CN109753099A - 一种数字模拟双环路低压差线性稳压器 - Google Patents

一种数字模拟双环路低压差线性稳压器 Download PDF

Info

Publication number
CN109753099A
CN109753099A CN201811575074.2A CN201811575074A CN109753099A CN 109753099 A CN109753099 A CN 109753099A CN 201811575074 A CN201811575074 A CN 201811575074A CN 109753099 A CN109753099 A CN 109753099A
Authority
CN
China
Prior art keywords
voltage
stablizer
transistor
unit
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811575074.2A
Other languages
English (en)
Other versions
CN109753099B (zh
Inventor
刘帘曦
陈逸伟
贺磊
廖栩锋
朱樟明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201811575074.2A priority Critical patent/CN109753099B/zh
Publication of CN109753099A publication Critical patent/CN109753099A/zh
Application granted granted Critical
Publication of CN109753099B publication Critical patent/CN109753099B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Amplifiers (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

本发明涉及一种数字模拟双环路低压差线性稳压器,包括运放比较单元、控制单元、调制组单元,其中,运放比较单元,用于比较稳压器的输出电压与稳压器的目标电压,输出第一比较结果、运放放大误差值;控制单元,连接运放比较单元、稳压器的输出端,用于根据第一比较结果获取跳变检测结果,根据稳压器的输出电压获取第二比较结果;调制组单元,连接运放比较单元、控制单元,根据第一比较结果、运放放大误差值、跳变检测结果和第二比较结果对稳压器的输出电压进行调制。本发明采用了调制组单元对稳压器的输出电压进行调制,在电压变化较大时可以快速完成稳压工作,提高了稳压器的瞬态响应速度,有效地降低了稳压器的输出电压过冲和下冲问题。

Description

一种数字模拟双环路低压差线性稳压器
技术领域
本发明属于电源管理技术领域,具体涉及一种数字模拟双环路低压差线性稳压器。
背景技术
目前,低压差线性稳压器(Low Dropout Regulator,简称LDO)作为电源管理的重要模块,已被广泛应用在微电子技术的各个领域。
在LDO电路中,晶体管的电流受控方式决定了LDO的结构分类。模拟LDO通过控制功率晶体管的栅极到源极的电压,进而控制流出电流大小以稳定输出电压;而数字LDO是通过控制功率晶体管的开启关断数量,控制流出电流大小,以稳定输出电压。模拟LDO通常由误差放大器和一个功率晶体管,而数字LDO由一个数字控制器和一个功率开关管阵列组成。相比模拟LDO,数字LDO具有较小的功率晶体管面积,较少的稳定性问题以及可扩展性好的特点,在电源管理的应用中更为广泛。
但传统的数字LDO负载跳变时,其只能对所控制晶体管阵列中的晶体管依次开启或是关断,稳压器的输出电压恢复时间慢,缺乏良好的瞬态响应,难以在电压变化较大时快速完成稳压工作,稳压器的输出电压容易出现过冲或下冲问题。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种数字模拟双环路低压差线性稳压器,该稳压器包括:
运放比较单元、控制单元、调制组单元,其中,
所述运放比较单元,用于比较所述稳压器的输出电压与所述稳压器的目标电压,输出第一比较结果、运放放大误差值,所述运放放大误差值为所述稳压器的输出电压与所述稳压器的目标电压的差值放大值;
所述控制单元,连接所述运放比较单元、所述稳压器的输出端,用于根据所述第一比较结果获取所述稳压器的输出电压与所述稳压器的目标电压的跳变检测结果,根据所述稳压器的输出电压获取所述稳压器的输出电压与第一阈值电压、所述稳压器的输出电压与第二阈值的第二比较结果;
所述调制组单元,连接所述运放比较单元、所述控制单元,根据所述第一比较结果、所述运放放大误差值、所述跳变检测结果和所述第二比较结果对所述稳压器的输出电压进行调制。
在本发明的一个实施例中,所述控制单元包括跳变检测单元、比较单元、译码单元,其中,
所述跳变检测单元,连接所述运放比较单元,用于根据所述第一比较结果,检测所述稳压器的输出电压与所述稳压器的目标电压跳变情况,输出所述跳变检测结果;
所述比较单元,连接所述稳压器的输出端,用于比较所述稳压器的输出电压与第一阈值电压的大小、所述稳压器的输出电压与第二阈值电压的大小,输出所述第二比较结果;
所述译码单元,连接所述跳变检测单元、所述比较单元,用于根据所述跳变检测结果和所述第二比较结果,控制所述调制组单元对所述稳压器的输出电压进行调制。
在本发明的一个实施例中,所述调制组单元包括第一级数字调制单元、第二级数字调制单元、第三级模拟调制单元,其中,
所述第一级数字调制单元,连接所述运放比较单元、所述译码单元,用于通过所述第一比较结果获取第一计数值和第二计数值,根据所述第一计数值和所述第二计数值对所述稳压器的输出电压进行调制;
所述第二级数字调制单元,连接所述运放比较单元、所述译码单元,用于通过所述第一比较结果获取第三计数值,根据所述第三计数值对所述稳压器的输出电压进行调制;
所述第三级模拟调制单元,连接所述运放比较单元、所述译码单元,用于通过所述运放放大误差值对所述稳压器的输出电压进行调制。
在本发明的一个实施例中,所述第一级数字调制单元包括第一计数器、第二计数器、第一晶体管阵列,其中,
所述第一计数器,连接所述稳压器的时钟输入端、所述运放比较单元、所述译码单元的第一控制输出端,用于根据所述第一比较结果进行计数,输出所述第一计数值;
所述第二计数器,连接所述稳压器的时钟输入端、所述运放比较单元、所述译码单元第二控制输出端、所述第一计数器,用于根据所述第一比较结果进行计数,输出所述第二计数值;
所述第一晶体管阵列,连接所述第二计数器,用于根据所述第一计数值或所述第二计数值对所述稳压器的输出电压进行调制。
在本发明的一个实施例中,所述第一晶体管阵列包含若干第一晶体管,所述第一晶体管的栅极均连接所述第二计数器,所述第一晶体管的源极均连接电源VDD,所述第一晶体管的漏极均连接所述稳压器的输出端。
在本发明的一个实施例中,所述第二级数字调制单元包括第三计数器、第二晶体管阵列,其中,
所述第三计数器,连接所述稳压器的时钟输入端、所述运放比较单元、所述译码单元第三控制输出端,用于根据所述第一比较结果进行计数,输出所述第三计数值;
所述第二晶体管阵列,连接所述第三计数器,用于根据所述第三计数值对所述稳压器的输出电压进行调制。
在本发明的一个实施例中,所述第二晶体管阵列包含若干第二晶体管,所述第二晶体管的栅极均连接所述第三计数器,所述第二晶体管的源极均连接电源VDD,所述第二晶体管的漏极均连接所述稳压器的输出端。
在本发明的一个实施例中,所述若干第一晶体管的尺寸依次倍增,所述若干第二晶体管的尺寸依次倍增,所述若干第一晶体管的尺寸平均值大于所述若干第二晶体管的尺寸平均值,其中所述第一晶体管、所述第二晶体管的尺寸分别为所述第一晶体管、所述第二晶体管的宽度与长度的比值。
在本发明的一个实施例中,所述第三级模拟调制单元包含第三晶体管和第四晶体管,所述第四晶体管连接所述译码单元第四控制输出端,所述第三晶体管连接所述第四晶体管,对所述稳压器的输出电压进行调制。
在本发明的一个实施例中,所述第一计数器、所述第二计数器、第三计数器均为同步计数器。
与现有技术相比,本发明的有益效果:
1、本发明数字调制过程中采用了调制组单元对稳压器的输出电压进行调制,在稳压器的输出电压变化较大时可以快速完成稳压工作,提高了稳压器的瞬态响应速度,有效地降低了稳压器的输出电压的过冲和下冲问题。
2、本发明在数字调制、模拟调制中,共同使用了一个运放比较器,使得数字调制与模拟调制的失调电压方向一致,保证稳压器功能的稳定性。
3、本发明在稳压器的输出电压调制中采用了第一级数字调制、第二级数字调制,继承了数字调制具有稳定性好、扩展性好、晶体管面积小、低电压工作的优势外,第一级数字调制对稳压器进行快速调制,第二级数字调制慢速调制,更好的控制了稳压器的输出电压的稳定性。
4、本发明在稳压器的输出电压调制中采用了模拟调制,模拟调制不仅可以避免第一级数字调制、第二级数字调制输出的纹波,同时改善了电源抑制比问题。
附图说明
图1为本发明实施例提供的一种数字模拟双环路低压差线性稳压器的结构示意图;
图2为本发明实施例提供的另一种数字模拟双环路低压差线性稳压器的结构示意图;
图3为本发明实施例提供的再一种数字模拟双环路低压差线性稳压器的结构示意图;
图4为本发明实施例提供的一种数字模拟双环路低压差线性稳压器的电路示意图;
图5为本发明实施例提供的数字模拟双环路低压差线性稳压器中控制单元的电路示意图;
图6为本发明实施例提供的数字模拟双环路低压差线性稳压器中步长可变计数器的电路示意图;
图7为本发明实施例提供的一种数字模拟双环路低压差线性稳压器工作原理图;
图8为本发明实施例提供的数字模拟双环路低压差线性稳压器的输出电压仿真波形示意图;
图9为本发明实施例提供的数字模拟双环路低压差线性稳压器在负载跳变时输出电压与输出电流仿真波形示意图。
附图标记说明:
运放比较单元10;控制单元20;调制组单元30;第一级数字调制单元301;第二级数字调制单元302;第三级模拟调制单元303;跳变检测单元201;比较单元202;译码单元203;第一计数器3011;第二计数器3012;第一晶体管阵列3013;第三计数器3021;第二晶体管阵列3022;步长可变计数器3010。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例一
请参见图1、图2、图3、图4、图5、图6,图1为本发明实施例提供的一种数字模拟双环路低压差线性稳压器的结构示意图;图2为本发明实施例提供的另一种数字模拟双环路低压差线性稳压器的结构示意图;图3为本发明实施例提供的再一种数字模拟双环路低压差线性稳压器的结构示意图;图4为本发明实施例提供的一种数字模拟双环路低压差线性稳压器的电路示意图;图5为本发明实施例提供的数字模拟双环路低压差线性稳压器中控制单元的电路示意图;图6为本发明实施例提供的数字模拟双环路低压差线性稳压器中步长可变计数器的电路示意图。本发明实施例提供的一种数字模拟双环路低压差线性稳压器,该稳压器电路结构包括:
包括运放比较单元10、控制单元20、调制组单元30,其中,
运放比较单元10,用于比较稳压器的输出电压VOUT与稳压器的目标电压,输出第一比较结果、运放放大误差值,运放放大误差值为稳压器的输出电压VOUT与稳压器的目标电压的差值放大值;
控制单元20,连接运放比较单元10、稳压器的输出端,用于根据第一比较结果获取稳压器的输出电压VOUT与稳压器的目标电压的跳变检测结果,根据稳压器的输出电压获取稳压器的输出电压VOUT与第一阈值电压、稳压器的输出电压VOUT与第二阈值的第二比较结果;
调制组单元30,连接运放比较单元10、控制单元20,根据第一比较结果、运放放大误差值、跳变检测结果和第二比较结果对稳压器的输出电压进行调制。
其中,运放比较单元10包括运放比较器。该运放比较器包括运放比较器比较输出端COMP_OUT、运放比较器误差放大输出端EA_OUT、运放比较器正相输入端VIN+、运放比较器反相输入端VIN-,运放比较器比较输出端COMP_OUT与控制单元20、调制组单元30连接,运放比较器误差放大输出端EA_OUT与调制组单元30连接,运放比较器反相输入端VIN-与运放比较器参考电压VREF连接,运放比较器正相输入端VIN+与稳压器的分压反馈电路连接。当稳压器在分压反馈电路的反馈电压高于运放比较器参考电压VREF时,运放比较器比较输出端COMP_OUT输出第一比较结果为0,同时,运放比较器误差放大输出端EA_OUT输出稳压器反馈电压与运放比较器参考电压VREF的差值放大值;当稳压器在分压反馈电路的反馈电压低于运放比较器参考电压VREF时,运放比较器比较输出端COMP_OUT输出第一比较结果为1,同时,运放比较器误差放大输出端EA_OUT输出稳压器反馈电压与运放比较器参考电压VREF的差值放大值。
进一步地,控制单元20包括跳变检测单元201、比较单元202、译码单元203,其中,
跳变检测单元201,连接运放比较单元10,用于根据第一比较结果,检测稳压器的输出电压VOUT与稳压器的目标电压跳变情况,输出跳变检测结果;
比较单元202,连接稳压器的输出端,用于比较稳压器的输出电压VOUT与第一阈值电压的大小、稳压器的输出电压VOUT与第二阈值电压的大小,输出第二比较结果;
译码单元203,连接跳变检测单元201、比较单元202,用于根据跳变检测结果和第二比较结果,控制调制组单元对稳压器的输出电压VOUT进行调制。
具体地,控制单元20中跳变检测单元201的输入端CTR_IN0与运放比较器比较输出端COMP_OUT连接,通过运放比较器比较输出端COMP_OUT值的变化判断稳压器跳变情况。本实施例中,跳变检测单201元只检测运放比较器比较输出端COMP_OUT值从0到1的跳变。
控制单元20中的比较单元202输入端CTR_IN1与稳压器的输出端VOUT连接,比较单元202包括两个子比较器、一个与非门,其中一个子比较器与第一阈值电压进行比较,另一个子比较器与第二阈值电压进行比较,将与第一阈值电压的比较结果和与第二阈值电压的比较结果进行与非门处理,输出第二比较结果,第二比较结果可以反映稳压器的输出电压VOUT是否在范围,其中,第二比较结果为0,表示稳压器的输出电压VOUT不在范围,第二比较结果为1,表示稳压器的输出电压VOUT在范围。其中,稳压器的输出电压VOUT在范围指稳压器的输出电压VOUT介于第一阈值电压与第二阈值电压之间;稳压器的输出电压VOUT不在范围指稳压器的输出电压VOUT高于第一阈值电压或低于第二阈值电压。其中,第一阈值电压大于稳压器的目标电压,第二阈值电压小于稳压器的目标电压。
控制单元20中译码单元203输入端与跳变检测单元201输出端、比较单元202输出端连接,译码单元203通过将跳变检测单元201的跳变检测结果和比较单元202的第二比较输出结果进行译码,从译码单元203的4个控制输出端分别输出第一控制信号、第二控制信号、第三控制信号、第四控制信号。其中,4个控制输出端分别为第一控制输出端CTR_OUT1,第二控制输出端CTR_OUT2、第三控制输出端CTR_OUT3、第四控制输出端CTR_OUT4,其中,第一控制输出端CTR_OUT1、第二控制输出端CTR_OUT2、第三控制输出端CTR_OUT3、第四控制输出端CTR_OUT4均与调制组单元30连接。
本实施例中,当跳变检测单元201的跳变检测结果为0,代表出现了0次跳变时,不管比较单元202的第二比较输出结果,译码单元203的第二控制输出端CTR_OUT2输出第二控制信号;当跳变检测单元201的跳变检测值为1,代表出现了1次跳变时,不管比较单元202比较输出结果,译码单元203的第三控制输出端CTR_OUT3输出第三控制信号;当跳变检测单元201的跳变检测值为2,代表出现了2次跳变,同时比较单元202的第二结果为稳压器的输出电压VOUT在范围的时候,译码单元203的第四控制输出端CTR_OUT4输出第四控制信号;当跳变检测单元201的跳变检测值为2,同时比较单元202的第二比较结果为稳压器的输出电压VOUT不在范围的时候,译码单元203的第一控制输出端CTR_OUT1输出第一控制信号。
进一步地,调制组单元30包括第一级数字调制单元301、第二级数字调制单元、第三级模拟调制单元303,其中,
第一级数字调制单元301,连接运放比较单元10、译码单元203,用于通过第一比较结果获取第一计数值和第二计数值,根据第一计数值和第二计数值对稳压器的输出电压VOUT进行调制;
第二级数字调制单元302,连接运放比较单元10、译码单元203,用于通过第一比较结果获取第三计数值,根据第三计数值对稳压器的输出电压VOUT进行调制;
第三级模拟调制单元303,连接运放比较单元10、译码单元203,用于通过运放放大误差值对稳压器的输出电压VOUT进行调制。
其中,运放比较单元10的比较输出端COMP_OUT与第一级数字调制单元301、第二级数字调制单元302连接,运放比较单元10的误差放大输出端EA_OUT与第三级模拟调制单元303连接。可见,运放比较单元10分别与第一级数字调制单元301、第二级数字调制单元302、第三级模拟调制单元303连接,即第一级数字调制单元301、第二级数字调制单元302、第三级模拟调制单元303共同使用一个运放比较单元10,该运放比较单元10在第一级数字调制单元301、第二级数字调制单元302中作为比较器使用,在第三级模拟调制单元303中作为误差放大器使用。第一级数字调制单元301、第二级数字调制单元302、第三级模拟调制单元303共同使用一个运放比较单元10,使得数字调制与模拟调制的失调电压方向一致,保证稳压器功能的稳定性。
本实施例中,译码单元203的第一控制输出端CTR_OUT1、第二控制输出端CTR_OUT2与第一级数字调制单元301连接,通过第一控制端CTR_OUT1、第二控制输出端CTR_OUT2分别输出的第一控制信号、第二控制信号,启动第一级数字调制单元301对稳压器的输出电压VOUT进行调制;译码单元203的第三控制输出端CTR_OUT3与第二级数字调制单元连接,通过第三控制输出端CTR_OUT3输出第三控制信号,启动第二级数字调制单元对稳压器的输出电压VOUT进行调制;译码单元203的第四控制输出端CTR_OUT4与第三级模拟调制单元303连接,通过第四控制输出端CTR_OUT4输出的第四控制信号,启动第三级模拟调制单元303对稳压器的输出电压VOUT进行调制。其中,第一控制信号、第二控制信号为0,表示第一级数字调制单元301被启动对稳压器的输出电压VOUT进行调制,第三控制信号为0,表示第二级数字调制单元302被启动对稳压器的输出电压VOUT进行调制,第四控制信号为0,表示第三级模拟调制单元303被停止对稳压器的输出电压VOUT进行调制;第一控制信号、第二控制信号为1,表示第一级数字调制单元301被停止对稳压器的输出电压VOUT进行调制,第三控制信号为1,表示第二级数字调制单元302被停止对稳压器的输出电压VOUT进行调制,第四控制信号为1,表示第三级模拟调制单元303被启动对稳压器的输出电压VOUT进行调制。
具体地,本实施例中跳变检测单元201检测到的跳变检测结果包括0次跳变、1次跳变、2次跳变。其中,0次跳变用于控制第一级数字调制单元301对稳压器的输出电压VOUT进行调制,1次跳变用于控制第二级数字调制单元302对稳压器的输出电压VOUT进行调制,2次跳变用于控制第三级模拟调制单元303或负载跳变时对稳压器的输出电压VOUT进行调制。进一步地,第一级数字调制单元301包括第一计数器3011、第二计数器3012、第一晶体管阵列3013,其中,
第一计数器3011,连接稳压器的时钟输入端、运放比较单元10、译码单元203的第一控制输出端,用于根据第一比较结果进行计数,输出第一计数值;
第二计数器3012,连接稳压器的时钟输入端、运放比较单元10、译码单元203第二控制输出端、第一计数器3011,用于根据第一比较结果进行计数,输出第二计数值;
第一晶体管阵列3013,连接第二计数器3012,用于根据第一计数值或第二计数值对稳压器的输出电压VOUT进行调制。
具体地,本实施例中,步长可变计数器3010,包括第一计数器3011、第二计数器3012。其中,第一计数器3011,包括第一使能端EN1a、第一计数器输入端IN1a、第一时钟输入端CLK1a、第一置数端SETa、第一计数器输出端OUT1a,第一使能端EN1a与运放比较单元10运放比较器比较输出端COMP_OUT连接,第一置数端SETa与控制单元20中译码单元203第一控制输出端CTR_OUT1连接,第一时钟输入端CLK1a与稳压器输入时钟信号CLK连接,第一计数器输出端OUT1a、第一计数器输入端IN1a与第二计数器3012连接。
第二计数器3012,包括第二使能端EN1b、第二计数器输入端IN1b、第二时钟输入端CLK1b、第二置数端SETb、第二计数器输出端OUT1b,第二使能端EN1b与运放比较单元10运放比较器比较输出端COMP_OUT连接,第二置数端SETb与控制单元20中译码单元203第二控制输出端CTR_OUT2连接,第二时钟输入端CLK1b与稳压器输入时钟信号CLK连接,第二计数器输入端IN1b与第一计数器输出端OUT1a连接,第二计数器输出端OUT1b与第一计数器输入端IN1a、第一晶体管阵列3013连接。
本实施例中,步长可变计数器3010包括第一计数器3011、第二计数器3012,第一计数器3011、第二计数器3012计数的步长不同,对稳压器的输出电压VOUT调制的步进不同。其中,步长可变计数器3010中启用第一计数器3011或第二计数器3012,是通过译码单元203的第一控制输出端CTR_OUT1、第二控制输出端CTR_OUT2分别输出的第一控制信号或是第二控制信号决定。比如,译码单元203的第一控制输出端CTR_OUT1输出了第一控制信号,则启用第一计数器3011开始计数,当稳压器的输出电压VOUT小于稳压器的目标电压,则第一计数器3011进行加法操作;当稳压器的输出电压VOUT大于稳压器的目标电压,则第一计数器3011进行减法操作。同理,第二计数器3012在译码单元203的第二控制输出端CTR_OUT2输出了第二控制信号后,进行相应的加法或是减法操作。
优选地,本实施例中第一计数器3011、第二计数器3012均为计数器位数为8位的同步计数器。
进一步地,第一晶体管阵列3013,包括若干第一晶体管,若干第一晶体管共栅极且栅极均与第二计数器输出端OUT1b连接,若干第一晶体管源极均与电源VDD连接,若干第一晶体管漏极均与稳压器的输出端VOUT连接。
其中,若干第一晶体管个数决定于连接的第二计数器3012的计数器位数,本实施例中第二计数器3012为8位数的计数器,则第一晶体管阵列3013中第一晶体管的个数为8,第二计数器3012的每一位分别与第一晶体管阵列3013中第一晶体管连接,从而控制第一晶体管阵列3013中每个第一晶体管的开启与关断。
优选地,第一晶体管阵列3013中的若干第一晶体管均为PMOS晶体管。
本实施例中,第一晶体管阵列3013中8个第一晶体管具体依次为晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h,晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h栅极共连且栅极均与第二计数器输出端OUT1b连接,晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h的源极均与电源VDD连接,晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h漏极均与稳压器的输出端VOUT连接。
进一步地,若干第一晶体尺寸依次倍增。
具体地,W/L为每个第一晶体管的宽度与长度的比值,简称宽长比,晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h的尺寸依次倍增可以表示为:(W/L)Mp1a:(W/L)Mp1b:(W/L)Mp1c:(W/L)Mp1c:(W/L)Mp1d:(W/L)Mp1e:(W/L)Mp1f:(W/L)Mp1g:(W/L)Mp1h=1:2:4:8:16:32:64:128。在晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h中,若晶体管Mp1a的宽长比(W/L)Mp1a=m,则晶体管Mp1b的宽长比(W/L)Mp1b=2m,晶体管Mp1c的宽长比(W/L)Mp1c=4m,以此类推。其中,m为大于0的自然数。
其中,晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h在第一晶体管阵列3013中,与第二计数器3012的连接为:最小尺寸的晶体管Mp1a栅极连接第二计数器3012最低位,第二小尺寸晶体管Mp1b的栅极连接第二计数器3012第二位,以此类推,最大尺寸晶体管Mp1h的栅极连接第二计数器3012最高位。晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h尺寸不同,因此流经晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h的电流不同,并且晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h的开启关闭受第二计数器3012输出的第二计数值控制,从而达到调整稳压器的输出电压VOUT的目的。
例如,第二计数3012初始值为0,当稳压器的输出电压VOUT低于稳压器的目标电压时,第二计数器3012进行加法操作,第二计数器3012输出第二计数值变为1,连接第二计数器3012的最小尺寸晶体管Mp1a被开启,稳压器的输出电压VOUT升高;但稳压器的输出电压VOUT依然低于稳压器的目标电压时,第二计数器3012继续进行加法操作,第二计数器3012第二计数值变为2,连接第二计数器3012的第二小尺寸晶体管Mp1b被开启,最小尺寸晶体管Mp1a被关断,稳压器的输出电压VOUT升高;但稳压器的输出电压VOUT依然低于稳压器的目标电压时,第二计数器3012继续进行加法操作,第二计数器3012第二计数值变为3,连接第二计数器3012的第二小尺寸晶体管Mp1b被开启,最小尺寸晶体管Mp1a也被开启,稳压器的输出电压VOUT升高;此时稳压器的输出电压VOUT高于稳压器的目标电压时,第二计数器3012开始进行减法操作,第二计数器3012第二数值变为2,连接第二计数器3012的第二小尺寸晶体管Mp1b被开启,最小尺寸晶体管Mp1a又被关断,稳压器的输出电压VOUT降低。通过第二计数器3012统计稳压器的输出电压VOUT与稳压器的目标电压的比较情况,输出第二计数值,根据这个第二计数值开启或关闭第一晶体管阵列3013中Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h,达到控制稳压器的输出电压VOUT的目的。
同理,第一计数器3011工作原理与第二计数器3012相同,通过统计稳压器的输出电压VOUT与稳压器的目标电压的比较情况,输出第一计数值,根据这个第一计数值开启或关闭第一晶体管阵列3013中晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h,达到控制稳压器的输出电压VOUT的目的。其中,第一计数值通过第二计数器3012输出,控制第一晶体管阵列3013中晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h开启与关断。
其中,第一计数器3011、第二计数器3012不同在于计数步进,比如第一计数器3011、第二计数器3012的初始值均为0,在稳压器的输出电压VOUT低于稳压器的目标电压时,第二计数器3012进行加法操作,第二计数值变为1,而第一计数器3011进行加法操作,第一计数值变为3,则第一计数器3011、第二计数器3012开启或是关断晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h数目不同,第一计数器3011比第二计数器3012更大步进的调制稳压器的输出电压VOUT使其接近稳压器的目标电压。第一计数器3011是应对稳压器电路中出现负载跳变的情况,稳压器的输出电压VOUT高于第一阈值电压或是低于第一阈值电压时,会通过第一计数器3011开启或关断晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h,使稳压器的输出电压VOUT变化较大时可以快速完成稳压工作,提高了稳压器的瞬态响应速度,有效地降低了稳压器的输出电压VOUT的过冲和下冲问题。
进一步地,第二级数字调制单元302包括第三计数器3021、第二晶体管阵列3022,其中,
第三计数器3021,连接稳压器的时钟输入端、运放比较单元10、译码单元203第三控制输出端,用于根据第一比较结果进行计数,输出第三计数值;
第二晶体管阵列3022,连接第三计数器3021,用于根据第三计数值对稳压器的输出电压VOUT进行调制。
具体地,第三计数器3021,包括第三使能端EN2、第三计数器输入端IN2、第三时钟输入端CLK2、第三置数端SET2、第三计数器输出端OUT2,第三使能端EN2与运放比较单元10运放比较器比较输出端COMP_OUT连接,第三置数端SET2与控制单元20中译码单元203第三控制输出端CTR_OUT3连接,第三时钟输入端CLK2与稳压器输入时钟信号CLK连接,第三计数器输出端OUT2与第三计数器输入端IN2、第二晶体管阵列3022连接。
其中,第三计数器3021与第一计数器3011、第二计数器3012工作原理相同,当稳压器的输出电压VOUT小于稳压器的目标电压,则第三计数器3021进行加法操作,输出第三计数值,对稳压器的输出电压VOUT进行调制;当稳压器的输出电压VOUT大于稳压器的目标电压,则第三计数器3021进行减法操作,输出第三计数值,对稳压器的输出电压VOUT进行调制。
优选地,第三计数器3021为计数器位数为8位的同步计数器。
进一步地,第二晶体管阵列3022,包括若干第二晶体管,若干第二晶体管共栅极且栅极均与第三计数器输出端OUT2连接,若干第二晶体管源极均与电源VDD连接,若干第二晶体管漏极均与稳压器的输出端VOUT连接。其中,若干第二晶体管个数决定于连接的第三计数器3021的位数,本实施例中第三计数器3021为计数器位数为8位计数器,则第二晶体管阵列3022中第二晶体管的个数为8,第三计数器3021的每一位分别与第二晶体管阵列3022中第二晶体管连接,从而控制第二晶体管阵列3022中每个第二晶体管的开启与关断。
优选地,第二晶体管阵列3022中的若干第二晶体管均为PMOS晶体管。
本实施例中,第二晶体管阵列3022中8个第二晶体管依次为晶体管Mp2a、晶体管Mp2b、晶体管Mp2c、晶体管Mp2d、晶体管Mp2e、晶体管Mp2f、晶体管Mp2g、晶体管Mp2h,晶体管Mp2a、晶体管Mp2b、晶体管Mp2c、晶体管Mp2d、晶体管Mp2e、晶体管Mp2f、晶体管Mp2g、晶体管Mp2h栅极共连且栅极均与第三计数器输出端OUT2连接,晶体管Mp2a、晶体管Mp2b、晶体管Mp2c、晶体管Mp2d、晶体管Mp2e、晶体管Mp2f、晶体管Mp2g、晶体管Mp2h的源极均与电源VDD连接,晶体管Mp2a、晶体管Mp2b、晶体管Mp2c、晶体管Mp2d、晶体管Mp2e、晶体管Mp2f、晶体管Mp2g、晶体管Mp2h漏极均与稳压器的输出端VOUT连接。
进一步地,若干第二晶体尺寸依次倍增。
具体地,W/L为每个第二晶体管宽长比,晶体管Mp2a、晶体管Mp2b、晶体管Mp2c、晶体管Mp2d、晶体管Mp2e、晶体管Mp2f、晶体管Mp2g、晶体管Mp2h尺寸依次倍增可以表示为:
(W/L)Mp2a:(W/L)Mp2b:(W/L)Mp2c:(W/L)Mp2c:(W/L)Mp2d:(W/L)Mp2e:(W/L)Mp2f:(W/L)Mp2g:(W/L)Mp2h=1:2:4:8:16:32:64:128。在晶体管Mp2a、晶体管Mp2b、晶体管Mp2c、晶体管Mp2d、晶体管Mp2e、晶体管Mp2f、晶体管Mp2g、晶体管Mp2h中,若晶体管Mp2a的宽长比(W/L)Mp2a=n,则晶体管Mp2b的宽长比(W/L)Mp2b=2n,晶体管Mp2c的宽长比(W/L)Mp2c=4n,以此类推。其中,n为大于0的自然数。
其中,晶体管Mp2a、晶体管Mp2b、晶体管Mp2c、晶体管Mp2d、晶体管Mp2e、晶体管Mp2f、晶体管Mp2g、晶体管Mp2h在第二晶体管阵列3022中,最小尺寸晶体管Mp2a的栅极连接第三计数器3021最低位,第二小尺寸晶体管Mp2b的栅极连接第三计数器3021第二位,以此类推,最大尺寸晶体管Mp2h的栅极连接第三计数器3021最高位。晶体管Mp2a、晶体管Mp2b、晶体管Mp2c、晶体管Mp2d、晶体管Mp2e、晶体管Mp2f、晶体管Mp2g、晶体管Mp2h尺寸不同,因此流经晶体管Mp2a、晶体管Mp2b、晶体管Mp2c、晶体管Mp2d、晶体管Mp2e、晶体管Mp2f、晶体管Mp2g、晶体管Mp2h的电流不同,并且晶体管Mp2a、晶体管Mp2b、晶体管Mp2c、晶体管Mp2d、晶体管Mp2e、晶体管Mp2f、晶体管Mp2g、晶体管Mp2h的开启关闭受第三计数器3021输出的第三计数值控制,从而调整稳压器的输出电压VOUT。
其中,第三计数器3021与第一计数器3011、第二计数器3012工作原理相同,通过第三计数器3021进行加法或是减法操作,来控制晶体管Mp2a、晶体管Mp2b、晶体管Mp2c、晶体管Mp2d、晶体管Mp2e、晶体管Mp2f、晶体管Mp2g、晶体管Mp2h的开启与关断,最终调制稳压器的输出电压VOUT。
进一步地,第一晶体管阵列3013中若干第一晶体管的尺寸平均值大于第二晶体管阵列3022中若干第二晶体管的尺寸平均值。
具体地,第一晶体管阵列3013中晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h的尺寸平均值大于第二晶体管阵列3022中晶体管Mp2a、晶体管Mp2b、晶体管Mp2c、晶体管Mp2d、晶体管Mp2e、晶体管Mp2f、晶体管Mp2g、晶体管Mp2h的尺寸平均值。其因为第一晶体管阵列3013中晶体管Mp1a、晶体管Mp1b、晶体管Mp1c、晶体管Mp1d、晶体管Mp1e、晶体管Mp1f、晶体管Mp1g、晶体管Mp1h的尺寸依次倍增,第二晶体管阵列3022中晶体管Mp2a、晶体管Mp2b、晶体管Mp2c、晶体管Mp2d、晶体管Mp2e、晶体管Mp2f、晶体管Mp2g、晶体管Mp2h的尺寸依次倍增,且本实施例中晶体管Mp1a的尺寸大于晶体管Mp2a的尺寸,所以第一晶体管阵列3013中若干第一晶体管的尺寸平均值大于第二晶体管阵列3022中若干第二晶体管的尺寸平均值。
进一步地,第三级模拟调制单元303包含第三晶体管和第四晶体管,第四晶体管连接译码单元203第四控制输出端,第三晶体管连接第四晶体管,对稳压器的输出电压VOUT进行调制。
具体地,第三级模拟调制单元303中,第四晶体管Mp4的栅极与译码单元203的第四控制输出端CTR_OUT4连接,第四晶体管Mp4的源极与电源VDD连接,第四晶体管Mp4的漏极与运放比较单元10运放比较器误差放大输出端EA_OUT、第三晶体管Mp3的栅极连接,第三晶体管Mp3的源极与电源VDD连接,第三晶体管Mp3的漏极与稳压器的分压反馈电路、稳压器的输出端连接。
其中,本实施例中,第四晶体管Mp4起到开关的作用。当译码单元203的第四控制输出端CTR_OUT4输出的第四控制信号为1时,第四晶体管Mp4处于关闭状态,第三晶体管Mp3的栅-源电压受到运放比较器误差放大输出端EA_OUT输出的差值放大值控制,第三晶体管Mp3工作,则开启了第三级模拟调制单元303对稳压器的输出电压VOUT进行调制;第四控制信号为0时,第四晶体管Mp4处于开启状态,使得第三晶体管Mp3的栅压被上拉至电源电压VDD,第三晶体管Mp3的栅-源电压固定为0V,运放比较器误差放大输出端EA_OUT输出的差值放大值不能调控第三晶体管Mp3的栅-源电压,第三晶体管Mp3不工作,则第三级模拟调制单元303不启动。。
优选地,第三晶体管Mp3、第四晶体管Mp4均为PMOS晶体管。
进一步地,本实施例中,还包括稳压器分压反馈电路,稳压器分压反馈电路包括电阻R1、电阻R2,电阻R1一端与第三晶体管Mp3漏极、稳压器的输出端连接,电阻R1另一端与电阻R2一端、运放比较单元10的运放比较器正相输入端VIN+连接,电阻R2另一端接地。
具体地,电阻R1与电阻R2为分压电阻,将稳压器的输出电压VOUT反馈输入运放比较单元10,在运放比较单元10的运放比较器误差放大输出端EA_OUT输出稳压器的输出电压VOUT与稳压器的目标电压的差值放大值,将该差值放大值输入第三晶体管Mp3,使得第三晶体管Mp3的栅极电压发生变化,达到调节稳压器的输出电压VOUT的目的。
例如,在第二级数字调制后,稳压器的输出电压VOUT低于稳压器的目标电压,则稳压器分压反馈电路输入运放比较器正相输入端VIN+的电压低于运放比较器参考电压VREF,此时运放比较器误差放大输出端EA_OUT放大该误差,运放比较器误差放大输出端EA_OUT输出电压降低,则第三晶体管Mp3的栅极电压降低,第三晶体管Mp3输出电流增加,那么稳压器的输出电压VOUT为第三晶体管Mp3输出电流乘以电阻R1与电阻R2的电阻阻值之和,即稳压器的输出电压VOUT增加。其中,第三晶体管Mp3的栅极电压为VDD减去运放比较器误差放大输出端EA_OUT输出电压的绝对值。
综上所述,本实施例中的低压差线性稳压器,调制过程中,第一级、第二级调制采用数字调制,第三级调制采用模拟调制。第一级数字调制属于大步长快速调整稳压器的输出电压VOUT的调制方法;第二级数字调制单元302属于小步长慢速调整稳压器的输出电压VOUT的调制方法。通过大步进调制稳压器的输出电压VOUT,使其快速接近稳压器的目标电压,然后小步进调制稳压器的输出电压VOUT,使其慢慢逼近稳压器的目标电压,可以减小大步进调制中步长过大出现稳压器的输出电压VOUT在稳压器的目标电压附近进行振荡的情况,提高了稳压器的输出电压VOUT的精度。第一数字调制比第二级数字调制更快的使稳压器的输出电压VOUT逼近稳压器的目标电压。
其中,第一级数字调制、第二级数字调制作为主要调制,第一级数字调制、第二级数字调制本身具有稳定性好、扩展性好、晶体管面积小的优势,同时避免了模拟LDO的晶体管面积过大和频率补偿复杂度高的问题,数字调制可以在较低的电源电压下工作,第一级数字调制中步长可变计数器3010提高了稳压器的瞬态响应速度,使稳压器的输出电压VOUT精度更高;第三级模拟调制作为辅助调制,模拟调制避免了第一级数字调制与第二级数字调制输出的纹波,同时适当地改善了电源抑制比差问题。
本实施例中,稳压器中调制组单元30中的每一级调制单元对稳压器的输出电压VOUT进行调制,都是在该级调制过程中,其他两级不调制,因此每次译码单元203输出的第一控制信号、第二控制信号、第三控制信号、第四控制信号中,只有一路控制信号能启动对应的数字或模拟调制,其他控制信号都是锁存或是关闭状态。比如第一级数字调制过程中,第二级数字调制中的第三计数器3021的置数端SET2始终接收到译码单元203第三控制输出端CTR_OUT3输出第三控制信号为1,对于计数器中1代表高电平,在高电平下第三计数器3021维持置数工作,即第二级数字调制单元302不调制;而第三级模拟调制中第四晶体管Mp4的栅极始终接收到译码单元203第四控制输出端CTR_OUT4输出第四控制信号为0,该第四晶体管Mp4导通,将第三晶体管Mp3的栅极电压提升至VDD,使得第三晶体管Mp3无法工作,第三级模拟调制单元303不调制;同理,其中一级调制时,其余两级不调制。
请参见图7,图7为本发明实施例提供的数字模拟双环路低压差线性稳压器工作原理图。在本实施例中,稳压器的目标电压为1V,分压电阻R1为6kΩ,分压电阻R2为4kΩ,运放比较器参考电压VREF为0.4V,比较单元202的两个比较电压为第一阈值电压、第二阈值电压,第一阈值电压为1.1V,第二阈值电压为0.9V,则整个稳压器电路的工作流程如下:
步骤1、如图7所示First Stage,此时稳压器的输出电压VOUT开始为0V,第一级数字调制单元301开始工作,因为稳压器的输出电压VOUT低于稳压器的目标电压1V,分压电阻R1、分压电阻R2分得的反馈电压也低于0.4V,则比较运放器参考电压VREF大于反馈电压,运放比较器比较输出端COPM_OUT输出第一比较值为1,第二计数器3012开始加法计数,开启对应第一晶体管阵列3013中的第一晶体管,使稳压器的输出电压VOUT升高;当稳压器的输出电压VOUT高于稳压器的目标电压1V时,则运放比较器比较输出端COMP_OUT输出第一比较值为0,第二计数器3012开始减法计数,关断相应的第一晶体管阵列3013中的第一晶体管,使稳压器的输出电压VOUT降低;当稳压器的输出电压VOUT再次低于稳压器的目标电压1V时,运放比较器比较输出端COMP_OUT值从0跳变为1,跳变检测单元201检测到运放比较器比较输出端COMP_OUT值出现了跳变,即运放比较器比较输出端COMP_OUT值由0跳变为1,此时比较单元202比较稳压器的输出电压VOUT与第一阈值电压、稳压器的输出电压VOUT与第二阈值电压,输出第二比较结果为1表示在范围,则译码单元203从第二控制端口CTR_OUT2输出第二控制信号为1,使得第二计数器3012保持置数状态,实现第一级数字调制单元301对第一计数值的锁存,保持稳压器的输出电压VOUT不变;
步骤2、如图7所示Second Stage,此时跳变检测单元201检测出现上述0至1的1次跳变后,稳压器从第一级数字调制转变为第二级数字调制。第二级数字调制是在第一级数字调制的基础上开始工作,第二级数字调制的起始电压为第一级数字调制锁存的稳压器的输出电压VOUT,第二级数字调制的原理与第一级数字调制基本类似:第一级数字调制锁存的稳压器的输出电压VOUT小于稳压器的目标电压,则第三计数器3021开始加法计数,开启相应第二晶体管阵列3022中第二晶体管,使稳压器的输出电压VOUT升高;当稳压器的输出电压VOUT再次高于稳压器的目标电压时,第三计数器3021开始减法计数,关断相应地第二晶体管阵列3022中第二晶体管,使稳压器的输出电压VOUT降低;同样,当稳压器的输出电压VOUT再次低于稳压器的目标电压时,运放比较器比较输出端COMP_OUT第一比较值再次从0跳变为1,跳变检测单元201检测到运放比较器比较输出端COMP_OUT值出现了第二次跳变,而比较单元202比较稳压器的输出电压VOUT依然在范围,则译码单元203第三控制输出端口CTR_OUT3输出第三控制信号为1,使得第三计数器3021保持置数状态,实现第二级数字调制单元302对第二计数值的锁存,保持稳压器的输出电压VOUT不变;
步骤3、如图7所示Third Stage,跳变检测单元201检测出现上述0至1的2次跳变后,译码单元203第四控制输出端CTR_OUT4输出第四控制信号为1,使得第四晶体管Mp4关断,第三晶体管Mp3开始工作,进入第三级模拟调制过程。稳压器的输出电压VOUT变化,通过运放比较器误差放大输出端EA_OUT反馈到第三晶体管Mp3的栅极上,通过改变第三晶体管Mp3栅极与源极之间的电压,而改变流经第三晶体管Mp3上的电流,进而调节稳压器的输出电压VOUT。
通过如上步骤1~3对稳压器的输出电压VOUT进行调制,得到高精度的稳压器的输出电压VOUT。
但若稳压器电路输出端存在负载跳变时,当比较单元202中两个子比较器,其中,一个子比较器比较稳压器的输出电压VOUT与第一阈值电压、另一个子比较器比较稳压器的输出电压VOUT与第二阈值电压,当出现较小的负载电流跳变,即稳压器的输出电压VOUT介于第一阈值电压和第二阈值电压之间,稳压器的输出电压VOUT变化不太大,此时仅通过第三级模拟调制单元303中的模拟调制就可完成负载电流跳变的瞬态响应;但当出现较大的负载电流跳变,即稳压器的输出电压VOUT超过第一阈值电压或是低于第二阈值电压,稳压器的输出电压VOUT容易出现过冲和下冲,本实施例通过第一级数字调制单元30中开启第一计数器3011来抑制此时稳压器的输出电压VOUT出现的过冲和下冲问题。
具体地,比较单元202检测到稳压器的输出电压VOUT高于第一阈值电压或是低于第二阈值电压,第二比较结果输出0,判断稳压器的输出电压VOUT不在范围内,译码单元203根据比较单元202输出的第二比较结果,以及跳变检测单元201检测到的稳压器的输出电压VOUT此时经过了2次跳变的跳变检测结果,判断此时开启第一计数器3011,则译码单元203第一控制输出端CTR_OUT1输出第一控制信号为0,第一计数器3011开始工作,并以较长的步长计数,此处较长步长与第二计数器3012计数步长比较,并将第一计数器3011输出端OUT1a连接到第二计数器3012的输入端IN1b,控制第一晶体管阵列3013中第一晶体管的开启与关断,从而调制稳压器的输出电压VOUT,此时第二计数器3022、第三计数器3021均处于锁存状态,第四晶体管Mp4处于开启状态,使得第三晶体管Mp3管的栅压被上拉至电源电压VDD,第三晶体管Mp3不工作,第三级模拟调制单元303不启动调制。当第一计数器3011进行加法计数时,使稳压器的输出电压VOUT升高;当第一计数器3011进行减法计数时,使稳压器的输出电压VOUT降低;当稳压器的输出电压VOUT出现介于第一阈值电压与第二阈值电压之间时,译码单元203的第一控制输出端CTR_OUT1输出的第一控制信号变为1,第一计数器3011保持置数以锁存稳压器的输出电压VOUT,同时译码单元203的第二控制输出端CTR_OUT2输出的第二控制信号变为0,第二计数器3012开始工作,重复上述步骤1~3的工作流程。
本实施例在数字调制过程中采用了步长可变计数器3010,在稳压器的输出电压VOUT变化较大时启用步长可变计数器3010中的第一计数器3011,进行大步进的调制稳压器的输出电压VOUT,使其快速完成稳压工作,提高了稳压器的瞬态响应速度。
请参见图8,图8为本发明实施例提供的数字模拟双环路低压差线性稳压器的输出电压仿真波形示意图。可见,稳压器的输出电压VOUT由0V开始上升,稳压器的调制过程分为三个阶段,第一阶段是第一级数字调制(对应图中First Stage),第二计数器3012开始进行加法计数,当稳压器的输出电压VOUT高于稳压器的目标电压时,第二计数器3012进行减法计数,当稳压器的输出电压VOUT低于稳压器的目标电压时,第一级数字调制中第二计数器3012锁存,保持此时稳压器的输出电压VOUT;第二阶段是第二级数字调制(对应图中SecondStage),在第一数字调制稳压的输出电压VOUT基础上,与第一级数字调制过程相同,第三计数器3021开始进行加法计数,当稳压器的输出电压VOUT高于稳压器的目标电压时,第三计数器3021进行减法计数,当稳压器的输出电压VOUT低于稳压器的目标电压时,第二级数字调制中第三计数器3021锁存,保持此时稳压器的输出电压VOUT;第三阶段是第三级模拟调制(对应图中Third Stage),第二级数字调制后,稳压器的输出电压VOUT已经接近稳压器的目标电压,第三级模拟调制通过分压反馈电路的反馈电压对稳压器的输出电压VOUT进行调制,避免第一级数字调制、第二级数字调制带来的纹波,最终实现稳压器输出稳定的电压。
请参见图9,图9为本发明实施例提供的数字模拟双环路低压差线性稳压器在负载跳变时输出电压与输出电流仿真波形示意图。图9中给出的是稳压器的输出电流由10mA跳变到5mA、5mA跳变到10mA两个负载跳变点,并反映了稳压器整个输出电压的变化。可以看出,当稳压器的输出电流由10mA变化到5mA时,稳压器的输出电压VOUT出现过冲,稳压器的输出电压VOUT过冲101mV,即此时稳压器的输出电压VOUT为1.101V;而当稳压器的输出电流由5mA变化到10mA时,稳压器的输出电压VOUT出现下冲,稳压器的输出电压VOUT下冲103mV,即此时稳压器的输出电压VOUT为0.897V。本实施例稳压器的目标电压为1V,采用第一级数字调制中第一计数器3011可以解决负载跳变中出现的过冲和下冲问题,其过冲电压和下冲电压基本在100mV左右,稳压器的输出电压VOUT基本稳定在稳压器的目标电压1V左右。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种数字模拟双环路低压差线性稳压器,其特征在于,包括运放比较单元(10)、控制单元(20)、调制组单元(30),其中,
所述运放比较单元(10),用于比较所述稳压器的输出电压与所述稳压器的目标电压,输出第一比较结果、运放放大误差值,所述运放放大误差值为所述稳压器的输出电压与所述稳压器的目标电压的差值放大值;
所述控制单元(20),连接所述运放比较单元(10)、所述稳压器的输出端,用于根据所述第一比较结果获取所述稳压器的输出电压与所述稳压器的目标电压的跳变检测结果,根据所述稳压器的输出电压获取所述稳压器的输出电压与第一阈值电压、所述稳压器的输出电压与第二阈值的第二比较结果;
所述调制组单元(30),连接所述运放比较单元(10)、所述控制单元(20),根据所述第一比较结果、所述运放放大误差值、所述跳变检测结果和所述第二比较结果对所述稳压器的输出电压进行调制。
2.根据权利要求1所述的稳压器,其特征在于,所述控制单元(20)包括跳变检测单元(201)、比较单元(202)、译码单元(203),其中,
所述跳变检测单元(201),连接所述运放比较单元(10),用于根据所述第一比较结果,检测所述稳压器的输出电压与所述稳压器的目标电压跳变情况,输出所述跳变检测结果;
所述比较单元(202),连接所述稳压器的输出端,用于比较所述稳压器的输出电压与第一阈值电压的大小、所述稳压器的输出电压与第二阈值电压的大小,输出所述第二比较结果;
所述译码单元(203),连接所述跳变检测单元(201)、所述比较单元(202),用于根据所述跳变检测结果和所述第二比较结果,控制所述调制组单元对所述稳压器的输出电压进行调制。
3.根据权利要求2所述的稳压器,其特征在于,所述调制组单元(30)包括第一级数字调制单元(301)、第二级数字调制单元(302)、第三级模拟调制单元(303),其中,
所述第一级数字调制单元(301),连接所述运放比较单元(10)、所述译码单元(203),用于通过所述第一比较结果获取第一计数值和第二计数值,根据所述第一计数值和所述第二计数值对所述稳压器的输出电压进行调制;
所述第二级数字调制单元(302),连接所述运放比较单元(10)、所述译码单元(203),用于通过所述第一比较结果获取第三计数值,根据所述第三计数值对所述稳压器的输出电压进行调制;
所述第三级模拟调制单元(303),连接所述运放比较单元(10)、所述译码单元(203),用于通过所述运放放大误差值对所述稳压器的输出电压进行调制。
4.根据权利要求3所述的稳压器,其特征在于,所述第一级数字调制单元(301)包括第一计数器(3011)、第二计数器(3012)、第一晶体管阵列(3013),其中,
所述第一计数器(3011),连接所述稳压器的时钟输入端、所述运放比较单元(10)、所述译码单元(203)的第一控制输出端,用于根据所述第一比较结果进行计数,输出所述第一计数值;
所述第二计数器(3012),连接所述稳压器的时钟输入端、所述运放比较单元(10)、所述译码单元(203)第二控制输出端、所述第一计数器(3011),用于根据所述第一比较结果进行计数,输出所述第二计数值;
所述第一晶体管阵列(3013),连接所述第二计数器(3012),用于根据所述第一计数值或所述第二计数值对所述稳压器的输出电压进行调制。
5.根据权利要求4所述的稳压器,其特征在于,所述第一晶体管阵列(3013)包含若干第一晶体管,所述第一晶体管的栅极均连接所述第二计数器(3012),所述第一晶体管的源极均连接电源VDD,所述第一晶体管的漏极均连接所述稳压器的输出端。
6.根据权利要求5所述的稳压器,其特征在于,所述第二级数字调制单元(302)包括第三计数器(3021)、第二晶体管阵列(3022),其中,
所述第三计数器(3021),连接所述稳压器的时钟输入端、所述运放比较单元(10)、所述译码单元(203)第三控制输出端,用于根据所述第一比较结果进行计数,输出所述第三计数值;
所述第二晶体管阵列(3022),连接所述第三计数器(3021),用于根据所述第三计数值对所述稳压器的输出电压进行调制。
7.根据权利要求6所述的稳压器,其特征在于,所述第二晶体管阵列(3022)包含若干第二晶体管,所述第二晶体管的栅极均连接所述第三计数器(3021),所述第二晶体管的源极均连接电源VDD,所述第二晶体管的漏极均连接所述稳压器的输出端。
8.根据权利要求7所述的稳压器,其特征在于,所述若干第一晶体管的尺寸依次倍增,所述若干第二晶体管的尺寸依次倍增,所述若干第一晶体管的尺寸平均值大于所述若干第二晶体管的尺寸平均值,其中所述第一晶体管、所述第二晶体管的尺寸分别为所述第一晶体管、所述第二晶体管的宽度与长度的比值。
9.根据权利要求8所述的稳压器,其特征在于,所述第三级模拟调制单元(303)包含第三晶体管和第四晶体管,所述第四晶体管连接所述译码单元(203)第四控制输出端,所述第三晶体管连接所述第四晶体管,对所述稳压器的输出电压进行调制。
10.根据权利要求9所述的稳压器,其特征在于,所述第一计数器(3011)、所述第二计数器(3012)、第三计数器(3021)均为同步计数器。
CN201811575074.2A 2018-12-21 2018-12-21 一种数字模拟双环路低压差线性稳压器 Active CN109753099B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811575074.2A CN109753099B (zh) 2018-12-21 2018-12-21 一种数字模拟双环路低压差线性稳压器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811575074.2A CN109753099B (zh) 2018-12-21 2018-12-21 一种数字模拟双环路低压差线性稳压器

Publications (2)

Publication Number Publication Date
CN109753099A true CN109753099A (zh) 2019-05-14
CN109753099B CN109753099B (zh) 2020-06-09

Family

ID=66403008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811575074.2A Active CN109753099B (zh) 2018-12-21 2018-12-21 一种数字模拟双环路低压差线性稳压器

Country Status (1)

Country Link
CN (1) CN109753099B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927560A (zh) * 2019-12-16 2020-03-27 无锡矽鹏半导体检测有限公司 一种集成电路测试方法
CN111208858A (zh) * 2020-01-15 2020-05-29 西安电子科技大学 一种数字低压差稳压器
CN111240389A (zh) * 2020-01-21 2020-06-05 创领心律管理医疗器械(上海)有限公司 线性稳压器、稳压电源和植入式医疗设备
CN112130613A (zh) * 2020-09-01 2020-12-25 西安电子科技大学 一种数字低压差稳压器
CN112181040A (zh) * 2020-10-23 2021-01-05 海光信息技术股份有限公司 一种数字低压差稳压器及电子设备
WO2022134452A1 (zh) * 2020-12-25 2022-06-30 海宁奕斯伟集成电路设计有限公司 稳压模组和电子装置
CN115902366A (zh) * 2023-03-01 2023-04-04 珠海智融科技股份有限公司 跳变检测电路及无线充电设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150069408A (ko) * 2013-12-13 2015-06-23 강원대학교산학협력단 Sdm을 이용한 디지털 제어 방식의 ldo 레귤레이터
CN105159385A (zh) * 2015-09-25 2015-12-16 灿芯半导体(上海)有限公司 低功耗低压差电压调节器
KR20160052920A (ko) * 2014-10-29 2016-05-13 고려대학교 산학협력단 디지털 제어방식의 이중모드 ldo 레귤레이터 및 그 제어 방법
CN105676933A (zh) * 2016-03-08 2016-06-15 中山大学 一种快速启动型数字低压差稳压器
CN106774587A (zh) * 2016-12-05 2017-05-31 清华大学 一种低压差线性稳压器
CN106997219A (zh) * 2016-01-26 2017-08-01 三星电子株式会社 包括双环路电路的低压差(ldo)稳压器
CN107977037A (zh) * 2017-11-17 2018-05-01 合肥鑫晟光电科技有限公司 一种低压差稳压器及其控制方法
CN108107965A (zh) * 2018-02-27 2018-06-01 华中科技大学 一种基于双环路模数转化模块的数字线性稳压器
US20180226981A1 (en) * 2017-02-03 2018-08-09 The Regents Of The University Of California Successive approximation digital voltage regulation methods, devices and systems
CN108415502A (zh) * 2018-03-28 2018-08-17 东南大学 一种无有限周期震荡的数字线性稳压电源及稳压方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150069408A (ko) * 2013-12-13 2015-06-23 강원대학교산학협력단 Sdm을 이용한 디지털 제어 방식의 ldo 레귤레이터
KR20160052920A (ko) * 2014-10-29 2016-05-13 고려대학교 산학협력단 디지털 제어방식의 이중모드 ldo 레귤레이터 및 그 제어 방법
CN105159385A (zh) * 2015-09-25 2015-12-16 灿芯半导体(上海)有限公司 低功耗低压差电压调节器
CN106997219A (zh) * 2016-01-26 2017-08-01 三星电子株式会社 包括双环路电路的低压差(ldo)稳压器
CN105676933A (zh) * 2016-03-08 2016-06-15 中山大学 一种快速启动型数字低压差稳压器
CN106774587A (zh) * 2016-12-05 2017-05-31 清华大学 一种低压差线性稳压器
US20180226981A1 (en) * 2017-02-03 2018-08-09 The Regents Of The University Of California Successive approximation digital voltage regulation methods, devices and systems
CN107977037A (zh) * 2017-11-17 2018-05-01 合肥鑫晟光电科技有限公司 一种低压差稳压器及其控制方法
CN108107965A (zh) * 2018-02-27 2018-06-01 华中科技大学 一种基于双环路模数转化模块的数字线性稳压器
CN108415502A (zh) * 2018-03-28 2018-08-17 东南大学 一种无有限周期震荡的数字线性稳压电源及稳压方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927560A (zh) * 2019-12-16 2020-03-27 无锡矽鹏半导体检测有限公司 一种集成电路测试方法
CN111208858A (zh) * 2020-01-15 2020-05-29 西安电子科技大学 一种数字低压差稳压器
CN111240389A (zh) * 2020-01-21 2020-06-05 创领心律管理医疗器械(上海)有限公司 线性稳压器、稳压电源和植入式医疗设备
CN112130613A (zh) * 2020-09-01 2020-12-25 西安电子科技大学 一种数字低压差稳压器
CN112130613B (zh) * 2020-09-01 2021-07-02 西安电子科技大学 一种数字低压差稳压器
CN112181040A (zh) * 2020-10-23 2021-01-05 海光信息技术股份有限公司 一种数字低压差稳压器及电子设备
WO2022134452A1 (zh) * 2020-12-25 2022-06-30 海宁奕斯伟集成电路设计有限公司 稳压模组和电子装置
CN115902366A (zh) * 2023-03-01 2023-04-04 珠海智融科技股份有限公司 跳变检测电路及无线充电设备

Also Published As

Publication number Publication date
CN109753099B (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN109753099A (zh) 一种数字模拟双环路低压差线性稳压器
CN103149962B (zh) 极低静态电流的低压降稳压器
EP2846213B1 (en) Method and apparatus for limiting startup inrush current for low dropout regulator
CN100565695C (zh) 一种负电压产生器
CN110249283A (zh) 低压差稳压器
US20060181258A1 (en) Power supply circuit having voltage control loop and current control loop
CN106921292A (zh) 调压器的电流平衡、电流传感器和相位平衡的装置和方法
US9797959B2 (en) Battery fuel gauges using FET segment control to increase low current measurement accuracy
CN109004911A (zh) 具有调节的共模抑制的差分放大器和具有改进的共模抑制比率的电路
US9948184B2 (en) Current balance method for multiphase switching regulators
CN103034275A (zh) 低噪声电压调节器和具有快速稳定和低功率消耗的方法
CN102881251A (zh) 电流驱动电路
CN108415502A (zh) 一种无有限周期震荡的数字线性稳压电源及稳压方法
CN102128970B (zh) 宽负载范围高精度低功耗电流检测电路
CN108459647A (zh) 电子负载恒定电流控制环路的校准失调电路及方法
CN203630657U (zh) 稳压电路
CN204203828U (zh) 高精度的低压差电压调节器
US8129861B2 (en) Electrical voltage supply
CN106374551A (zh) 在电子设备中对电流检测元件进行电阻控制的装置及方法
CN101149629A (zh) 电流发生装置以及应用该电流发生装置的反馈控制系统
CN104836548B (zh) 能够对输入信号的占空比失真进行补偿的输入电路
CN104950976A (zh) 一种基于摆率增强的稳压电路
CN205229324U (zh) 运算放大器的测试电路
CN105785101A (zh) 一种高效电感电流检测电路
CN106464222B (zh) 可编程增益放大器pga和可编程电阻器网络电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant