CN109782627B - 一种微铣刀参数一体化设计方法 - Google Patents

一种微铣刀参数一体化设计方法 Download PDF

Info

Publication number
CN109782627B
CN109782627B CN201910091082.8A CN201910091082A CN109782627B CN 109782627 B CN109782627 B CN 109782627B CN 201910091082 A CN201910091082 A CN 201910091082A CN 109782627 B CN109782627 B CN 109782627B
Authority
CN
China
Prior art keywords
cutter
milling cutter
parameters
cutting
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910091082.8A
Other languages
English (en)
Other versions
CN109782627A (zh
Inventor
陈妮
袁媛
赵国龙
郭月龙
江一帆
李亮
何宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201910091082.8A priority Critical patent/CN109782627B/zh
Publication of CN109782627A publication Critical patent/CN109782627A/zh
Application granted granted Critical
Publication of CN109782627B publication Critical patent/CN109782627B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

本发明公开一种微铣刀参数一体化设计方法,借助UG NX二次开发平台,搭建微铣刀一体化设计系统。该系统包括微铣刀的参数化设计模块、工件信息模块、切削仿真模块。用户通过一体化设计系统界面输入所要加工对象的参数信息、选用的刀具结构及初始刀具参数信息,系统自动生成刀具三维模型,并将工件信息和刀具模型后台导入有限元软件进行切削仿真,而后将切削仿真结果(切削力、切削温度、刀具磨损)显示在系统的交互界面,同时系统根据仿真结果及相应的优化准则提出一定的优化方案,指导刀具参数变动,经过一系列的迭代得到适合加工该种工件的最优刀具参数。本发明的刀具设计方法实现了将刀具的设计过程与切削工艺过程相联系的目标。

Description

一种微铣刀参数一体化设计方法
技术领域
本发明涉及一种微铣刀参数一体化设计方法,其属于机械切削刀具设计制造领域。
背景技术
在刀具行业中,刀具的“专用化”是改善刀具性能的一个重要方向,也是刀具发展的一个主要趋势,专用化程度提高必然引起刀具种类增加、批量降低,因此,挑战刀具设计与制造的精准性、灵活性和适应性。目前刀具参数化设计虽然可以自动建模,很大程度上提高刀具设计的效率,但其刀具设计方法未涉及到微细铣削领域且刀具设计过程与切削工艺优化过程分离,这样就忽略了刀具、切削条件及刀具切削性能共同对加工的影响。因此迫切需要研究专用刀具设计的新技术,大大提高专用化刀具的设计效率。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种微铣刀参数一体化设计方法,它以加工需求为驱动,利用切削过程中涉及的理论,并通过刀具设计特征,将刀具的设计和切削工艺过程结合起来,进而实现针对加工需求的专用刀具设计。
该方法主要借助UG NX二次开发平台实现微铣刀参数一体化设计系统的搭建。该系统可将刀具设计过程与切削工艺优化过程联系在一起,通过一体化设计系统界面输入所要加工对象的参数信息、选用的刀具结构及初始刀具参数信息,系统自动生成刀具、工件模型并在后台进行切削仿真,在交互界面显示切削仿真结果(切削力、切削温度、刀具磨损),系统根据仿真结果及相应的优化准则提出一定的优化方案,经过系统反复迭代输出适合加工该工件的最优刀具参数。
为达到上述目的,本发明通过以下方式搭建微铣刀参数一体化设计系统,首先进行微铣刀的参数化设计,然后构建切削仿真模型并提出相应的优化准则,最后将微铣刀的参数化设计模块、工件信息模块、切削仿真模块结合完成微铣刀参数一体化设计系统。
具体的设计方法如下:
(一)微铣刀的参数化设计
借助UG NX二次开发平台实现微铣刀的参数化设计:设置系统开发环境;通过UGOpen 的Menu Script和UI styler模块分别完成系统菜单、用户对话框的创建;借助UG中的表达式功能将刀具参数串联,在Visual Studio中编写对话框程序文件,生成动态链接库,实现改变对话框中的刀具参数,微铣刀模型随之改变的功能,进而实现微铣刀快速设计。为搭建微铣刀参数化设计系统提供基础。
(二)构建切削仿真模型并提出相应的优化准则
根据刀具模型、所要加工工件的信息,系统借助有限元仿真软件构建切削加工仿真模型,而后将相应的仿真结果:切削力、切削温度、刀具磨损显示在交互界面。
逐一分析刀具参数与其对应的仿真结果,得到随刀具参数变化各个仿真结果变化趋势图,最终得到加工该种工件刀具参数的最优区域。使得刀具选择此区域中的刀具参数时加工工件时切削力较小、切削温度较低、刀具磨损较小。
(三)微铣刀一体化设计系统
本系统包括微铣刀的参数化设计模块、工件信息模块、切削仿真模块。用户在系统交互界面选择所需要的刀具结构并输入所要加工的工件信息及刀具初始参数,系统会自动生成刀具三维模型并在后台调用有限元仿真软件进行切削加工仿真,而后再将有限元软件中的仿真结果显示在系统中的用户界面,并依据优化准则提出相应的优化方案,不断迭代输出最优刀。
本发明具有如下有益效果:
本发明的微铣刀参数一体化设计方法为刀具设计提供了一个新的技术方案,它将刀具的设计过程与切削工艺过程联系在一起,大大提高了专用化刀具的设计效率。刀具设计方法通过设计系统发挥作用,将三维模型的输出与人性化的软件界面相结合,不仅能让设计人员包括制造人员更方便快捷,更直观的了解产品各方面特点,同时其仿真模块也为刀具设计的准确性提供了保障。
附图说明
图1为本发明的一种微铣刀参数一体化设计方法流程图;
图2为本发明的微铣刀参数一体化设计系统界面;
图3为本发明的微铣刀结构参数图;
图4为本发明的微铣刀螺旋槽截面模型;
图5为本发明的微铣刀各方向铣削力分力P-V值与法向前角的关系。
具体实施方式
下面结合具体实施例以及附图对本发明设计方法进行详细阐述。
实施例1
本实施例提出一种微铣刀参数一体化设计方法,该方法基于刀具设计系统,首先基于应用场景初步设定所需微铣刀的参数以及切削任务参数,自动构建切削仿真模型,然后,根据仿真模型结果通过数学分析方法提出相应的优化准则过程,经过迭代,使得最终输出切削性能好的刀具参数。
在刀具设计系统中输入微铣刀参数,系统自动建立微铣刀的三维模型,具体的该过程包括以下步骤:
步骤一:设置配置系统开发环境,建立用户目录;
步骤二:通过UG Open的Menu Script和UI styler模块分别完成系统菜单、用户对话框的创建,生成相应的菜单文件、对话框文件、头文件、源文件;
步骤三:对微铣刀进行结构研究,分析各个截面的几何模型,对微铣刀端面和轴截面参数进行分析,计算前角、后角、螺旋角、刀刃数等参数不同时,该截面各个参数的变化,得到微铣刀各个截面参数的相关性。例如,四齿立铣刀各个截面轮廓的参数可如图3所示。
其中,D——铣刀加工部分直径,刀柄部会有突出倒角;
L1——铣刀加工部分长度,即铣刀参与切削加工的最大长度;
L2——铣刀刀柄长度;
La——铣刀刀体总长度;
β——切削刃螺旋角;
γc——铣刀侧刃前角;
Lγc——铣刀侧刃前刀面宽度;
αc1——铣刀侧刃第一后角;
Lαc1——铣刀侧刃第一后刀面宽度;
αc2——铣刀侧刃第二后角;
Lac2——铣刀侧刃第二后刀面宽度;
R——铣刀侧刃容屑槽底部圆弧半径;
γd——铣刀端刃前角;
Lγd——铣刀端刃前刀面宽度;
αd1——铣刀端刃第一后角;
Lad1——铣刀端刃第一后刀面宽度;
αd2——铣刀端刃第二后角;
Lad2——铣刀端刃第二后刀面宽度;
接着利用UG Open中表达式提供的参数化建模机制,控制特征,并使其随对话框参数值改变而改变。又参数可在多个特征中使用并具有相关性从而将各个特征联系起来,研究出微细铣刀三维模型的建立方法,建立精确的微铣刀参数化三维模型。如图4所示,为四齿立铣刀其中一齿的螺旋槽轴向截面曲线方程模型,螺旋槽截面沟槽由前刀面直线EF、第一后刀面直线 AB、第二后刀面直线BC、与前刀面EF相切的容屑槽底部圆弧DE及过渡桥接曲线CD五段曲线构成。
根据图中初步建立的螺旋槽截面模型,可以得到直线EF的方程:
Figure BDA0001963285580000041
其中,t∈[0,1]。
由于前刀面EF的宽度已知,可以由EF直线的方程计算出E、F两点的坐标,进而求出λ1的取值。
Figure BDA0001963285580000042
得到E点坐标之后,由于前角大小及前刀面长度已知,可以得到容屑槽底部圆弧DE的圆心O1的位置坐标。
Figure BDA0001963285580000043
在将容屑槽底部圆弧DE和前刀面EF由相切约束在E点之后,容屑槽位置就已经固定。接下来建立第一、第二后刀面直线的方程。
Figure BDA0001963285580000044
其中,t∈[0,1]。
第一后刀面AB宽度已知,故可求出λ2的取值,并且给出B点的坐标方程。
Figure BDA0001963285580000045
在B点坐标方程已知的基础上,我们就可以推出第二后刀面直线BC的方程。
Figure BDA0001963285580000046
其中,t∈[0,1]。
第二后刀面BC宽度已知,故可求出λ3的取值,并给出C点的坐标方程。
Figure BDA0001963285580000047
在第二后刀面BC和容屑槽底部圆弧DE中间利用桥接曲线相切连接,即可得到我们建立的立铣刀螺旋槽截面参数化模型。
步骤四:在Visual Studio中编写对话框程序文件,添加相应的对话框回调函数,生成动态链接库,完成对话框中的刀具参数与三维模型相应特征的对接,实现改变对话框中的刀具参数,微铣刀模型随之改变的功能,进而实现微铣刀快速设计,同时也为搭建微铣刀参数化设计系统提供基础。
根据仿真模型提出相应的优化准则过程,经过迭代,使得最终输出切削性能好的刀具参数,具体的,该过程包括以下步骤:
步骤五:根据用户给定的工件信息及初始刀具信息在有限元仿真软件中构建切削仿真模型进行计算,而后输出需要的仿真结果;
步骤六:根据单一刀具参数变化时切削力、切削温度、刀具磨损仿真结果变化图,分析该种刀具参数与其对应的仿真结果的关系,获取参数最优区间,如图5所示,可见,随着微铣刀负法向前角的增大(绝对值),进给力和横向进给力的P-V值先减小后增大,再减小,成波浪状,且在-45°时最小,轴向切削力的P-V值变化不大。单从切削力角度可以选法向前角为-45°时的微铣刀,而法向前角为-55°时的微铣刀较差。以此综合各个参数的分析结果得到刀具参数最优区域,形成该种刀具的优化准则。当初始刀具参数不符合优化准则时,系统给出相应参数的优化方案,通过刀具参数的调整实现表达式的调整,进而控制微铣刀三维模型特征做出改变,继续仿真出结果,反复迭代,最终使得仿真结果落在最优区域,得到与该种工件匹配的切削力较小、切削温度较低、刀具磨损较小的刀具。
步骤七:最优刀入库:
系统输出最优刀的同时,会将该种工件信息和与其匹配的刀具参数信息导入到数据库中,供后期调用,进一步提升刀具设计效率。
上述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和调整,这些改进和调整也应视为本发明的保护范围。

Claims (2)

1.一种微铣刀参数一体化设计方法,其特征在于:该方法基于刀具设计系统,首先基于应用场景初步设定所需微铣刀的参数以及切削任务参数,自动构建切削仿真模型,然后,根据模型仿真结果通过数学分析方法提出相应的优化准则过程,经过迭代,使得最终输出切削性能好的刀具参数;
在刀具设计系统中输入微铣刀参数,系统建立微铣刀的三维模型,该过程包括以下步骤:
步骤一:设置配置系统开发环境,建立用户目录;
步骤二:通过UG Open的Menu Script和UI styler模块分别完成系统菜单、用户对话框的创建,生成相应的菜单文件、对话框文件、头文件、源文件;
步骤三:对微铣刀进行结构研究,分析各个截面的几何模型,对微铣刀端面和轴截面参数进行分析,计算前角、后角、螺旋角、刀刃数参数不同时,各截面各个参数的变化,得到微铣刀各个截面参数的相关性;接着利用参数化建模机制,控制特征,并使其随表达式的改变而改变,建立精确的微铣刀参数化三维模型;
所述步骤三具体为:
设定四齿立铣刀为设计对象,其各个截面轮廓的参数为:
D——铣刀加工部分直径,刀柄部会有突出倒角;
L1——铣刀加工部分长度,即铣刀参与切削加工的最大长度;
L2——铣刀刀柄长度;
La——铣刀刀体总长度;
β——切削刃螺旋角;
γc——铣刀侧刃前角;
Lγc——铣刀侧刃前刀面宽度;
αc1——铣刀侧刃第一后角;
Lαc1——铣刀侧刃第一后刀面宽度;
αc2——铣刀侧刃第二后角;
Lαc2——铣刀侧刃第二后刀面宽度;
R——铣刀侧刃容屑槽底部圆弧半径;
γd——铣刀端刃前角;
Lγd——铣刀端刃前刀面宽度;
αd1——铣刀端刃第一后角;
Lαd1——铣刀端刃第一后刀面宽度;
αd2——铣刀端刃第二后角;
Lαd2——铣刀端刃第二后刀面宽度;
以下为四齿立铣刀其中一齿的螺旋槽轴向截面曲线方程模型:
螺旋槽截面沟槽由前刀面直线EF、第一后刀面直线AB、第二后刀面直线BC、与前刀面EF相切的容屑槽底部圆弧DE及过渡桥接曲线CD五段曲线构成;
初步建立的螺旋槽截面模型,得到直线EF的方程:
Figure FDA0003595803400000021
其中,t∈[0,1];
由于前刀面EF的宽度已知,由EF直线的方程计算出E、F两点的坐标,进而求出λ1的取值;
Figure FDA0003595803400000022
得到E点坐标之后,得到容屑槽底部圆弧DE的圆心O1的位置坐标;
Figure FDA0003595803400000023
然后,建立第一、第二后刀面直线的方程:
Figure FDA0003595803400000024
其中,t∈[0,1];
第一后刀面AB宽度已知,故可求出λ2的取值,并且给出B点的坐标方程;
Figure FDA0003595803400000025
在B点坐标方程已知的基础上,得到第二后刀面直线BC的方程:
Figure FDA0003595803400000026
其中,t∈[0,1];
第二后刀面BC宽度已知,求出λ3的取值,并给出C点的坐标方程:
Figure FDA0003595803400000027
在第二后刀面BC和容屑槽底部圆弧DE中间利用桥接曲线相切连接,即可得到所述四齿立铣刀螺旋槽截面参数化模型;
步骤四:在Visual Studio中编写对话框程序文件,添加相应的对话框回调函数,生成动态链接库,完成对话框中的刀具参数与三维模型相应表达式的对接,实现改变对话框中的刀具参数,微铣刀模型随之改变的功能,进而实现微铣刀快速设计;
以微铣刀前角作为优化对象,随着微铣刀负法向前角的增大,进给力和横向进给力的P-V值即波峰—波谷差值先减小后增大,再减小,成波浪状,且在-45°时最小,轴向切削力的P-V值变化不大;单从切削力角度可以选法向前角为-45°时的微铣刀,而法向前角为-55°时的微铣刀差;最后,综合各参数的分析结果得到刀具参数最优区域,形成微铣刀的优化准则。
2.如权利要求1所述的一种微铣刀参数一体化设计方法,其特征在于:
根据仿真模型提出相应的优化准则过程,经过迭代,使得最终输出切削性能好的刀具参数,该过程包括以下步骤:
步骤五:根据用户给定的工件信息及初始刀具信息在有限元仿真软件中构建切削仿真模型进行计算,而后输出需要的仿真结果;
步骤六:根据单一刀具参数变化时切削力、切削温度、刀具磨损仿真结果变化图,分析微铣刀参数与其对应的仿真结果的关系:提出相应参数的优化方案,通过刀具参数的调整实现所述表达式的调整,进而控制微铣刀三维模型特征做出改变,继续仿真出结果,反复迭代,最终使得仿真结果落在最优区域,得到与该种工件匹配的切削力小、切削温度低、刀具磨损小的刀具。
CN201910091082.8A 2019-01-30 2019-01-30 一种微铣刀参数一体化设计方法 Active CN109782627B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910091082.8A CN109782627B (zh) 2019-01-30 2019-01-30 一种微铣刀参数一体化设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910091082.8A CN109782627B (zh) 2019-01-30 2019-01-30 一种微铣刀参数一体化设计方法

Publications (2)

Publication Number Publication Date
CN109782627A CN109782627A (zh) 2019-05-21
CN109782627B true CN109782627B (zh) 2022-06-17

Family

ID=66502918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910091082.8A Active CN109782627B (zh) 2019-01-30 2019-01-30 一种微铣刀参数一体化设计方法

Country Status (1)

Country Link
CN (1) CN109782627B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110779611B (zh) * 2019-05-24 2020-10-02 南京航空航天大学 一种超声手术刀刀杆纵向振动频率的校准方法及系统
CN110489931A (zh) * 2019-09-18 2019-11-22 大连理工大学 一种基于切削过程仿真的薄壁微铣削力预测方法
CN110900307B (zh) * 2019-11-22 2020-12-15 北京航空航天大学 一种数字孪生驱动的数控机床刀具监控系统
CN114939693B (zh) * 2022-07-01 2023-10-20 重庆强锐科技有限公司 一种复杂型线铣刀快速设计与性能优化方法
CN115560690B (zh) * 2022-10-09 2024-02-02 中交第三航务工程局有限公司 一种基于三维激光扫描技术的结构物整体变形分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351196A (en) * 1991-03-15 1994-09-27 Spacial Technology, Inc. Method and apparatus for solids based machining
CN105224710A (zh) * 2014-11-19 2016-01-06 河南理工大学 槽铣刀具的前角与后角优化设计方法
CN106156430A (zh) * 2016-07-06 2016-11-23 大连理工大学 一种基于刀具磨损效应的微铣削力建模方法
CN108920844A (zh) * 2018-07-06 2018-11-30 哈尔滨理工大学 一种基于联合仿真的球头铣刀几何参数优化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351196A (en) * 1991-03-15 1994-09-27 Spacial Technology, Inc. Method and apparatus for solids based machining
CN105224710A (zh) * 2014-11-19 2016-01-06 河南理工大学 槽铣刀具的前角与后角优化设计方法
CN106156430A (zh) * 2016-07-06 2016-11-23 大连理工大学 一种基于刀具磨损效应的微铣削力建模方法
CN108920844A (zh) * 2018-07-06 2018-11-30 哈尔滨理工大学 一种基于联合仿真的球头铣刀几何参数优化方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KDP晶体修复用PCD微球刀的设计与加工工艺研究;陈妮;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;20140315(第03期);正文第Ⅰ页,第3页,第10页,第14页 *
KDP晶体修复用球头微铣刀及其对表面质量影响的研究;陈妮;《中国博士学位论文全文数据库工程科技Ⅰ辑》;20190115(第01期);全文 *
基于加工仿真的立铣刀三维参数化设计;金晓波 等;《计算机应用技术》;20101231;第37卷(第6期);全文 *
基于特征的刀具"形-性-用"一体化设计方法;刘献礼 等;《机械工程学报》;20160630;第52卷(第11期);摘要和第2节 *
球头铣刀参数化设计及其软件开发;张辉;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;20140615(第06期);全文 *

Also Published As

Publication number Publication date
CN109782627A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN109782627B (zh) 一种微铣刀参数一体化设计方法
TWI414376B (zh) 一種五軸曲面側銑加工系統及其刀具路徑規劃方法
Can et al. A novel iso-scallop tool-path generation for efficient five-axis machining of free-form surfaces
Tunc et al. Extraction of 5-axis milling conditions from CAM data for process simulation
EP0841606A2 (en) Three-dimensional machining method and recording medium stored with a three-dimensional machining control program
CN105739440A (zh) 一种宽弦空心风扇叶片的自适应加工方法
CN106354098B (zh) 一种nurbs组合曲面上刀具加工轨迹生成方法
CN102289534A (zh) 渐开线斜齿轮的高精度建模方法
CN110618653B (zh) 飞机蒙皮镜像铣削刀路轨迹自动生成方法及装置
Hosseini et al. Prediction of cutting forces in broaching operation
CN105458372A (zh) 基于非可展直纹面的侧铣误差补偿装置及其刀位规划方法
Zhaoyu et al. A variable-depth multi-layer five-axis trochoidal milling method for machining deep freeform 3D slots
CN109740269B (zh) 一种渐开线蜗杆车削加工齿面三维建模方法
Min et al. An improved b-spline fitting method with arc-length parameterization, g 2-continuous blending, and quality refinement
CN108038259A (zh) 基于曲率生成气动部件外形的方法
CN105278461A (zh) 一种复杂曲面的整体化加工方法
Luu et al. A novel correction method to attain even grinding allowance in CNC gear skiving process
Li et al. Tool path optimization in postprocessor of five-axis machine tools
Prabha et al. Machining of steam turbine blade on 5-axis CNC machine
CN110508879A (zh) 一种渐开面包络环面蜗杆的数控车削飞边和倒棱方法
Ozturk et al. Analytical methods for increased productivity in five-axis ball-end milling
Lin et al. Research and development of parametric design platform for series complex cutting tools
CN1294466C (zh) 基于测量数据点直接数控加工方法
Vu et al. A new optimization tool path planning for 3-axis end milling of free-form surfaces based on efficient machining intervals
CN113192180B (zh) 一种基于插齿加工原理的椭圆齿轮参数化精确建模方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant