CN109734427A - 一种碳化硅复合陶瓷微晶磨料及其制备方法 - Google Patents

一种碳化硅复合陶瓷微晶磨料及其制备方法 Download PDF

Info

Publication number
CN109734427A
CN109734427A CN201910123551.XA CN201910123551A CN109734427A CN 109734427 A CN109734427 A CN 109734427A CN 201910123551 A CN201910123551 A CN 201910123551A CN 109734427 A CN109734427 A CN 109734427A
Authority
CN
China
Prior art keywords
abrasive material
weight
alpha
carbide
rubber powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910123551.XA
Other languages
English (en)
Inventor
刘海红
叶现军
薛冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Riker New Material Technology Co Ltd
Original Assignee
Qingdao Riker New Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Riker New Material Technology Co Ltd filed Critical Qingdao Riker New Material Technology Co Ltd
Priority to CN201910123551.XA priority Critical patent/CN109734427A/zh
Publication of CN109734427A publication Critical patent/CN109734427A/zh
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

本发明公开了一种碳化硅复合陶瓷微晶磨料及其制备方法,该磨料包括氧化铝晶体和存在于所述氧化铝晶体之间的碳化硅颗粒,所述氧化铝晶体之间还有互相连接的片状结构,且该磨料的密度大于3.7g/cm3,显微硬度大于23GPa,本发明的碳化硅复合陶瓷微晶磨料在陶瓷微晶磨料中引入碳化硅微粒,不会改变陶瓷微晶磨料独特的微观结构,同时得到的产品硬度有巨大提高,从而消除了改性剂带来的硬度降低的问题,所得的产品既保持了很高的韧性,又保持了很高的硬度。

Description

一种碳化硅复合陶瓷微晶磨料及其制备方法
技术领域
本发明涉及磨料技术领域,特别涉及一种碳化硅复合陶瓷微晶磨料及其制备方法。
背景技术
陶瓷微晶磨料属于烧结磨料,不同于传统电熔刚玉磨料,它使人造磨料出现向高韧性和高硬度两个方向发展的趋势。由于采用溶胶—凝胶法制备,具有独特的微观结构,使得最终产品具有很好的自锐性。因而用陶瓷磨料做成的固结或涂敷磨具具有磨削效率高、寿命长可加工难磨材料等优点,近年来得到广范的研究和生产。
现在市场上常见的陶瓷微晶磨料有圣戈班公司的SG磨料和3M公司的CUBITRON磨料,其中圣戈班的白色SG磨料具有硬度超高,晶体细小,自锐性很好的特点,虽然韧性明显优于普通电熔刚玉磨料,但是较3M的CUBITRON仍有明显差距;而3M的CUBITRON产品加入了改性剂,产生两相结构,产品韧性有惊人提高,但是由于改性剂的加入降低了氧化铝的纯度,使得产品硬度明显降低,仅相当于棕刚玉的显微硬度。
发明内容
本发明要解决的技术问题是提供一种碳化硅复合陶瓷微晶磨料及其制备方法,以解决现有技术中陶瓷微晶磨料高显微硬度与高韧性无法同时满足的问题。
为了解决上述技术问题,本发明的技术方案为:
一种碳化硅复合陶瓷微晶磨料,包括氧化铝晶体和存在于所述氧化铝晶体之间的碳化硅颗粒,所述氧化铝晶体之间还有互相连接的片状结构。
可选的:所述磨料的密度大于3.7g/cm3,所述磨料的显微硬度大于23GPa,所述氧化铝晶体的粒径不大于4um。
根据本发明的另一方面,还提供了一种碳化硅复合陶瓷微晶磨料的制备方法,所述方法包括以下步骤:
步骤1、将去离子水和烧结改性助剂混合并搅拌均匀得到溶液A;
步骤2、在所述溶液A中加入勃姆石胶粉,搅拌10-30分钟,得到凝胶B;
步骤3、在所述凝胶B中加入碳化硅微粒,搅拌10-30分钟,得到塑形体;
步骤4、去除步骤3得到的塑性体中的空气,得到胚体;
步骤5、将步骤4中的胚体在不高于120℃的温度下干燥并破碎,得到破碎颗粒;
步骤6、将步骤5中得到的破碎颗粒依次进行低温煅烧和高温烧结,所述低温煅烧的温度为700℃-900℃,所述高温烧结的温度为1250℃-1500℃;
步骤7、将步骤6中高温烧结后的磨料颗粒进行筛分。
可选的:所述勃姆石胶粉的重量为所述去离子水重量的50%-100%。
可选的:所述碳化硅微粒的重量为所述去离子水重量的5%-70%.
可选的:所述烧结改性助剂包括超细α-氧化铝微粒、氧化锆溶胶、氧化钛溶胶、纳米氧化铁或/和金属硝酸盐。
可选的:所述超细α-氧化铝微粒或纳米氧化铁的重量为勃姆石胶粉重量的0.5%-2%。
可选的:所述氧化锆溶胶或氧化钛溶胶的重量为勃姆石胶粉重量的1.5%-3%。
可选的:所述金属硝酸盐的重量为勃姆石胶粉重量的1%-10%。
采用上述技术方案,在复合陶瓷微晶磨料中引入碳化硅微粒,不会改变陶瓷微晶磨料独特的微观结构,而且由于碳化硅的显微硬度约29GPa-30GPa,使得磨料产品硬度有巨大提高,从而消除了改性剂带来的硬度降低的问题,所得的产品既保持了很高的韧性,又保持了很高的硬度
附图说明
图1为本发明碳化硅复合陶瓷微晶磨料的制备方法的流程图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
一种碳化硅复合陶瓷微晶磨料的制备方法,如图1所示,该方法包括以下步骤:
步骤1、将去离子水和烧结改性助剂混合并搅拌均匀得到溶液A;
步骤2、在所述溶液A中加入勃姆石胶粉,搅拌10-30分钟,得到凝胶B;
步骤3、在所述凝胶B中加入碳化硅微粒,搅拌10-30分钟,得到塑形体;
步骤4、去除步骤3得到的塑性体中的空气,得到胚体;
步骤5、将步骤4中的胚体在不高于120℃的温度下干燥并破碎,得到破碎颗粒;
步骤6、将步骤5中得到的破碎颗粒依次进行低温煅烧和高温烧结,所述低温煅烧的温度为700℃-900℃,所述高温烧结的温度为1250℃-1500℃;
步骤7、将步骤6中高温烧结后的磨料颗粒进行筛分。
其中,烧结改性助剂包括超细α-氧化铝微粒、氧化锆溶胶、氧化钛溶胶、纳米氧化铁或/和金属硝酸盐,上述金属硝酸盐包括硝酸镁、硝酸锌、硝酸钴、硝酸铬、硝酸钆、硝酸镧、硝酸钕、硝酸镱等。
超细α-氧化铝微粒和纳米氧化铁可作为晶种材料使用,目的为降低烧结温度,以在较低的烧结温度下得到致密磨料颗粒;氧化锆溶胶和氧化钛溶胶可改变产品微晶体晶界特性,防止高温过程中微晶体快速急剧长大,而导致产品质量下降;晶种材料可以单独使用,也可以与氧化锆溶胶、氧化钛溶胶组合使用。
下面以晶种材料超细α-氧化铝微粒与氧化锆溶胶结合使用为例对本实施例做详细说明。
向一台容量为100L的真空捏合机中加入20kg含有超细α-氧化铝微粒的去离子水分散液,上述分散液的制造方法为:取勃姆石胶粉装入氧化铝坩埚,放入马弗炉中,升温到1250℃,保温1h得到α-氧化铝微粒。降温后,取150g超细α-氧化铝微粒和20KG去离子水至振动研磨机中(其中,该振动研磨机种的研磨介质为氧化铝球),研磨24h,最终得到超细α-氧化铝微粒的去离子水分散液。
其中,勃姆石胶粉为勃姆石溶胶干燥并研磨后的粉状材料。
然后,在上述分散液中加入280g氧化锆溶胶(其中,氧化锆溶胶要求其固含量为10%,颗粒尺寸为5nm-10nm),开动真空捏合机搅拌得到溶液A,然后加入20kg勃姆石胶粉混合搅拌30min后得到凝胶B,在凝胶B中再加入4.2kg碳化硅微粒,再混合30min,此时物料变为黏度很高的塑形体。
其中,碳化硅微粒可来自于传统碳化硅磨料行业生产的细粒度微粉级颗粒状碳化硅,也可来自于新工艺合成的直径亚微米级纤维状或厚度亚微米级片状碳化硅,碳化硅的加入可显著提高磨料颗粒的硬度,其加入量为胶粉重量的5-70%,在本发明的实施例中,为颗粒状碳化硅微粒,且碳化硅微粒的颗粒尺寸要求小于0.7um。
完成塑形体的制备后,需要将塑性体内的空气挤出,在本发明的实施例中,是这样将去除空气的:将塑性体转入真空练泥机中,真空练泥机可以去除塑性体中的空气,而且由于螺旋对泥料的揉练和挤压作用,泥料的定向结构得到改善,组分更加均匀,完成高粘泥料的精细混合。连续练泥两遍得到胚体。
在本发明的实施例中,还可以在第二遍连泥后再出料口加装模板,模板上设置有不同的截面形状,以此可以制得各种截面形状的连续条状胚体,不仅可增加胚体的表面积,节省干燥时间及能耗。还可以提前初步造型,与后期破碎设备组合使用,可得到更适合磨削用途形状尖锐的颗粒。比如,常见的截面形状可设置为:圆形或矩形。比较好的是较大长宽比的矩形截面,可以挤出片状泥料坯体,片的厚度一般<1mm,有利于快速干燥,缩短干燥周期节约能耗,干燥时片状坯体自然开裂成碎片,较大的碎片需要进破碎机再次破碎,破碎后仍为外形缩小的片状颗粒。
在本发明的实施例中,模板上开有细长孔,孔的截面尺寸为:10mm*1mm。练泥结束后从该模板可以挤出片状连续坯体。
然后对胚体进行干燥,以使胚体由含水塑性体转变为脆性颗粒,以便后期进一步挤压或粉碎成更小的颗粒,在本发明的实施例中,是这样对胚体进行干燥的:将装有片状坯体的不锈钢盘放入热风循环烘箱或微波干燥设备中,设定温度为100℃,3h后取出,得到干燥后的不再连续的脆性片段。
然后将脆性片段投入一台直径250的圆盘破碎机中进行破碎,出料经过14目筛网(即筛网的孔径为1400um),筛上粒径过大的颗粒返回重新破碎最终得到破碎颗粒。
破碎颗粒需要进行煅烧,煅烧的目的在于混料段勃姆石胶粉及烧结改性助剂含有的水份为化学结合水,在较高温度才会挥发出来。另外,部分烧结改性助剂在高温下会发生分解最终成为氧化物。这些水份及分解产物需要在可控的升温曲线下,缓慢释放出来,不至于使颗粒内部产生过多裂纹而碎裂粉化,所以需要依次进行低温煅烧和高温烧结。
在本发明的实施例中,煅烧是这样进行的:低温煅烧:将破碎颗粒装入匣钵,送入辊道窑中进行煅烧,设定温度参数:从0℃均匀升温1h至300℃,从300℃均匀升温1h至500℃,从500℃均匀升温1h至800℃,然后800℃保温1h;然后进行高温烧结:设定温度为1360℃,保温30min,高温烧结设备可选用辊道窑、推板窑、回转炉等,可达到烧结温度的各种窑炉均可被采用,最终得到密度为3.74g/cm3,显微硬度为25GPa的磨料颗粒。
最后,将高温烧结后的磨料颗粒进行筛分:烧结后的磨料颗粒选用合适的筛网筛分成国家标准GB/T9258.2-2008和GB/T2481.1-1998分别规定的固结和涂敷磨具分别要求的粒度组成。筛分设备可以是直线筛、圆振筛、摇板筛等,筛网的选择可以是国标的不锈钢网,也可以是非标的不锈钢网或丝网印刷用绢网。不锈钢网要求尺寸大小均匀,绢网网孔弹性较好,不易堵塞,做为半成品筛分效率很高。
实施例2
本实施例提供了另一种碳化硅复合陶瓷微晶磨料的制备方法:向一台100L的真空捏合机中加入20kg去离子水,然后加入650g六水硝酸镁、900g六水硝酸钕和60g六水硝酸钴,再加入280g氧化锆溶胶(同实例1),开动机器搅拌5min得到溶液A,加入20kg勃姆石胶粉混合30min得到凝胶B,在凝胶B中再加入4.2kg颗粒状碳化硅微粉(碳化硅微粉的颗粒尺寸<0.7um)再混合30min,物料变为黏度很高的塑形体。
完成塑形体的制备后,去除塑性体中的空气:将塑性体转入真空练泥机中,连续连泥两遍,并在第二遍连泥后的出料口加装模板,模板上设置有不同的截面形状,以此可以制得各种截面形状的连续条状胚体,在本发明的实施例中,模板上开有细长孔,孔的截面尺寸为:10mm*1mm。练泥结束后从该模板可以挤出片状连续坯体。
然后对胚体进行干燥,以使胚体由含水塑性体转变为脆性颗粒,以便后期进一步挤压或粉碎成更小的颗粒,在本发明的实施例中,是这样对胚体进行干燥的:将装有片状坯体的不锈钢盘放入热风循环烘箱或微波干燥设备中,设定温度为100℃,3h后取出,得到干燥后的不再连续的脆性片段。
然后将脆性片段投入一台直径250的圆盘破碎机中进行破碎,出料经过14目筛网(即筛网的孔径为1400um),筛上粒径过大的颗粒返回重新破碎最终得到破碎颗粒。
破碎颗粒需要进行煅烧,在本发明的实施例中,煅烧是这样进行的:低温煅烧:将破碎颗粒装入匣钵,送入辊道窑中进行煅烧,设定与实施例1相同的温度参数;然后进行高温烧结:设定温度为1400℃,保温30min,高温烧结设备可选用辊道窑、推板窑、回转炉等,可达到烧结温度的各种窑炉均可被采用,最终得到密度为3.73g/cm3,显微硬度为22GPa的磨料颗粒。
实施例3
本实施例提供了另一种碳化硅复合陶瓷微晶磨料的制备方法,向一台100L的真空捏合机中加入20kg去离子水,然后加入280g氧化锆溶胶(同实例1),开动机器搅拌5min得到溶液A,加入20kg勃姆石胶粉混合30min得到凝胶B,在凝胶B中再加入1.4kg碳化硅纳米线(碳化硅纳米线的直径为100nm-600nm,长度为50um-100um),再混合30min,物料变为黏度很高的塑形体。
完成塑形体的制备后,去除塑性体中的空气:将塑性体转入真空练泥机中,连续连泥两遍,并在第二遍连泥后的出料口加装模板,模板上设置有不同的截面形状,以此可以制得各种截面形状的连续条状胚体,在本发明的实施例中,模板上开有细长孔,孔的截面尺寸为:10mm*1mm。练泥结束后从该模板可以挤出片状连续坯体。
然后对胚体进行干燥,以使胚体由含水塑性体转变为脆性颗粒,以便后期进一步挤压或粉碎成更小的颗粒,在本发明的实施例中,是这样对胚体进行干燥的:将装有片状坯体的不锈钢盘放入热风循环烘箱或微波干燥设备中,设定温度为100℃,3h后取出,得到干燥后的不再连续的脆性片段。
然后将脆性片段投入一台直径250的圆盘破碎机中进行破碎,出料经过14目筛网(即筛网的孔径为1400um),筛上粒径过大的颗粒返回重新破碎最终得到破碎颗粒。
破碎颗粒需要进行煅烧,在本发明的实施例中,煅烧是这样进行的:低温煅烧:将破碎颗粒装入匣钵,送入辊道窑中进行煅烧,设定与实施例1相同的温度参数;然后进行高温烧结:设定温度为1450℃,保温30min,高温烧结设备可选用辊道窑、推板窑、回转炉等,可达到烧结温度的各种窑炉均可被采用,最终得到密度为3.82g/cm3,显微硬度为24GPa的磨料颗粒。
以上结合附图对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (9)

1.一种碳化硅复合陶瓷微晶磨料,其特征在于:包括氧化铝晶体和存在于所述氧化铝晶体之间的碳化硅颗粒,所述氧化铝晶体之间还有互相连接的片状结构。
2.根据权利要求1所述的磨料,其特征在于:所述磨料的密度大于3.7g/cm3,所述磨料的显微硬度大于23GPa,所述氧化铝晶体的粒径不大于4um。
3.一种制备权利要求1-2任一项所述的碳化硅复合陶瓷微晶磨料的方法,其特征在于:所述方法包括以下步骤:
步骤1、将去离子水和烧结改性助剂混合并搅拌均匀得到溶液A;
步骤2、在所述溶液A中加入勃姆石胶粉,搅拌10-30分钟,得到凝胶B;
步骤3、在所述凝胶B中加入碳化硅微粒,搅拌10-30分钟,得到塑形体;
步骤4、去除步骤3得到的塑性体中的空气,得到胚体;
步骤5、将步骤4中的胚体在不高于120℃的温度下干燥并破碎,得到破碎颗粒;
步骤6、将步骤5中得到的破碎颗粒依次进行低温煅烧和高温烧结,所述低温煅烧的温度为700℃-900℃,所述高温烧结的温度为1250℃-1500℃;
步骤7、将步骤6中高温烧结后的磨料颗粒进行筛分。
4.根据权利要求3所述的方法,其特征在于:所述勃姆石胶粉的重量为所述去离子水重量的50%-100%。
5.根据权利要求4所述的方法,其特征在于:所述碳化硅微粒的重量为所述去离子水重量的5%-70%。
6.根据权利要求5所述的方法,其特征在于:所述烧结改性助剂包括超细α-氧化铝微粒、氧化锆溶胶、氧化钛溶胶、纳米氧化铁或/和金属硝酸盐。
7.根据权利要求6所述的方法,其特征在于:所述超细α-氧化铝微粒或纳米氧化铁的重量为勃姆石胶粉重量的0.5%-2%。
8.根据权利要求6所述的方法,其特征在于:所述氧化锆溶胶或氧化钛溶胶的重量为勃姆石胶粉重量的1.5%-3%。
9.根据权利要求6所述的方法,其特征在于:所述金属硝酸盐的重量为勃姆石胶粉重量的1%-10%。
CN201910123551.XA 2019-02-18 2019-02-18 一种碳化硅复合陶瓷微晶磨料及其制备方法 Withdrawn CN109734427A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910123551.XA CN109734427A (zh) 2019-02-18 2019-02-18 一种碳化硅复合陶瓷微晶磨料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910123551.XA CN109734427A (zh) 2019-02-18 2019-02-18 一种碳化硅复合陶瓷微晶磨料及其制备方法

Publications (1)

Publication Number Publication Date
CN109734427A true CN109734427A (zh) 2019-05-10

Family

ID=66367720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910123551.XA Withdrawn CN109734427A (zh) 2019-02-18 2019-02-18 一种碳化硅复合陶瓷微晶磨料及其制备方法

Country Status (1)

Country Link
CN (1) CN109734427A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110759719A (zh) * 2019-07-09 2020-02-07 青岛汉兴环保科技有限公司 一种菱形陶瓷微晶磨料及其制备方法
CN113563801A (zh) * 2021-07-26 2021-10-29 杭州智华杰科技有限公司 一种氧化铝抛光粉的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110759719A (zh) * 2019-07-09 2020-02-07 青岛汉兴环保科技有限公司 一种菱形陶瓷微晶磨料及其制备方法
CN113563801A (zh) * 2021-07-26 2021-10-29 杭州智华杰科技有限公司 一种氧化铝抛光粉的制备方法

Similar Documents

Publication Publication Date Title
CN103013442B (zh) 一种α-氧化铝基磨料及其制备方法
CN103013443B (zh) 一种含片状结构的α-氧化铝基磨料及其制备方法
RO123589B1 (ro) Articole abrazive poroase, cu abrazivi aglomeraţi, şi metodă de realizare a abrazivilor aglomeraţi
KR101208896B1 (ko) 알루미나계 연마재 지립의 제조방법 및 이에 의해 제조된 알루미나계 연마재 지립
CN103906723B (zh) 烧结的锆石颗粒
JPH06104816B2 (ja) 焼結アルミナ砥粒及びその製造方法
CN106458760A (zh) 陶瓷刚玉干燥、制粒和成型的生产工艺
WO2014124554A1 (en) Abrasive grain with controlled aspect ratio
WO1990008744A1 (en) Alumina ceramic, abrasive material, and production thereof
JPH04500044A (ja) 研摩材製品の製造方法
CN104684647B (zh) 烧结的氧化铝颗粒
CN108675776A (zh) 具有片状结构陶瓷刚玉磨料的制备方法
CN106007685A (zh) 一种含锆的具有亚微米晶粒结构的α-氧化铝基磨料及制备方法
JPH0566325B2 (zh)
KR20110066938A (ko) 티탄산알루미늄계 세라믹스 분말의 제조 방법
TW201107268A (en) Method for producing aluminum titanate ceramic body
CN109734427A (zh) 一种碳化硅复合陶瓷微晶磨料及其制备方法
CN108530057B (zh) 溶胶-凝胶法制备应用于储能的形貌可控CaTiO3陶瓷的方法
CN110759719A (zh) 一种菱形陶瓷微晶磨料及其制备方法
CN111393174A (zh) 利用粉煤灰制造m47耐火材料的方法
JPH05117636A (ja) α−三酸化アルミニウムを基礎とする多結晶性の焼結研磨粒子、この研磨粒子からなる研磨剤、研磨粒子の製造法および耐火性セラミツク製品の製造法
CN104961446A (zh) 一种溶胶凝胶工艺制备α-氧化铝基陶瓷磨料用勃姆石的加工方法
US20200223755A1 (en) Sintered zircon beads
CN106517280A (zh) 一种仅通过调节压力制备勃姆石微晶粉的工艺
WO1993019017A1 (en) Composition for high pressure casting slip, high pressure casting slip and method for preparing the composition and slip

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190510

WW01 Invention patent application withdrawn after publication