当熔清样中碳含量达不到0.45%时,增碳继续进行步骤(3);
(6)氧化期:吹氧后钢液沸腾进行氧化,氧化时控制熔池温度为1560~1600℃;
(7)静沸腾并预脱氧:达到氧化温度后,矿石或石灰分批少量加入以保证沸腾良好,炉料燃烧后变成的白渣在精炼作用下降低钢中氧、硫及夹杂物含量,并通过对氧化物的吸附作用进行脱氧;
(8)还原期:在低氧的气氛中,向炉内吹氩气以实现炉渣中氧化物的还原;
(9)搅拌:吹氩气的过程中进行搅拌以加速炉渣和钢之间的化学反应;
(10)温度补偿:采用电弧加热进行温度补偿,加热时,电极与炉渣中FeO、MnO和C等氧化物作用生成CO气体,以增加炉气的还原性;
(11)出料:冶炼完成后倾斜炉体,钢液和炉渣分批从LF炉的两侧导出并收集,钢液收集以便进行浇注或精炼。
2.根据权利要求1所述的LF炉低能耗冶炼工艺,其特征在于,步骤(2)中所述炉料摆放下紧上松,所述易导电材料选用中料块或生铁。
3.根据权利要求1所述的LF炉低能耗冶炼工艺,其特征在于,步骤(3)中所述电极选用碳素电极或石墨电极,且电极的数量为三组。
CN201910240581.9A 2019-03-28 2019-03-28 Lf炉低能耗冶炼工艺 Pending CN109825669A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910240581.9A CN109825669A (zh) 2019-03-28 2019-03-28 Lf炉低能耗冶炼工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910240581.9A CN109825669A (zh) 2019-03-28 2019-03-28 Lf炉低能耗冶炼工艺

Publications (1)

Publication Number Publication Date
CN109825669A true CN109825669A (zh) 2019-05-31

Family

ID=66872600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910240581.9A Pending CN109825669A (zh) 2019-03-28 2019-03-28 Lf炉低能耗冶炼工艺

Country Status (1)

Country Link
CN (1) CN109825669A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104278130A (zh) * 2014-09-23 2015-01-14 商洛学院 一种lf炉渣碱度快速调整工艺
CN105970109A (zh) * 2016-06-09 2016-09-28 广东世创金属科技股份有限公司 一种高性能热作钢及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104278130A (zh) * 2014-09-23 2015-01-14 商洛学院 一种lf炉渣碱度快速调整工艺
CN105970109A (zh) * 2016-06-09 2016-09-28 广东世创金属科技股份有限公司 一种高性能热作钢及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
周建男: "《钢铁生产工艺装备新技术》", 31 January 2004, 北京:冶金工业出版社 *
朱苗勇等: "《现代冶金工艺学——钢铁冶金卷》", 31 December 2016, 冶金工业出版社 *
机械工程手册、电机工程手册编辑委员会: "《电机工程手册(第二版)应用卷(一)》", 30 September 1997, 机械工业出版社 *

Similar Documents

Publication Publication Date Title
CN111270126B (zh) 一种铌钛氮和钛氮复合微合金化hrb400e钢筋及其生产方法
CN109280732A (zh) 一种高纯净度抗酸管线钢冶炼工艺
CN111411300B (zh) 一种高磷铁水生产镍系钢的方法
CN109112251A (zh) 一种快速造白渣的冶炼工艺
JP2013234379A (ja) 極低燐極低硫鋼の溶製方法
CN109777918A (zh) 一种细化高碳铬轴承钢夹杂物颗粒的炉外精炼生产方法
CN108193018A (zh) 一种lf精炼炉生产低碳低硫钢防增碳方法
CN103468866A (zh) 一种中高碳钢水的精炼工艺
JP2006206957A (ja) マンガン系合金鉄製造時に発生するスラグからのマンガン回収方法
CN108148946A (zh) 一种lf炉精炼工艺
CN113699430A (zh) 一种冶炼低硫低磷超低碳钢的全流程工艺
CN109825669A (zh) Lf炉低能耗冶炼工艺
CN109825663A (zh) 一种高性能钢材料的精细加工方法
CN109897930A (zh) 一种转炉生产含钼钢的方法
TW202313994A (zh) 鋼水的精煉方法
JP4686917B2 (ja) 真空脱ガス設備における溶鋼の溶製方法
KR101660774B1 (ko) 전로 조업 방법
CN106191368A (zh) 一种高铝超低钛钢水的生产方法
JPH0925507A (ja) 溶鋼の精錬方法
KR100847102B1 (ko) Lf공정에서의 탈류방법
JP2003147430A (ja) 製鋼用還元剤及び製鋼方法
CN115505682B (zh) 一种缩短低碳铝镇静钢lf炉冶炼时间的方法
JP3674422B2 (ja) 高清浄度低炭素鋼の溶製方法
EP4353842A1 (en) Molten steel denitrification method and steel production method
Wang et al. Development and prospects of molten steel deoxidation in steelmaking process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190531