CN109777881B - SSR molecular marker detection method for purity of conventional wheat variety, primer combination and application thereof - Google Patents
SSR molecular marker detection method for purity of conventional wheat variety, primer combination and application thereof Download PDFInfo
- Publication number
- CN109777881B CN109777881B CN201811337609.2A CN201811337609A CN109777881B CN 109777881 B CN109777881 B CN 109777881B CN 201811337609 A CN201811337609 A CN 201811337609A CN 109777881 B CN109777881 B CN 109777881B
- Authority
- CN
- China
- Prior art keywords
- wheat
- molecular marker
- purity
- ssr molecular
- ssr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000209140 Triticum Species 0.000 title claims abstract description 53
- 235000021307 Triticum Nutrition 0.000 title claims abstract description 53
- 239000003147 molecular marker Substances 0.000 title claims abstract description 24
- 238000001514 detection method Methods 0.000 title claims abstract description 19
- 238000005251 capillar electrophoresis Methods 0.000 claims abstract description 5
- 238000012408 PCR amplification Methods 0.000 claims description 3
- 239000003550 marker Substances 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 241000196324 Embryophyta Species 0.000 description 31
- 108020004414 DNA Proteins 0.000 description 23
- 238000001962 electrophoresis Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 108010061711 Gliadin Proteins 0.000 description 7
- 235000013339 cereals Nutrition 0.000 description 7
- 239000000975 dye Substances 0.000 description 6
- 108060006613 prolamin Proteins 0.000 description 6
- 108700028369 Alleles Proteins 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000009331 sowing Methods 0.000 description 3
- 108091092878 Microsatellite Proteins 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000010154 cross-pollination Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000003205 genotyping method Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 101150039504 6 gene Proteins 0.000 description 1
- 208000035240 Disease Resistance Diseases 0.000 description 1
- 108010073032 Grain Proteins Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明属于农业生物技术领域,具体涉及用于小麦常规品种纯度的SSR分子标记检测方法、引物组合及其应用。本发明以审定小麦品种为材料,筛选适于区分无限扩大的审定小麦品种的SSR引物,以荧光毛细管电泳为主要检测平台,建立了规模化、高通量、快速、准确的小麦品种纯度SSR分子标记检测技术。The invention belongs to the field of agricultural biotechnology, and in particular relates to an SSR molecular marker detection method, a primer combination and an application for the purity of conventional wheat varieties. The invention uses the certified wheat varieties as materials to screen the SSR primers suitable for distinguishing the infinitely expanded certified wheat varieties, and uses the fluorescent capillary electrophoresis as the main detection platform to establish a large-scale, high-throughput, fast and accurate wheat variety purity SSR molecule Marker Detection Technology.
Description
技术领域technical field
本发明属于农业生物技术领域,具体涉及小麦常规品种纯度的SSR分子标记检测方法、引物组合及其应用。The invention belongs to the field of agricultural biotechnology, and in particular relates to a method for detecting SSR molecular markers for the purity of conventional wheat varieties, a primer combination and applications thereof.
背景技术Background technique
随着我国种植业粮食结构的调整和市场经济的发展,小麦精播用种量显著降低,生产上对种子质量和品种纯度提出了更高的要求。品种纯度是衡量种子质量的重要指标之一,现有的鉴定方法为田间小区种植鉴定、形态鉴定、生化法及醇溶蛋白法。田间种植鉴定占地面积大,费时费工,易受环境因素的影响,难以区别表型相近的个体。醇溶蛋白法具有速度快、费用低、操作简单等优点,但是醇溶蛋白仅由6个基因位点编码,基因位点少,对于分子量相近的组分难以分离,表达量低的醇溶蛋白不易识别等因素均降低了检测结果的准确性。With the adjustment of the grain structure of my country's planting industry and the development of the market economy, the amount of seeds used for precision sowing of wheat has been significantly reduced, and higher requirements have been placed on the quality and purity of seeds in production. Variety purity is one of the important indicators to measure the quality of seeds. The existing identification methods are field plot identification, morphological identification, biochemical method and prolamin method. Field planting identification covers a large area, is time-consuming and labor-intensive, and is easily affected by environmental factors, making it difficult to distinguish individuals with similar phenotypes. The gliadin method has the advantages of fast speed, low cost and simple operation, but the gliadin is only encoded by 6 gene loci, with few gene loci, it is difficult to separate the components with similar molecular weight, and the prolamin with low expression amount Factors such as difficulty in identification all reduce the accuracy of the test results.
随着小麦基因组学和全基因组测序技术的迅猛发展,大量SSR(Simple SequenceRepeat,简单序列重复)标记被开发和利用。SSR标记因具有标记数量丰富、共显性遗传、不受鉴定周期和环境的影响、准确可靠、简单快速、成本低廉、稳定性好、易于自动化等优点。但是,SSR标记数量巨大,GrainGenes网站和日本小麦图谱网公布的SSR标记达2760余个,除此之外,其他学者发表的论文及研究成果中也公开了很多SSR标记。With the rapid development of wheat genomics and whole-genome sequencing technology, a large number of SSR (Simple SequenceRepeat, simple sequence repeat) markers have been developed and utilized. SSR markers have the advantages of abundant markers, co-dominant inheritance, not affected by identification cycle and environment, accurate and reliable, simple and rapid, low cost, good stability, and easy to automate. However, the number of SSR markers is huge. There are more than 2,760 SSR markers published on the GrainGenes website and the Japanese wheat map website. In addition, many SSR markers have also been disclosed in the papers and research results published by other scholars.
我国育成小麦品种由于过度使用部分骨干小麦种质,造成育成小麦品种的同质化严重,遗传基础相对比较狭窄,大部分SSR标记在育成小麦品种中没有多态性或多态性较低。目前市场上高通量SSR基因分型平台的区分能力多在1bp以上,导致小麦中占比近50%的1bp基序SSR标记无法在品种鉴定中使用。Due to the excessive use of part of the backbone wheat germplasm in the bred wheat varieties in China, the homogenization of the bred wheat varieties is serious, and the genetic basis is relatively narrow. Most of the SSR markers have no polymorphism or low polymorphism in the bred wheat varieties. At present, the discrimination ability of high-throughput SSR genotyping platforms on the market is more than 1 bp, resulting in that the 1 bp motif SSR markers, which account for nearly 50% of wheat, cannot be used in variety identification.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供小麦常规品种纯度的SSR分子标记检测方法。The purpose of the present invention is to provide a method for detecting SSR molecular markers of the purity of conventional wheat varieties.
本发明的再一目的在于提供检测小麦常规品种纯度用的SSR分子标记引物组合Another object of the present invention is to provide a combination of SSR molecular marker primers for detecting the purity of conventional wheat varieties
本发明的再一目的在于提供SSR标记引物在小麦常规品种纯度检测中的应用。Another object of the present invention is to provide the application of the SSR marker primer in the detection of the purity of conventional wheat varieties.
根据本发明具体实施方式,用于常规小麦品种纯度鉴定的10对SSR引物组合的引物名称、SSR分子标记所在的染色体定位信息、等位变异扩增区间、引物序列及标记分组见表1:According to the specific embodiment of the present invention, the primer names of the 10 pairs of SSR primer combinations used for the identification of the purity of conventional wheat varieties, the chromosomal location information where the SSR molecular markers are located, the allelic variation amplification interval, the primer sequences and the marker groups are shown in Table 1:
表1品种纯度鉴定的SSR引物组合Table 1 SSR primer combinations for cultivar purity identification
标记荧光颜色相同的引物需要同时标记同一种荧光染料,标记的染料颜色可以根据所用毛细管电泳系统型号的发射和吸收波长选择。The primers with the same fluorescent color need to be labeled with the same fluorescent dye at the same time. The color of the labeled dye can be selected according to the emission and absorption wavelengths of the capillary electrophoresis system used.
根据本发明具体实施方式的小麦常规品种纯度的SSR分子标记检测方法,所述方法包括以下步骤:The SSR molecular marker detection method for the purity of conventional wheat varieties according to a specific embodiment of the present invention, the method comprises the following steps:
(1)提取待测小麦品种的个体DNA;(1) Extract the individual DNA of the wheat variety to be tested;
(2)以步骤(1)提取的DNA为模板、使用表1所示SSR分子标记引物对进行PCR扩增;(2) using the DNA extracted in step (1) as a template, using the SSR molecular marker primer pairs shown in Table 1 to carry out PCR amplification;
(3)毛细管电泳检测;(3) Capillary electrophoresis detection;
(4)根据步骤(3)的电泳结果,判断待测小麦品种的纯度。(4) According to the electrophoresis result of step (3), determine the purity of the wheat variety to be tested.
根据本发明具体实施方式的小麦常规品种纯度的SSR分子标记检测方法,步骤(4)中,首先判断变异位点是否为非纯合的SSR分子标记位点,将非纯合SSR分子标记位点排除后,若某一待测小麦个体中存在至少2个不同于其他多数待测个体的SSR分子标记位点,则判定所述待测小麦个体为杂株。According to the SSR molecular marker detection method for the purity of conventional wheat varieties according to the specific embodiment of the present invention, in step (4), first determine whether the variant site is a non-homozygous SSR molecular marker site, and the non-homozygous SSR molecular marker site After exclusion, if a certain wheat individual to be tested has at least 2 SSR molecular marker sites that are different from most of the other tested individuals, the individual to be tested is determined to be a hybrid.
根据本发明具体实施方式的小麦常规品种纯度的SSR分子标记检测方法,步骤(4)中,当不同的待测小麦个体的同一个位点上携带两种等位变异或两种等位变异的杂合子,且随机分布在不同待测小麦个体中时,则判定所述位点为非纯合SSR分子标记位点。According to the SSR molecular marker detection method for the purity of conventional wheat varieties according to the specific embodiment of the present invention, in step (4), when the same locus of different wheat individuals to be tested carries two allelic variations or two allelic variations If it is heterozygous and randomly distributed in different wheat individuals to be tested, it is determined that the locus is a non-homozygous SSR molecular marker locus.
本发明的有益效果:Beneficial effects of the present invention:
本发明的10个SSR标记及对应的引物组合在育成小麦品种中鉴定中具有如下特点:The 10 SSR markers and corresponding primer combinations of the present invention have the following characteristics in the identification of bred wheat varieties:
1、每个SSR位点的等位变异的丰富度高,10个SSR标记在我国1463份审定小麦品种中共检出141个等位变异,平均每个位点检测到14.1个等位变异,每个标记的平均PIC值为0.69,对小麦品种具有较高的分辨率;1. The abundance of allelic variation at each SSR locus is high. A total of 141 allelic variants were detected in 1463 approved wheat varieties of my country by 10 SSR markers, and an average of 14.1 allelic variants were detected at each locus. The average PIC value of each marker is 0.69, which has a high resolution for wheat varieties;
2、在育成小麦品种中每个位点的等位变异分布频率相对均匀;2. The allelic variation frequency of each locus in the bred wheat varieties is relatively uniform;
3、具有定位信息且单位点、单拷贝;3. With positioning information and single point, single copy;
4、10个SSR标记及其引物组合均能特异性扩增且带型简单易于毛细管峰值读取;4. All 10 SSR markers and their primer combinations can specifically amplify, and the band patterns are simple and easy to read by capillary peaks;
5、筛选SSR标记位点的基序在2bp以上;5. The motif of the screening SSR marker site is more than 2bp;
6、一次性电泳的10个SSR标记,标记同一荧光染料引物扩增的所有等位变异的片选区间没有跨叠区且相差15bp以上;6. The 10 SSR markers of the one-time electrophoresis mark all the allelic variations amplified by the same fluorescent dye primer that do not cross the overlapping region and differ by more than 15bp;
7、筛选的10个SSR标记是将我国所有目前已知品种进行基因分型后才最终确定;7. The 10 SSR markers screened are finally determined after genotyping all currently known varieties in my country;
8、10个SSR标记具备很好的稳定性、重复性,便于推广应用;8. The 10 SSR markers have good stability and repeatability, which is convenient for popularization and application;
9、10个SSR标记之间无联锁关系;9. There is no interlocking relationship between the 10 SSR markers;
10、应用本发明的SSR标记及引物组合在室内实验室3天即可完成品种纯度的鉴定,大幅度节约人力、物力、财力、时间和土地资源成本。10. Using the SSR marker and primer combination of the present invention, the identification of variety purity can be completed in an indoor laboratory in 3 days, and the cost of manpower, material resources, financial resources, time and land resources can be greatly saved.
附图说明Description of drawings
图1显示非纯合位点的分布特征,其中,1-20泳道是A1202-32样品的个体编号;Figure 1 shows the distribution characteristics of non-homozygous sites, wherein, lanes 1-20 are the individual numbers of the A1202-32 samples;
图2显示杂株的带型特征,1-10号为苏徐2号的10个个体,1号个体为杂株;Figure 2 shows the banding characteristics of the miscellaneous strains, No. 1-10 are 10 individuals of Suxu No. 2, and the No. 1 individual is a miscellaneous strain;
图3显示偏单亲型非纯合SSR位点(Xgwm294)的特点;Figure 3 shows the characteristics of the partial uniparental non-homozygous SSR site (Xgwm294);
图4显示10对SSR引物组合电泳结果,图4-1为barc164电泳峰值图,图4-2为barc324电泳峰值图,图4-3为barc80电泳峰值图,图4-4为cfa2028电泳峰值图,图4-5为gwm161电泳峰值图。图4-6为cfa2123电泳峰值图,图4-7为gwm610电泳峰值图,图4-8为gwm304电泳峰值图,图4-9为gwm155电泳峰值图,如4-10为gwm294电泳峰值图;Figure 4 shows the electrophoresis results of 10 pairs of SSR primer combinations, Figure 4-1 is the electrophoresis peak map of barc164, Figure 4-2 is the electrophoresis peak map of barc324, Figure 4-3 is the electrophoresis peak map of barc80, and Figure 4-4 is the electrophoresis peak map of cfa2028 , Figure 4-5 is the electrophoresis peak map of gwm161. Figure 4-6 is the electrophoresis peak figure of cfa2123, Figure 4-7 is the electrophoresis peak figure of gwm610, Figure 4-8 is the electrophoresis peak figure of gwm304, Figure 4-9 is the electrophoresis peak figure of gwm155, such as 4-10 is the electrophoresis peak figure of gwm294;
具体实施方式Detailed ways
实施例1Example 1
1.确定本发明的分子标记1. Determination of molecular markers of the present invention
本发明最终确定的常规小麦品种纯度鉴定的SSR分子标记如表2所示。The SSR molecular markers for the purity identification of conventional wheat varieties finally determined by the present invention are shown in Table 2.
表2品种纯度鉴定的SSR引物多态性信息Table 2 SSR primer polymorphism information for cultivar purity identification
本发明筛选的引物有barc80,为3bp基序,在1463份已知品种中有9个等位变异,PIC值为0.61;barc324为3bp基序,在1463份已知品种中有13个等位变异,PIC值为0.66;barc164为3bp基序,在1463份已知品种中有15个等位变异,PIC值为0.77;cfa2028为2bp基序,在1463份已知品种中有7个等位变异,PIC值为0.63;gwm161为2bp基序,在1463份已知品种中有17个等位变异,PIC值为0.65;gwm610为2bp基序,在1463份已知品种中有7个等位变异,PIC值为0.60;cfa2123为2bp基序,在1463份已知品种中有19个等位变异,PIC值为0.71;gwm294为2bp基序,在1463份已知品种中有24个等位变异,PIC值为0.72;gwm155为2bp基序,在1463份已知品种中有12个等位变异,PIC值为0.75;gwm304为2bp基序,在1463份已知品种中有18个等位变异,PIC值为0.76。The primers screened by the present invention are barc80, which is a 3bp motif, and there are 9 allelic variations in 1463 known varieties, with a PIC value of 0.61; barc324 is a 3bp motif, and there are 13 alleles in 1463 known varieties Variation, PIC value is 0.66; barc164 is 3bp motif, there are 15 allelic variations in 1463 known varieties, PIC value is 0.77; cfa2028 is 2bp motif, there are 7 alleles in 1463 known varieties Variation, PIC value is 0.63; gwm161 is 2bp motif, there are 17 allelic variations in 1463 known varieties, PIC value is 0.65; gwm610 is 2bp motif, there are 7 alleles in 1463 known varieties Variation, the PIC value is 0.60; cfa2123 is a 2bp motif, there are 19 allelic variations in 1463 known varieties, and a PIC value is 0.71; gwm294 is a 2bp motif, and there are 24 alleles in 1463 known varieties Variation, PIC value is 0.72; gwm155 is 2bp motif, there are 12 allelic variations in 1463 known varieties, PIC value is 0.75; gwm304 is 2bp motif, there are 18 alleles in 1463 known varieties variation, the PIC value was 0.76.
2.非典型株(杂株)和非纯合SSR位点的正确区分2. Correct distinction between atypical strains (hybrid strains) and non-homozygous SSR loci
非纯合SSR位点的特点是不同个体的同一个位点分别携带两种等位变异或两种等位变异的杂合子,且其在不同个体的分布是随机的,如图1所示,淮麦23的20个个体在Xcwm65位点上分别携带来自父母本的基因型或父母本的杂合基因型(14号个体)。杂株基因型的特点是同一个个体在2个以上不同的位点上携带的等位变异与正常个体不同,以参加区域试验的品系A1203-32的10个个体为例,如图2所示,1号个体在Xgwm155、Xgwm610、Xgwm294、Xgwm437位点上的基因型与2-9号个体的基因型均不同,因此1号个体为杂株。The characteristics of non-homozygous SSR loci are that the same locus in different individuals carries two allelic variants or heterozygotes of two allelic variants, and their distribution in different individuals is random, as shown in Figure 1. Twenty individuals of Huaimai 23 carried the genotype from the parental parent or the heterozygous genotype from the parental parent at the Xcwm65 locus (individual No. 14). The characteristic of the hybrid genotype is that the allelic variation carried by the same individual at more than 2 different loci is different from that of the normal individual. Take 10 individuals of the line A1203-32 participating in the regional test as an example, as shown in Figure 2 , the genotypes of individual No. 1 at the loci Xgwm155, Xgwm610, Xgwm294 and Xgwm437 are different from those of individuals 2-9, so individual No. 1 is a hybrid.
如图3所示,样品1农大211和样品2洛旱7号的多数个体在位点Xgwm294上等位变异一致,仅样品1的25和31号、样品2的28和34号个体与多数个体等位变异不同,对这些个体又增加了29个位点检测后,确定其差异是因为偏分离等因素造成,而不是混入杂株(非典型株),在非纯合SSR位点中,偏单亲型非纯合位点是造成结果误判的关键因素。As shown in Figure 3, most individuals of
利用上述10个SSR标记分析审定小麦品种,包括10大生态区的小麦品种如扬辐麦2号、淮麦18号、徐州24号、偃展4110等321份品种,和参加河南省、北京市、河北省区域试验的参试小麦品种的基因型,结果显示利用10个SSR标记对小麦品种生态类型分区比较明显,如河南参试小麦品种与黄淮南片小麦品种聚类在一个大类群,而北部冬麦区、河北区试和北京区试参试品种聚为一大类群,说明10个SSR标记区分能力强大。Using the above 10 SSR markers to analyze and approve wheat varieties, including 321 varieties of wheat varieties in 10 major ecological regions such as Yangfumai No. 2, Huaimai No. 18, Xuzhou No. 24, Yanzhan 4110, and participating in Henan Province, Beijing , the genotypes of the tested wheat varieties in the regional experiment in Hebei Province, the results show that the use of 10 SSR markers is more obvious for the ecological type division of wheat varieties. The tested varieties in the northern winter wheat area, Hebei area and Beijing area were clustered into a large group, indicating that the 10 SSR markers have strong discriminative ability.
通过将位点Xbarc80、Xbarc324、Xbarc164的上游引物的5’端标记上NED染料,将位点Xcfa2028和Xgwm161的上游引物的5’端标记上PET染料,将位点Xgwm610和Xcfa2123的上游引物的5’端标记上FAM染料,将位点Xgwm294、Xgwm155和Xgwm304的上游引物的5’端标记上VIC染料,由于标记同一种染料的几个位点的等位变异扩增片断大小区间相差15bp以上,因此能够将这10对SSR引物组合在一起电泳。电泳结果如图4所示。By labeling the 5' ends of the upstream primers of sites Xbarc80, Xbarc324, Xbarc164 with NED dye, the 5' ends of the upstream primers of sites Xcfa2028 and Xgwm161 with PET dye, and the 5' ends of the upstream primers of sites Xgwm610 and Xcfa2123 The ' end was labeled with FAM dye, and the 5' end of the upstream primers of the sites Xgwm294, Xgwm155 and Xgwm304 were labeled with VIC dye, because the allelic variation amplification fragment size interval of several sites marked with the same dye differed by more than 15bp, Therefore, these 10 pairs of SSR primers can be combined for electrophoresis. The electrophoresis results are shown in Figure 4.
实施例2与醇溶蛋白法相比的准确性Accuracy of Example 2 Compared with the Prolamin Method
从北京、河北、河南、山东的品种中选取8个小麦品种(京冬8号、京冬18、石4185、河农825、保5067、运旱618、洛旱11号、泰山257),每个品种随机选取100个个体,总计800个个体为样品,播种至分蘖期每个个体取一个叶片提取其基因组DNA,检测每个单株10个SSR位点的基因型,按单株收获籽粒,分析了其籽粒醇溶蛋白;次年在田间种植株行,比较株行间抽穗期、成熟期、生育期、幼苗习性、苗期叶色、旗叶长度、旗叶宽度、旗叶类型、成株叶色、株型、茎鞘蜡质、穗蜡质、穗型、芒类型、株高、穗长、每穗结实小穗数、籽粒形状、籽粒颜色、粒质、千粒重、抗病性等主要农艺性状。Eight wheat varieties (Jingdong No. 8,
以每个品种表型一致的多数单株为对照,在800植株中,与对照基因型不同的位点数目大于1的植株55个,其中SSR标记基因型、醇溶蛋白带型、表型性状均不同于对照的单株41株,被判为杂株;如表3所示,另14株分为三种类型:(1)表3中的第1~8株,SSR标记基因型和表型不同于对照;(2)表3中的第9~11株,SSR标记基因型和醇溶蛋白带型不同于对照;(3)表3中12~14株,SSR位点中有大量杂合位点。Taking the majority of individual plants with the same phenotype as the control, among the 800 plants, there were 55 plants with a number of loci different from the control genotype greater than 1. Among them, the SSR marker genotype, gliadin banding, and phenotypic traits 41 individual plants that were all different from the control were judged as miscellaneous plants; as shown in Table 3, the other 14 plants were divided into three types: (1) The 1st to 8th plants in Table 3, the SSR marker genotype and the table (2) In the 9th to 11th strains in Table 3, the SSR marker genotype and gliadin band type are different from the control; (3) In the 12th to 14th strains in Table 3, there are a large number of heterozygous strains in the SSR locus. conjugation point.
表3 14个单株与对照品种间SSR标记基因型、醇溶蛋白带型、表型性状的比较Table 3 Comparison of SSR marker genotypes, gliadin bands and phenotypic traits between 14 individual plants and control varieties
在55株中50株的表型与对照存在显著差异,表3中第10~14株无显著差异或差异较小。表3中第11株的10位点中4个异型位点,而且10个醇溶蛋白组分的带型不同于对照,说明该株与对照的差异主要表现在籽粒蛋白质上。第12~14株的10个位点中,虽然异型位点不多,但杂合位点高达6~9个,此类植株由异花授粉造成,后代的表型将发生分离,因此判为杂株。Among the 55 strains, the phenotype of 50 strains was significantly different from that of the control, and the 10th to 14th strains in Table 3 had no significant difference or little difference. There are 4 heterotypic sites among the 10 sites of the 11th strain in Table 3, and the band patterns of the 10 prolamin components are different from the control, indicating that the difference between this strain and the control is mainly in the grain protein. Among the 10 loci of the 12th to 14th plants, although there are not many heterozygous loci, there are as many as 6 to 9 heterozygous loci. Such plants are caused by cross-pollination, and the phenotype of the offspring will be separated, so it is judged as Miscellaneous.
以上55株在10个SSR位点中与对照基因型的差异有2种情况:There are two differences between the above 55 strains and the control genotype in the 10 SSR loci:
1)有大于2个异型位点(第1-8和第11号株),表型存在明显差异;1) There are more than 2 heterotypic sites (strains 1-8 and 11), and the phenotype is significantly different;
2)有1~2个异型位点和多个杂合位点(第9,10,12-14单株),表型差异不显著。2) There are 1-2 heterozygous sites and multiple heterozygous sites (
归纳以上两点,当某个体的10个SSR位点中有2个以上异型位点(含杂合位点)时,从表型和分子标记来看明显可判为杂株。本实验中符合此原则的单株共55株,然而醇溶蛋白法鉴定为杂株的仅有44株,本发明方法鉴定出的杂株数比醇溶蛋白法多11株,而田间表型对于区分异花授粉类杂株存在一定缺陷导致无法区分。表明醇溶蛋白和田间表型鉴定准确度不够,存在一定误差,而SSR标记法鉴定杂株更加准确、有效,能够准确的区分杂株类型(外源混杂、异花授粉)。Summarizing the above two points, when there are more than 2 heterozygous loci (including heterozygous loci) in the 10 SSR loci of an individual, it can be clearly judged as a heterozygous strain from the perspective of phenotype and molecular markers. In this experiment, a total of 55 single plants conformed to this principle, but only 44 plants were identified as miscellaneous plants by the prolamin method. The number of miscellaneous plants identified by the method of the present invention was 11 more than that of the prolamin method. There is a certain defect in distinguishing cross-pollinated hybrid plants, which makes it impossible to distinguish. It showed that the identification accuracy of gliadin and field phenotype was not enough, and there was a certain error, while the SSR marker method was more accurate and effective in identifying hybrid plants, and could accurately distinguish the types of hybrid plants (exogenous hybrid, cross-pollination).
为了进一步检验判断杂株方法的准确性,本发明对上述55个杂株中的21个单株进行了田间鉴定。将每个杂株种2行株行,与其对照品种相邻种植。记录每个材料的播种期、出苗期、抽穗期、成熟期、幼苗习性、旗叶长度、旗叶宽度、旗叶类型、株型、茎鞘蜡质、穗型、芒类型、株高、穗长、每穗结实小穗数、籽粒形状、籽粒颜色、千粒重,验证结果如表4所示:In order to further test the accuracy of the method for judging miscellaneous plants, the present invention carried out field identification of 21 individual plants among the above 55 miscellaneous plants. Plant each hybrid in 2 rows adjacent to its control varieties. Record the sowing date, emergence date, heading date, maturity date, seedling habit, flag leaf length, flag leaf width, flag leaf type, plant type, waxy stem and sheath, ear type, awn type, plant height, ear type of each material Length, number of fruiting spikelets per ear, grain shape, grain color, thousand-grain weight, the verification results are shown in Table 4:
表4杂株田间鉴定结果Table 4 Field identification results of miscellaneous plants
试验结果表明,无论是异型位点还是杂合位点,均可以作为杂株判定的标记,当有两个以上位点不同于多数个体时,其表型均在多个性状上存在显著差异,可以判定为杂株。The test results show that both heterozygous loci and heterozygous loci can be used as markers for heterozygous plants. Can be judged as miscellaneous.
序列表sequence listing
<110> 北京市农林科学院<110> Beijing Academy of Agriculture and Forestry
<120> 小麦常规品种纯度的SSR分子标记检测方法、引物组合及其应用<120> SSR molecular marker detection method, primer combination and application of purity of conventional wheat varieties
<160> 20<160> 20
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 27<211> 27
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
gcgaattagc atctgcatct gtttgag 27gcgaattagc atctgcatct gtttgag 27
<210> 2<210> 2
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
cggtcaacca actactgcac aac 23cggtcaacca actactgcac aac 23
<210> 3<210> 3
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
ccaattctgc ccataggtga 20
<210> 4<210> 4
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
gaggaaataa gattcagcca actg 24gaggaaataa gattcagcca actg 24
<210> 5<210> 5
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
tgcaaactaa tcaccagcgt aa 22tgcaaactaa tcaccagcgt
<210> 6<210> 6
<211> 29<211> 29
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
cgctttctaa aactgttcgg gatttctaa 29cgctttctaa aactgttcgg gatttctaa 29
<210> 7<210> 7
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
tgggtatgaa aggctgaagg 20
<210> 8<210> 8
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
atcgcgacta ttcaacgctt 20
<210> 9<210> 9
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
gatcgagtga tggcagatgg 20
<210> 10<210> 10
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
tgtgaattac ttggacgtgg 20
<210> 11<210> 11
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
ctgccttctc catggtttgt 20ctgccttctc catggtttgt 20
<210> 12<210> 12
<211> 21<211> 21
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 12<400> 12
aatggccaaa ggttatgaag g 21aatggccaaa ggttatgaag g 21
<210> 13<210> 13
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 13<400> 13
cggtctttgt ttgctctaaa cc 22cggtctttgt ttgctctaaa
<210> 14<210> 14
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 14<400> 14
accggccatc tatgatgaag 20
<210> 15<210> 15
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 15<400> 15
ggattggagt taagagagaa ccg 23ggattggagt taagagagaa ccg 23
<210> 16<210> 16
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 16<400> 16
gcagagtgat caatgccaga 20
<210> 17<210> 17
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 17<400> 17
caatcatttc cccctccc 18caatcatttc cccctccc 18
<210> 18<210> 18
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 18<400> 18
aatcattgga aatccatatg cc 22aatcattgga aatccatatg
<210> 19<210> 19
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 19<400> 19
aggaaacaga aatatcgcgg 20
<210> 20<210> 20
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 20<400> 20
aggactgtgg ggaatgaatg 20
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811337609.2A CN109777881B (en) | 2018-11-08 | 2018-11-08 | SSR molecular marker detection method for purity of conventional wheat variety, primer combination and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811337609.2A CN109777881B (en) | 2018-11-08 | 2018-11-08 | SSR molecular marker detection method for purity of conventional wheat variety, primer combination and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109777881A CN109777881A (en) | 2019-05-21 |
CN109777881B true CN109777881B (en) | 2022-04-08 |
Family
ID=66496403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811337609.2A Active CN109777881B (en) | 2018-11-08 | 2018-11-08 | SSR molecular marker detection method for purity of conventional wheat variety, primer combination and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109777881B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111850158B (en) * | 2020-07-08 | 2022-09-27 | 北京市农林科学院 | Specific SNP locus combination for purity identification of common wheat conventional variety and identification method |
CN112931099A (en) * | 2021-03-23 | 2021-06-11 | 石家庄市种子管理站 | Method for identifying purity of winter wheat seeds by planting in field plot |
CN113049661B (en) * | 2021-05-27 | 2021-08-10 | 广州市农业科学研究院 | Rice variety identification method and system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103243158A (en) * | 2013-04-08 | 2013-08-14 | 山东省农业科学院作物研究所 | Method for constructing wheat SSR (single sequence repeat) fingerprint |
-
2018
- 2018-11-08 CN CN201811337609.2A patent/CN109777881B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103243158A (en) * | 2013-04-08 | 2013-08-14 | 山东省农业科学院作物研究所 | Method for constructing wheat SSR (single sequence repeat) fingerprint |
Non-Patent Citations (2)
Title |
---|
利用SSR标记正确判断小麦杂交种中的杂株;刘丽华等;《科技导报》;20151231;第33卷(第16期);第39-45页 * |
醇溶蛋白法和SSR标记法检测小麦种子纯度的比较;刘丽华等;《麦类作物学报》;20130426;第33卷(第3期);第429-434页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109777881A (en) | 2019-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106480228B (en) | The SNP marker and its application of rice low cadmium-accumulation gene OsHMA3 | |
CN108004344A (en) | A kind of corn whole genome SNP chip and its application | |
CN109777881B (en) | SSR molecular marker detection method for purity of conventional wheat variety, primer combination and application thereof | |
CN109762812B (en) | Wheat vigor-related SNPs and their application as targets in the identification of wheat vigor traits | |
CN110872633B (en) | Method for identifying purity of Jingke 968 corn hybrid based on SNP marker | |
CN110724758B (en) | Method for identifying purity of Jingnongke 728 corn hybrid based on SNP marker | |
CN117568507A (en) | Rubber tree germplasm resource typing SNP locus, primer and application thereof | |
CN115094156A (en) | Development and application of KASP marker of rice high-temperature-resistant gene TT1 | |
CN117965794B (en) | Specific SNP molecular marker combination for carnation variety identification and application | |
CN116103428B (en) | dCAPS molecular marker related to watermelon seed size and application thereof | |
CN113249510A (en) | Method for identifying authenticity of lettuce hybrid and KASP primer combination used by method | |
CN117512176A (en) | SNP molecular marker closely linked with brassica napus pod length and grain weight gene BnARF18 and application thereof | |
CN117604142A (en) | Specific primers and applications of molecular markers linked to genes related to wheat grain traits | |
CN113151536B (en) | SSR molecular marker detection method for authenticity of conventional variety of oil flax | |
CN114058732A (en) | A primer combination, identification method and application for efficiently identifying different alleles of GW5 gene | |
CN110923355A (en) | Linkage KASP molecular marker for rice high temperature resistance character and application thereof | |
CN105420354A (en) | Identification method for conventional rice varieties Huai rice No.5 and No.18 based on InDel marks | |
CN116445649B (en) | Molecular markers linked to wheat grain glucose yield traits, specific primers and applications thereof | |
CN116497146B (en) | Molecular marker, primer and method for identifying purity of 'Jinsong 75' loose cauliflower hybrid | |
CN117604151B (en) | SNP molecular marker closely linked with cabbage type rape black shank gene BnRlm and application thereof | |
CN118147344B (en) | Primer group and kit for identifying sunflower varieties and application of primer group and kit | |
CN111455089B (en) | Detection primer group for backbone parents of hybrid rice and application of detection primer group | |
CN108841994B (en) | Green-keeping related gene marker in winter wheat under genetic background of wheat 895 and application | |
CN117363771A (en) | Soybean SNP (Single nucleotide polymorphism) marker combination based on KASP (KASP technology) and application thereof in variety identification | |
CN117568511A (en) | A SNP site and CAPS molecular marker for identifying tea tree early growth traits and their application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |