CN109755007B - 空间四线圈系统及微型章鱼机器人 - Google Patents

空间四线圈系统及微型章鱼机器人 Download PDF

Info

Publication number
CN109755007B
CN109755007B CN201811468182.XA CN201811468182A CN109755007B CN 109755007 B CN109755007 B CN 109755007B CN 201811468182 A CN201811468182 A CN 201811468182A CN 109755007 B CN109755007 B CN 109755007B
Authority
CN
China
Prior art keywords
space
coil system
coil
micro
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811468182.XA
Other languages
English (en)
Other versions
CN109755007A (zh
Inventor
冯林
戴玉国
陈迪晓
张德远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201811468182.XA priority Critical patent/CN109755007B/zh
Publication of CN109755007A publication Critical patent/CN109755007A/zh
Application granted granted Critical
Publication of CN109755007B publication Critical patent/CN109755007B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种空间四线圈系统和微型章鱼机器人,所述空间四线圈系统包括:四个电源;四个电磁线圈组件,每个电磁线圈组件包括铁芯和电磁线圈,四个电磁线圈组件的电磁线圈与四个电源分别电连接,每个电磁线圈组件的一端彼此邻近,每个电磁线圈组件的另一端构成正四面体的顶点,且每个电磁线圈组件的中心线为正四面体的高,空间四线圈系统内适于放置磁性控制物,当四个电磁线圈组件分别接通四个电源时,通过调节流过四个电磁线圈中的至少一个的电流大小使得磁性控制物适于在空间四线圈系统内运动。根据本发明的空间四线圈系统,提高了磁场强度,提高了控制的灵活性,从而空间四线圈系统可以应用到实际医学临床试验中。

Description

空间四线圈系统及微型章鱼机器人
技术领域
本发明涉及磁场控制技术领域,尤其是涉及一种空间四线圈系统及微型章鱼机器人。
背景技术
相关技术中,提供磁场的电磁线圈的主要形式有:亥姆霍兹电磁线圈控制系统。具体而言,亥姆霍兹电磁线圈是一种制造小范围区域均匀磁场的器件。由于亥姆霍兹电磁线圈具有开敞性质,可以很容易地将其它仪器置入或移出,也可以直接做视觉观察,所以,是物理实验常使用的器件。
然而,虽然亥姆霍兹电磁线圈能够产生均匀的磁场,但能产生的磁场强度较小,例如一个通电电流为3A(安)的两个电磁线圈的间距为181mm的一维亥姆霍兹电磁线圈,在磁场均匀区域能够产生的磁场强度约为18.6Gs(高斯),即1.86mT(毫特斯拉),若需要产生较大的磁场强度,则需要极高的功率并且以牺牲均匀度为代价。所以即使它能产生小范围区域均匀磁场,但是很难达到可以运用在实际医学临床试验中所需的磁场强度大小。另外,亥姆霍兹电磁线圈若要实现在三维空间中精确控制具体位置点的磁场,则至少需要三维亥姆霍兹电磁线圈,即需要从内向外嵌套设置的至少三对电磁线圈,然而,由于所用的三对电磁线圈大小不一,不具有对称性,使得最外层电磁线圈控制力相对较弱,而且,这样的多层嵌套结构使得难以将大型测试件放入其中。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在于提出一种空间四线圈系统,所述空间四线圈系统产生的磁场强度强。
本发明的另一个目的在于提出一种微型章鱼机器人。
根据本发明第一方面实施例的空间四线圈系统,包括:四个电源;四个电磁线圈组件,每个所述电磁线圈组件包括铁芯和绕设在所述铁芯外的电磁线圈,四个所述电磁线圈组件的所述电磁线圈与四个所述电源分别电连接,每个所述电磁线圈组件的一端彼此邻近,每个所述电磁线圈组件的另一端构成正四面体的顶点,且每个所述电磁线圈组件的中心线为所述正四面体的高,所述空间四线圈系统内适于放置磁性控制物,当四个所述电磁线圈组件分别接通四个所述电源时,通过调节流过四个所述电磁线圈中的至少一个的电流大小使得所述磁性控制物适于在所述空间四线圈系统内运动。
根据本发明实施例的空间四线圈系统,通过在每个电磁线圈内设置铁芯,提高了磁场强度,加强了磁场,从而空间四线圈系统可以应用到实际医学临床试验中。而且,通过设置四个电磁线圈组件,四个电磁线圈组件所占空间相对较小,从而相对增加了磁性控制物的运动空间,同时,通过设置使每个电磁线圈组件的一端彼此邻近、另一端构成正四面体的顶点,且每个电磁线圈组件的中心线为正四面体的高,使得整个空间四线圈系统的结构高度对称,提高了对磁性控制物控制的灵活性。
根据本发明的一些实施例,以四个所述电磁线圈组件的所述中心线的交点为坐标原点O,从所述坐标原点O出发、沿四个所述电磁线圈组件的所述中心线的方向、向四个所述电磁线圈组件的所述另一端所在的方向为OD、OE、OF、OG四个坐标轴建立空间四轴坐标系O-DEFG,通过三维笛卡尔坐标系与所述空间四轴坐标系O-DEFG之间的转换来调节流过四个所述电磁线圈中的至少一个的电流大小以控制所述空间四轴坐标系O-DEFG中各个点的磁场强度大小,从而实现控制所述磁性控制物在所述空间四线圈系统内运动。
根据本发明的一些实施例,所述空间四线圈系统产生的磁场的磁场强度为H,其中所述H满足:H≥40mT。
根据本发明的一些实施例,所述空间四线圈系统产生的磁场为在特定区域内梯度均匀的磁场。
根据本发明的一些实施例,四个所述电磁线圈组件中的其中一个位于四个所述电磁线圈组件中的另外三个的下方。
根据本发明的一些实施例,所述空间四线圈系统进一步包括:支架,所述支架包括底板、三个第一立柱和围梁,三个所述第一立柱彼此间隔开地设在所述底板的上表面上,所述围梁围设在三个所述第一立柱的上端,其中,四个所述电磁线圈组件中的所述其中一个的下端固定在所述底板上,四个所述电磁线圈组件中的所述另外三个的所述另一端固定在所述第一立柱和所述围梁中的至少一个上。
根据本发明的一些实施例,每个所述电磁线圈组件的所述另一端设有间隔设置的两个卡块,两个所述卡块分别卡设在对应的所述第一立柱的两侧且与所述围梁的内周面止抵。
根据本发明的一些实施例,在四个所述电磁线圈组件中的所述其中一个的周向上,每相邻两个所述第一立柱之间设有一个第二立柱,三个所述第二立柱的上端均与所述围梁的下表面相连,所述第二立柱位于其两侧的两个所述第一立柱所在平面的外侧。
根据本发明的一些实施例,所述支架为航空铝件。
根据本发明的一些实施例,所述支架上设有两个相机,两个所述相机中的其中一个位于所述支架的上方,两个所述相机中的另一个位于所述支架的侧面。
根据本发明第二方面实施例的微型章鱼机器人,包括:头部;多个尾翼,多个所述尾翼连接在所述头部的一端且沿所述头部的周向间隔设置,其中所述微型章鱼机器人适于放置在根据本发明上述第一方面实施例的空间四线圈系统中,通过控制所述空间四线圈系统的至少一个所述电磁线圈的电流大小以使所述微型章鱼机器人在所述空间四线圈系统内运动。
根据本发明的一些实施例,所述微型章鱼机器人具有初始状态和运动状态,当所述微型章鱼机器人处于所述初始状态时多个所述尾翼沿所述头部的径向水平向外延伸,当所述微型章鱼机器人处于所述运动状态时多个所述尾翼沿朝向远离所述头部的另一端的方向弯曲延伸,当所述微型章鱼机器人放置在所述空间四线圈系统内时所述微型章鱼机器人处于所述运动状态。
根据本发明的一些实施例,当所述微型章鱼机器人处于所述初始状态时,多个所述尾翼的自由端端面落在同一个圆上,且所述圆的直径为D,其中所述D满足:4mm≤D≤5mm。
根据本发明的一些实施例,所述头部内具有空腔,所述空腔贯穿所述头部的另一端端面。
根据本发明的一些实施例,所述头部的横截面积从其所述一端朝向另一端的方向逐渐减小。
根据本发明的一些实施例,所述头部的横截面形状为圆形,所述头部的所述一端的直径为d,其中所述d满足:1mm≤d≤1.2mm。
根据本发明的一些实施例,每个所述尾翼的自由端的厚度大于其与所述头部相连的一端的厚度,且每个所述尾翼的自由端的宽度大于其与所述头部相连的一端的宽度。
根据本发明的一些实施例,每个所述尾翼的所述自由端的厚度为t,其中所述t满足:100μm≤t≤250μm。
根据本发明的一些实施例,所述头部的高度为h,其中所述h满足:0.6mm≤h≤1mm。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的空间四线圈系统的立体图;
图2是图1中所示的空间四线圈系统的主视图;
图3是沿图2中A-A线的剖面图;
图4是图2中所示的空间四线圈系统的俯视图;
图5是根据本发明实施例的空间四轴坐标系的示意图;
图6是根据本发明实施例的微型章鱼机器人处于初始状态时的立体图;
图7是图6中所示的微型章鱼机器人处于初始状态时的另一个角度的立体图;
图8是根据本发明实施例的微型章鱼机器人处于运动状态时的立体图;
图9是图8中所示的微型章鱼机器人处于运动状态时的另一个角度的立体图。
附图标记:
100:空间四线圈系统;
1:电磁线圈组件;11:铁芯;
2:支架;21:底板;22:第一立柱;
23:围梁;24:第二立柱;
200:微型章鱼机器人;
201:头部;2011:空腔;202:尾翼。
具体实施方式
下面参考图1-图9描述根据本发明实施例的空间四线圈系统100。
如图1-图4所示,根据本发明第一方面实施例的空间四线圈系统100,包括四个电源(图未示出)和四个电磁线圈组件1。
具体而言,每个电磁线圈组件1包括铁芯11和绕设在铁芯11外的电磁线圈,四个电磁线圈组件1的电磁线圈与四个电源分别电连接。当四个电磁线圈组件1的电磁线圈分别通过四个电源通电时,每个电磁线圈内均有电流流过,从而会产生电磁场。其中,通过在每个电磁线圈内设置铁芯11,可以增强磁场,提高磁场强度,从而可以达到运用在实际医学临床试验中所需的磁场大小,进而运用到实际医学临床试验中。
每个电磁线圈组件1的一端(例如,图1-图4中的内端)彼此邻近,每个电磁线圈组件1的另一端(例如,图1-图4中的外端)构成正四面体的顶点,且每个电磁线圈组件1的中心线为正四面体的高。这里,需要说明的是,方向“内”可以理解为朝向空间四线圈系统100中心的方向,其相反方向被定义为“外”,即远离空间四线圈系统100中心的方向。由于正四面体具有高度对称性,四个电磁线圈组件1的中心线与正四面体的四个高分别重合,从而四个电磁线圈组件1之间的位置关系也是高度对称的,具体地,相邻两个电磁线圈组件1之间的夹角均相等(即均近似为109.471°),同时,对于任意一个电磁线圈组件1而言,其余三个电磁线圈组件1与其位置关系均是相同的,这样,例如,任意两个或者任意三个电磁线圈组件1之间在电流方向和大小均相同的情况下,这任意两个或任意三个电磁线圈组件1就可以耦合,以产生新的磁场方向,由此,由于整个结构的高度对称性,使得磁场方向具有更多的自由度,增加了对空间四线圈系统100内放置的磁性控制物控制的灵活性。而且,通过设计这样一个空间四线圈系统100,其利用了最简单的多面体空间结构——四面体,具有控制简单、便于控制的优势,并且四个电磁线圈组件1所占的空间相对较小,所以便于安装相机等装置,有利于对磁性控制物的观察。
空间四线圈系统100内适于放置磁性控制物,当四个电磁线圈组件1分别接通四个电源时,通过调节流过四个电磁线圈中的至少一个的电流大小使得磁性控制物适于在空间四线圈系统100内运动。可选地,磁性控制物为微型章鱼机器人等。例如,当四个电磁线圈组件1均通电时,在四个电磁线圈组件1产生的磁场保持不变的情况下,磁性控制物例如微型章鱼机器人可以稳定在空间四线圈系统100中的某个位置保持不动;当改变四个电磁线圈组件1的电磁线圈中的至少一个的电流大小时,空间四线圈系统100的磁场将发生变化,从而使得磁性控制物例如微型章鱼机器人在空间四线圈系统100中运动。
根据本发明实施例的空间四线圈系统100,通过在每个电磁线圈内设置铁芯11,提高了磁场强度,加强了磁场,从而空间四线圈系统100可以应用到实际医学临床试验中。而且,通过设置四个电磁线圈组件1,四个电磁线圈组件1所占空间相对较小,从而相对增加了磁性控制物例如微型章鱼机器人的运动空间,同时,通过设置使每个电磁线圈组件1的一端彼此邻近、另一端构成正四面体的顶点,且每个电磁线圈组件1的中心线为正四面体的高,使得整个空间四线圈系统100的结构高度对称,提高了对磁性控制物例如微型章鱼机器人控制的灵活性。
根据本发明的一些实施例,参照图1-图4并结合图5,以四个电磁线圈组件1的中心线的交点为坐标原点O,从坐标原点O出发、沿四个电磁线圈组件1的中心线的方向、向四个电磁线圈组件1的上述另一端(例如,图1-图4中的外端)所在的方向为OD、OE、OF、OG四个坐标轴建立空间四轴坐标系O-DEFG,通过三维笛卡尔坐标系与空间四轴坐标系O-DEFG之间的转换来调节流过四个电磁线圈中的至少一个的电流大小以控制空间四轴坐标系O-DEFG中各个点的磁场强度大小,从而实现控制磁性控制物例如微型章鱼机器人在空间四线圈系统100内运动。其中,在空间四轴坐标系O-DEFG下,坐标可以用(D,E,F,G)(在任何情况下,D、E、F、G中至少有一个量取值为0)表示,用来描述磁性控制物例如微型章鱼机器人在三维空间的精确位置。例如,可以以四个电磁线圈组件1的中心线的交点为坐标原点建立三维笛卡尔坐标系,以定义磁性控制物例如微型章鱼机器人在三维空间内(该三维笛卡尔坐标系下)的位置。当需要控制磁性控制物例如微型章鱼机器人在空间四线圈系统100内的运动时,通过该三维笛卡尔坐标系与上述空间四轴坐标系O-DEFG之间的坐标转换,将磁性控制物例如微型章鱼机器人在上述三维笛卡尔坐标系下运动前的位置和运动后的位置分别映射到上述空间四轴坐标系O-DEFG下,然后根据磁性控制物例如微型章鱼机器人在空间四轴坐标系O-DEFG下运动前的位置和运动后的位置,调节对应的电磁线圈中电流的大小,以使磁性控制物例如微型章鱼机器人运动至上述运动后的位置。由此,由于三维笛卡尔坐标系与空间四轴坐标系O-DEFG之间点对点的对应关系,从而可以实现精确控制空间坐标中各个点的磁场大小,进而达到精确控制磁性控制物例如微型章鱼机器人运动的目的。
具体地,例如,当经过坐标变换后,磁性控制物例如微型章鱼机器人在空间四轴坐标系O-DEFG下运动前的位置坐标为(1,1,0,0)、运动后的位置坐标为(1,3,0,0),即磁性控制物例如微型章鱼机器人需要沿坐标轴OE移动两步,此时可以调节流经坐标轴OE的电磁线圈的电流大小,以使磁性控制物例如微型章鱼机器人在磁场的作用下沿坐标轴OE从(1,1,0,0)移动至(1,3,0,0)。可以理解的是,使磁性控制物例如微型章鱼机器人沿坐标轴OE移动一步所需调节的电流的大小可以预先调试好,以便于后续控制实现磁性控制物例如微型章鱼机器人在空间四线圈系统100中的精准运动。
当然,在本发明不限于此,还可以以四个电磁线圈组件1中的其中一个的上述另一端的端点为坐标原点建立三维笛卡尔坐标系来定义磁性控制物例如微型章鱼机器人在该三维笛卡尔坐标系下的位置,例如,可以以图1-图3中所示的位于最下方的电磁线圈组件1的下端端点为坐标原点建立三维笛卡尔坐标系。可以理解的是,三维笛卡尔坐标系的具体建立方式可以根据实际要求具体设置,以更好地满足实际应用。
其中,需要说明的是,三维笛卡尔坐标系的定义、以及三维笛卡尔坐标系与空间四轴坐标系之间的坐标转换方法等已为本领域的技术人员所熟知,在此不再赘述。
根据本发明的一些实施例,空间四线圈系统100产生的磁场的磁场强度为H,其中H满足:H≥40mT(毫特斯拉)。由此,根据本发明实施例的空间四线圈系统100产生的磁场的磁场强度保持较大的值,远大于现有的亥姆霍兹电磁线圈所产生的磁场的磁场强度,从而保证了空间四线圈系统100可以应用于实际医学临床试验。
根据本发明的一些实施例,空间四线圈系统100产生的磁场为在特定区域内梯度均匀的磁场。例如,如果四个电磁线圈组件1的结构均相同,如四个铁芯11的材质和尺寸分别保持一致,四个电磁线圈的绕线线圈外径、绕线部分长度、线径和匝数分别相等,且四个电磁线圈通入的电流一样,空间四线圈系统100产生的磁场为以四个电磁线圈组件1的中心线的交点为中心向外辐射呈均匀梯度变化。此时“特定区域”可以理解为以四个电磁线圈组件1的中心线的交点为球心的一个球形区域。在四个电磁线圈组件1的结构均相同的前提下,当四个电磁线圈中的至少一个的电流与其余电磁线圈中的电流不同,则磁场的中心就会发生变化,相应地,特定区域也会发生转移,此时特定区域可以根据四个电磁线圈中的实际电流值来确定。而且,由于磁场梯度均匀,磁场对磁性控制物例如微型章鱼机器人的吸引力可以实现磁性控制物例如微型章鱼机器人在三维空间内的快速运动。
根据本发明的一些具体实施例,如图1-图4所示,四个电磁线圈组件1中的其中一个位于四个电磁线圈组件1中的另外三个的下方。由此,磁性控制物例如微型章鱼机器人可以更好地在空间四线圈系统100产生的磁场的作用下运动,且方便了四个电磁线圈组件1的布置。
根据本发明的进一步实施例,参照图1-图4,空间四线圈系统100进一步包括:支架2,支架2包括底板21、三个第一立柱22和围梁23,三个第一立柱22彼此间隔开地设在底板21的上表面上,围梁23围设在三个第一立柱22的上端,其中,四个电磁线圈组件1中的上述其中一个的下端固定在底板21上,四个电磁线圈组件1中的上述另外三个的上述另一端固定在第一立柱22和围梁23中的至少一个上。这里,包括以下三种情况:第一、四个电磁线圈组件1中的上述另外三个的上述另一端仅固定在第一立柱22上;第二、四个电磁线圈组件1中的上述另外三个的上述另一端仅固定在围梁23上;第三、四个电磁线圈组件1中的上述另外三个的上述另一端同时固定在第一立柱22和围梁23上。由此,通过设置支架2,四个电磁线圈组件1可以安装在支架2上,提高了空间四线圈系统100的集成性。而且,通过采用底板21、三个第一立柱22和围梁23的方式,可以从空间四线圈系统100的外侧直观地观察到磁性控制物例如微型章鱼机器人在其内的运动,且节省了材料,节约了成本,且减轻了整个空间四线圈系统100的重量。
更进一步地,如图1所示,每个电磁线圈组件1的上述另一端设有间隔设置的两个卡块,两个卡块分别卡设在对应的第一立柱22的两侧且与围梁23的内周面止抵。由此,通过设置使两个卡块与第一立柱22和围梁23均配合,使得电磁线圈组件1与支架2的配合更加牢靠,从而更能保证四个电磁线圈组件1的上述另一端之间构成的结构为正四面体。
根据本发明的一些实施例,参照图1-图3,在四个电磁线圈组件1中的上述其中一个的周向上,每相邻两个第一立柱22之间设有一个第二立柱24,三个第二立柱24的上端均与围梁23的下表面相连,第二立柱24位于其两侧的两个第一立柱22所在平面的外侧。由此,通过设置第二立柱24,可以提升整个支架2的稳固性,且通过将第二立柱24布置在其两侧的两个第一立柱22所在平面的外侧,从而不会影响磁性控制物例如微型章鱼机器人在空间四线圈系统100中的运动。
可选地,支架2为航空铝件。由此,通过采用航空铝件,航空铝件的强度非常好,使得整个支架2的强度高,四个电磁线圈组件1在支架2上非常稳固,从而保证了空间四线圈系统100产生的磁场的稳定性,进而可以保证磁性控制物例如微型章鱼机器人在空间四线圈系统100中的运动的精准性。
可选地,如图3所示,四个电磁线圈组件1的上述一端之间设有球体,四个电磁线圈组件1的上述一端端面与球体的外表面止抵。由此,通过设置上述的球体,可以进一步保证四个电磁线圈组件1的稳定性。
根据本发明的一些实施例,支架2上设有两个相机(图未示出),两个相机中的其中一个位于支架2的上方,两个相机中的另一个位于支架2的侧面。由此,通过设置上述的两个相机,可以全面地拍摄在磁性控制物例如微型章鱼机器人在空间四线圈系统100中的运动。
根据本发明实施例的空间四线圈系统100,是空间内最少数量的电磁线圈组成的磁控系统。利用不同电磁线圈产生磁场的矢量叠加,实现工作区域内磁场的可控。由于整个结构的高度对称性,磁场方向具有更多的自由度,增加了控制的灵活性。而且,在工作范围内,相比于现有的亥姆霍兹电磁线圈,该磁场保持较大的值(超过40mT)。同时由于不同线圈所产生磁场之间的对称耦合,在不影响磁场大小的情况下,使得工作区域的范围大大增加,因此对于总体尺寸在毫米级、微米级别甚至更小的机器人有较大的意义,例如在生物医学、微流体、细胞监测等方面有较为广泛的应用前景。
如图6-图9所示,根据本发明第二方面实施例的微型章鱼机器人200,包括头部201和多个尾翼202。
具体而言,多个尾翼202连接在头部201的一端(例如,图8中的下端),且多个尾翼202沿头部201的周向间隔设置。在本实用新型的描述中,“多个”的含义是两个或两个以上。例如,在图6-图9的示例中示出了三个尾翼202,三个尾翼202沿头部201的周向均匀间隔排布。当然,本发明不限于此,尾翼202的个数以及具体排布方式还可以根据实际要求具体设置,以更好地满足实际应用。
需要说明的是,图6-图9中显示了三个尾翼202用于示例说明的目的,但是普通技术人员在阅读了下面的技术方案之后、显然可以理解将该方案应用到两个或者多于三个尾翼202的技术方案中,这也落入本发明的保护范围之内。
其中,包括上述头部201和多个尾翼202的微型章鱼机器人200适于放置在根据本发明上述第一方面实施例的空间四线圈系统100中,通过控制空间四线圈系统100的至少一个电磁线圈的电流大小以使微型章鱼机器人200在空间四线圈系统100内运动。具体地,在微型章鱼机器人200在放入空间四线圈系统100之前,可以先进行磁化,然后再放置在空间四线圈系统100中,当四个电磁线圈组件1分别接通四个电源后,由于磁化后的微型章鱼机器人200处于具有确定方向的空间四线圈系统100所产生的磁场中,而机器人的磁化方向有与磁场方向一致的趋势,从而会使得微型章鱼机器人200的尾翼202产生摆动以产生向前的推力,进而推动微型章鱼机器人200在空间四线圈系统100中快速运动,例如,当微型章鱼机器人200处于液体环境中时,可以实现在液体环境中的游动。当控制四个电磁线圈组件1的四个电磁线圈中的至少一个的电流的通断和大小时,可以控制空间中磁场的方向,进而控制微型章鱼机器人200的游向。
根据本发明实施例的微型章鱼机器人200,通过采用头部201和多个尾翼202的方式,使得微型章鱼机器人200的结构简单。而且,当微型章鱼机器人200应用于空间四线圈系统100中时,通过与空间四线圈系统100的配合,可以实现在空间四线圈系统100中的快速运动。
根据本发明的一些实施例,微型章鱼机器人200具有初始状态和运动状态,当微型章鱼机器人200处于初始状态时多个尾翼202沿头部201的径向水平向外延伸,如图6和图7所示;当微型章鱼机器人200处于运动状态时多个尾翼202沿朝向远离头部201的另一端的方向弯曲延伸,如图8和图9所示,当微型章鱼机器人200放置在空间四线圈系统100内时微型章鱼机器人200处于上述运动状态。由此,当将处于运动状态的微型章鱼机器人200放置在空间四线圈系统100中时,可以通过尾翼202的摆动而很好地推动微型章鱼机器人200在液体环境中游动。
例如,微型章鱼机器人200可以加工成图6和图7所示的形状;使用前,先将微型章鱼机器人200的多个尾翼202折弯,例如,可以放在固定形状的容器中进行弯曲;然后,将尾翼202弯曲后的微型章鱼机器人200放入可以进行磁化的仪器中进行磁化。最后,将磁化后的微型章鱼机器人200放入空间四线圈系统100,以控制其在液体环境中的游动。
可选地,当微型章鱼机器人200处于初始状态时,多个尾翼202的自由端(即与头部201不相连的一端)端面落在同一个圆上,且圆的直径为D,其中D满足:4mm≤D≤5mm。由此,通过设置使多个尾翼202的自由端的外端面落在同一个圆上,方便了尾翼202的加工。
根据本发明的进一步实施例,参照图6,头部201内具有空腔2011,空腔2011贯穿头部201的上述另一端端面。由此,通过设置空腔2011,由于微型章鱼机器人200整体尺寸较小,在黏度较大的液体环境中,液体由于表面张力等因素不容易进入到空腔2011内,使得空腔2011内将形成气泡,从而空腔2011可以为整个微型章鱼机器人200提供浮力,换言之,可以减小微型章鱼机器人200的运动阻力。
根据本发明的一些实施例,如图6-图9所示,头部201的横截面积从其上述一端朝向上述另一端的方向逐渐减小。由此,头部201可以起到很好的导向作用,以引导微型章鱼机器人200的运动。
可选地,头部201的横截面形状为圆形,头部201的上述一端的直径为d,其中d满足:1mm≤d≤1.2mm。由此,通过将头部201设置成横截面形状为圆形,方便了头部201的加工;通过设置使头部201的上述一端的直径d满足1mm≤d≤1.2mm,头部201的尺寸较小,从而使得空腔2011的尺寸较小,有效保证了空腔2011可以为整个微型章鱼机器人200提供浮力,且方便了头部201的加工。
根据本发明的一些实施例,参照图7-图9,每个尾翼202的上述自由端的厚度大于其与头部201相连的一端的厚度,且每个尾翼202的上述自由端的宽度大于其与头部201相连的一端的宽度。由此,通过设置使每个尾翼202的与头部201相连的一端做得相对窄一点、薄一点,从而便于尾翼202弯曲。通过设置使每个尾翼202的自由端的尺寸较大,从而发生变形的部分就较大,从而可以更好地推动微型章鱼机器人200运动。
可选地,每个尾翼202的上述自由端的厚度为t,其中t满足:100μm≤t≤250μm。其具体数值可以根据实际要求具体设置,以更好地满足实际应用。由此,如果尾翼202的自由端的厚度t小于100μm,此时尾翼202的尺寸较小,不便于加工制造;如果尾翼202的自由端的厚度t大于250μm,此时尾翼202的尺寸相对较大,从而可能不能很好地应用在生物医学、微流体、细胞监测等领域。也就是说,通过设置使每个尾翼202的自由端的厚度t介于100μm~250μm之间,不仅方便了微型章鱼机器人200的加工,且由于微型章鱼机器人200的尺寸较小,从而可以很好地应用于生物医学、微流体、细胞监测等领域。
可选地,头部201的高度为h,其中h满足:0.6mm≤h≤1mm。由此,如果设置使头部201的高度h小于0.6mm,此时头部201的尺寸较小,不便于加工;如果设置使头部201的高度h大于1mm,此时头部201的尺寸相对较大,从而可能不能很好地应用在生物医学、微流体、细胞监测等领域。换言之,通过设置使头部201的高度t介于0.6mm~1mm之间,不仅方便了微型章鱼机器人200的加工,且由于微型章鱼机器人200的尺寸较小,从而可以很好地应用于生物医学、微流体、细胞监测等领域。
在本发明的描述中,需要理解的是,术语“中心”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (19)

1.一种空间四线圈系统,其特征在于,包括:
四个电源;
四个电磁线圈组件,每个所述电磁线圈组件包括铁芯和绕设在所述铁芯外的电磁线圈,四个所述电磁线圈组件的所述电磁线圈与四个所述电源分别电连接,每个所述电磁线圈组件的一端彼此邻近,每个所述电磁线圈组件的另一端构成正四面体的顶点,且每个所述电磁线圈组件的中心线为所述正四面体的高,
所述空间四线圈系统内适于放置磁性控制物,当四个所述电磁线圈组件分别接通四个所述电源时,通过调节流过四个所述电磁线圈中的至少一个的电流大小使得所述磁性控制物适于在所述空间四线圈系统内运动。
2.根据权利要求1所述的空间四线圈系统,其特征在于,以四个所述电磁线圈组件的所述中心线的交点为坐标原点O,从所述坐标原点O出发、沿四个所述电磁线圈组件的所述中心线的方向、向四个所述电磁线圈组件的所述另一端所在的方向为OD、OE、OF、OG四个坐标轴建立空间四轴坐标系O-DEFG,
通过三维笛卡尔坐标系与所述空间四轴坐标系O-DEFG之间的转换来调节流过四个所述电磁线圈中的至少一个的电流大小以控制所述空间四轴坐标系O-DEFG中各个点的磁场强度大小,从而实现控制所述磁性控制物在所述空间四线圈系统内运动。
3.根据权利要求1所述的空间四线圈系统,其特征在于,所述空间四线圈系统产生的磁场的磁场强度为H,其中所述H满足:H≥40mT。
4.根据权利要求1所述的空间四线圈系统,其特征在于,所述空间四线圈系统产生的磁场为在特定区域内梯度均匀的磁场。
5.根据权利要求1-4中任一项所述的空间四线圈系统,其特征在于,四个所述电磁线圈组件中的其中一个位于四个所述电磁线圈组件中的另外三个的下方。
6.根据权利要求5所述的空间四线圈系统,其特征在于,进一步包括:
支架,所述支架包括底板、围梁和三个第一立柱,三个所述第一立柱彼此间隔开地设在所述底板的上表面上,所述围梁围设在三个所述第一立柱的上端,其中,四个所述电磁线圈组件中的所述其中一个的下端固定在所述底板上,四个所述电磁线圈组件中的所述另外三个的所述另一端固定在所述第一立柱和所述围梁中的至少一个上。
7.根据权利要求6所述的空间四线圈系统,其特征在于,每个所述电磁线圈组件的所述另一端设有间隔设置的两个卡块,两个所述卡块分别卡设在对应的所述第一立柱的两侧且与所述围梁的内周面止抵。
8.根据权利要求6所述的空间四线圈系统,其特征在于,在四个所述电磁线圈组件中的所述其中一个的周向上,每相邻两个所述第一立柱之间设有一个第二立柱,三个所述第二立柱的上端均与所述围梁的下表面相连,所述第二立柱位于其两侧的两个所述第一立柱所在平面的外侧。
9.根据权利要求6所述的空间四线圈系统,其特征在于,所述支架为航空铝件。
10.根据权利要求6所述的空间四线圈系统,其特征在于,所述支架上设有两个相机,两个所述相机中的其中一个位于所述支架的上方,两个所述相机中的另一个位于所述支架的侧面。
11.一种微型章鱼机器人,其特征在于,包括:
头部;
多个尾翼,多个所述尾翼连接在所述头部的一端且沿所述头部的周向间隔设置,其中所述微型章鱼机器人适于放置在根据权利要求1-10中任一项所述的空间四线圈系统中,通过控制所述空间四线圈系统的至少一个所述电磁线圈的电流大小以使所述微型章鱼机器人在所述空间四线圈系统内运动。
12.根据权利要求11所述的微型章鱼机器人,其特征在于,所述微型章鱼机器人具有初始状态和运动状态,
当所述微型章鱼机器人处于所述初始状态时多个所述尾翼沿所述头部的径向水平向外延伸,当所述微型章鱼机器人处于所述运动状态时多个所述尾翼沿朝向远离所述头部的另一端的方向弯曲延伸,当所述微型章鱼机器人放置在所述空间四线圈系统内时所述微型章鱼机器人处于所述运动状态。
13.根据权利要求12所述的微型章鱼机器人,其特征在于,当所述微型章鱼机器人处于所述初始状态时,多个所述尾翼的自由端端面落在同一个圆上,且所述圆的直径为D,其中所述D满足:4mm≤D≤5mm。
14.根据权利要求11-13中任一项所述的微型章鱼机器人,其特征在于,所述头部内具有空腔,所述空腔贯穿所述头部的另一端端面。
15.根据权利要求11所述的微型章鱼机器人,其特征在于,所述头部的横截面积从其所述一端朝向另一端的方向逐渐减小。
16.根据权利要求15所述的微型章鱼机器人,其特征在于,所述头部的横截面形状为圆形,所述头部的所述一端的直径为d,其中所述d满足:1mm≤d≤1.2mm。
17.根据权利要求11所述的微型章鱼机器人,其特征在于,每个所述尾翼的自由端的厚度大于其与所述头部相连的一端的厚度,且每个所述尾翼的自由端的宽度大于其与所述头部相连的一端的宽度。
18.根据权利要求17所述的微型章鱼机器人,其特征在于,每个所述尾翼的所述自由端的厚度为t,其中所述t满足:100μm≤t≤250μm。
19.根据权利要求11所述的微型章鱼机器人,其特征在于,所述头部的高度为h,其中所述h满足:0.6mm≤h≤1mm。
CN201811468182.XA 2018-12-03 2018-12-03 空间四线圈系统及微型章鱼机器人 Active CN109755007B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811468182.XA CN109755007B (zh) 2018-12-03 2018-12-03 空间四线圈系统及微型章鱼机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811468182.XA CN109755007B (zh) 2018-12-03 2018-12-03 空间四线圈系统及微型章鱼机器人

Publications (2)

Publication Number Publication Date
CN109755007A CN109755007A (zh) 2019-05-14
CN109755007B true CN109755007B (zh) 2020-11-27

Family

ID=66403585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811468182.XA Active CN109755007B (zh) 2018-12-03 2018-12-03 空间四线圈系统及微型章鱼机器人

Country Status (1)

Country Link
CN (1) CN109755007B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117038251A (zh) * 2023-08-17 2023-11-10 哈尔滨工业大学 可变构磁场发生装置及磁场产生方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038080B2 (ja) * 1981-10-01 1985-08-29 リオン株式会社 補聴器用感応コイル装置
JPS6091733A (ja) * 1983-10-26 1985-05-23 Rion Co Ltd 感応コイル装置
DE29708830U1 (de) * 1997-05-17 1997-07-17 Trapet Eugen Dr Demontierbarer Prüfkörper in Form eines Tetraeders
DE602006021611D1 (de) * 2005-12-02 2011-06-09 Olympus Corp System zum nachweis der position eines medizinprodukts, führungssystem für ein medizinprodukt und verfahren zum nachweis der position eines medizinprodukts
JP2008171135A (ja) * 2007-01-10 2008-07-24 Ritsumeikan 二分割二統合に基づく実時間適応的四面体メッシュを用いたレオロジー物体の変形シミュレーション方法及びその変形シミュレーションプログラム
CN101664926A (zh) * 2009-09-24 2010-03-10 北京航空航天大学 具有并联机构的四面体翻滚机器人
SG184037A1 (en) * 2010-03-16 2012-10-30 Scient Nanomedicine Inc Nonsurgical determination of organ transplant condition
JP2014502911A (ja) * 2011-01-20 2014-02-06 エナヴ メディカル リミテッド 物体の場所および配向を推定するシステムおよび方法
CN102501913A (zh) * 2011-11-10 2012-06-20 华北电力大学 跨障机器人轮臂结合式车轮结构
CN203705624U (zh) * 2013-09-29 2014-07-09 北京纳特斯拉科技有限公司 一种搜索线圈式和磁通门式组合的多功能磁力仪
CN104037957B (zh) * 2014-06-30 2016-03-30 重庆大学 无线电能传输系统多自由度电能拾取机构
FR3038063B1 (fr) * 2015-06-26 2018-10-26 Atware Appareil pour mesurer un champ magnetique
CN106130306A (zh) * 2016-07-08 2016-11-16 上海大学 优选类甲烷结构风驱式电磁发电球形机器人
CN108910003B (zh) * 2018-06-25 2020-04-07 哈尔滨工程大学 一种仿生章鱼机器人

Also Published As

Publication number Publication date
CN109755007A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
Schuerle et al. Three-dimensional magnetic manipulation of micro-and nanostructures for applications in life sciences
Kratochvil et al. MiniMag: a hemispherical electromagnetic system for 5-DOF wireless micromanipulation
JP7097879B2 (ja) 磁気粒子イメージング
US8830648B2 (en) Magnetic manipulation and navigation system for a magnetic element
Ryan et al. Five-degree-of-freedom magnetic control of micro-robots using rotating permanent magnets
CN107795631A (zh) 用于产生负刚度的电磁设备和振动控制的方法
Hosney et al. Propulsion and steering of helical magnetic microrobots using two synchronized rotating dipole fields in three-dimensional space
CN109755007B (zh) 空间四线圈系统及微型章鱼机器人
CN1589729A (zh) 在工作空间内无接触地移动磁体的电磁线圈系统
US11333728B2 (en) Pre-polarisation magnet arrangement
Alasli et al. Electromagnet design for untethered actuation system mounted on robotic manipulator
Petruska et al. An omnidirectional electromagnet for remote manipulation
KR101790297B1 (ko) 마이크로 로봇을 구동하기 위한 자기장 제어 장치 및 동작 방법
CN113348372A (zh) 带有θ磁体环的轻质不对称磁体阵列
CN111477424A (zh) 一种多维矢量场磁体结构
Kee et al. Analysis of drivable area and magnetic force in quadrupole electromagnetic actuation system with movable cores
Chah et al. A new electromagnetic actuation system with a highly accessible workspace for microrobot manipulation
Zhang et al. Novel 3D magnetic tweezer system for microswimmer manipulations
Song et al. Electromagnetic actuation system using stationary six-pair coils for three-dimensional wireless locomotive microrobot
Li et al. Planar magnetic actuation for soft and rigid robots using a scalable electromagnet array
Manamanchaiyaporn et al. The HyBrid system with a large workspace towards magnetic micromanipulation within the human head
JP2021136453A (ja) 電磁石、磁場印加システム
CN111554467A (zh) 一种矢量磁体结构
JP6473546B1 (ja) 電磁石、磁場印加システム
Zhang et al. A magnetically controlled micro-robot with multiple side flagella

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant