CN109709643B - Dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration - Google Patents

Dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration Download PDF

Info

Publication number
CN109709643B
CN109709643B CN201910070179.0A CN201910070179A CN109709643B CN 109709643 B CN109709643 B CN 109709643B CN 201910070179 A CN201910070179 A CN 201910070179A CN 109709643 B CN109709643 B CN 109709643B
Authority
CN
China
Prior art keywords
mode
waveguide
waveguides
output
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910070179.0A
Other languages
Chinese (zh)
Other versions
CN109709643A (en
Inventor
戴道锌
叶超超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910070179.0A priority Critical patent/CN109709643B/en
Publication of CN109709643A publication Critical patent/CN109709643A/en
Application granted granted Critical
Publication of CN109709643B publication Critical patent/CN109709643B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种基于单片集成的双偏振模式复用‑解复用芯片。每个偏振合束器的两个输入端分别与各自输入单模波导连接,输出端与模斑转换器的输入端连接,模斑转换器的输出端与连接波导的一端连接,连接波导的另一端则经模式复用器与输出多模波导连接;作为复用器,光信号从输入单模波导输入并从输出多模波导输出;作为解复用器,光信号从输出多模波导输入并从输入单模波导输出。本发明能将多路信号分别加载至同一多模波导中的N个本征模上,形成模式复用,同时结合偏振复用技术,扩大传输容量,具有便于与片上光互联系统连接,与少模光纤相耦合等突出优点。

Figure 201910070179

The invention discloses a dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration. The two input ends of each polarization beam combiner are respectively connected to the respective input single-mode waveguide, the output end is connected to the input end of the mode spot converter, the output end of the mode spot converter is connected to one end of the connecting waveguide, and the other end of the waveguide is connected. One end is connected to the output multi-mode waveguide through a mode multiplexer; as a multiplexer, the optical signal is input from the input single-mode waveguide and output from the output multi-mode waveguide; as a demultiplexer, the optical signal is input from the output multi-mode waveguide and output. Output from input single-mode waveguide. The invention can load multiple signals onto N eigenmodes in the same multi-mode waveguide respectively to form mode multiplexing, and at the same time combine the polarization multiplexing technology to expand the transmission capacity, and has the advantages of convenient connection with the on-chip optical interconnection system, and Few-mode fiber phase coupling and other outstanding advantages.

Figure 201910070179

Description

一种基于单片集成的双偏振模式复用-解复用芯片A dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration

技术领域technical field

本发明涉及复用-解复用器,特别是涉及一种基于单片集成的双偏振模式复用-解复用芯片。The invention relates to a multiplexing-demultiplexer, in particular to a dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration.

背景技术Background technique

众所周知,长距离光通信已经取得巨大成功。同样地,光互联作为一种新的互联方式,可克服传统电互联存在的瓶颈问题,引起了广泛关注。当前光互联不断向超短距离互联推进,其通信容量需求日益增长。针对光互联系统数据传输量大的特点,最直接的方法是借用长距离光纤通信系统中常用的波分复用(WDM)技术。As we all know, long-distance optical communication has achieved great success. Similarly, optical interconnection, as a new interconnection method, can overcome the bottleneck problem of traditional electrical interconnection, and has attracted widespread attention. At present, optical interconnection is constantly advancing towards ultra-short-distance interconnection, and its communication capacity demand is increasing day by day. Aiming at the characteristics of the large data transmission volume of the optical interconnection system, the most direct method is to borrow the wavelength division multiplexing (WDM) technology commonly used in the long-distance optical fiber communication system.

然而,波分复用系统需要多路激光器或可调谐激光器等价格昂贵的元件或模块,因而成本很高,很大程度上将限制它在光互联系统中的广泛应用。因此,急需发展新的复用技术,从而降低波分复用系统的成本。模式复用技术在多模光纤通信中很早就被提出,但由于光纤模式控制(如转化、激发)技术难题使之进展缓慢。最近,人们提出采用少模光纤技术,可将通信容量提升数倍,并有效克服模间串扰,因而成为当前的研究热点。对于基于少模光纤的模式复用系统,其核心器件是模式(解)复用器,用于实现各阶模式的合/分。文献【Daoxin Dai,Jian Wang,and Yaocheng Shi,“Silicon mode (de)multiplexer enablinghigh capacity photonic networks-on-chip with a single-wavelength-carrierlight,”Opt.Let.38,1422-1424,2013】给出了一种基于级联非对称定向耦合器的多通道集成光波导模式复用-解复用器,易于扩展,可实现多通道。在此基础上,文献【Jian Wang,Sailing He,and Daoxin Dai,“On-chip silicon 8-channel hybrid (de)multiplexerenabling simultaneous mode- and polarization-division-multiplexing.”Laser&Photonics Reviews.8(2):L18-L22,2014】给出了一种实现双偏振模式复用器,可实现两组正交偏振态的基模及高阶模的合/分。然而这种设计要求非对称定向耦合器具有显著的偏振敏感性,通常需采用超高折射率差光波导方可实现,因此比较适合于片上光互联系统,但与少模光纤耦合则存在一定困难。文献【Nobutomo Hanzawa等,“Two-mode PLC-based modemulti/demultiplexer for mode and wavelength division multiplexedtransmission.”Opt. Express.21(22): 25752–25760,2013】给出了一种基于SiO2光波导的非对称定向耦合器,可实现与少模光纤的耦合,但存在偏振不敏感特性,很难实现偏振复用,且SiO2波导尺寸较大不适合于片上光互联系统。因此,现有技术缺少一种既适合于片上光互联系统又便于与少模光纤耦合连接的多通道集成光波导双偏振模式复用-解复用器。However, the wavelength division multiplexing system requires expensive components or modules such as multiplexed lasers or tunable lasers, so the cost is very high, which will largely limit its wide application in optical interconnection systems. Therefore, there is an urgent need to develop new multiplexing techniques to reduce the cost of wavelength division multiplexing systems. Mode multiplexing technology has been proposed for a long time in multimode fiber communication, but its progress has been slow due to the technical difficulties of fiber mode control (such as conversion and excitation). Recently, it has been proposed that the use of few-mode fiber technology can increase the communication capacity several times and effectively overcome the crosstalk between modes, which has become a current research hotspot. For the mode multiplexing system based on few-mode fiber, the core device is the mode (de)multiplexer, which is used to realize the combination/division of each order mode. The literature [Daoxin Dai, Jian Wang, and Yaocheng Shi, "Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrierlight," Opt.Let.38, 1422-1424, 2013] gives A multi-channel integrated optical waveguide mode multiplexer-demultiplexer based on cascaded asymmetric directional couplers is proposed, which is easy to expand and can realize multi-channel. On this basis, the literature [Jian Wang, Sailing He, and Daoxin Dai, "On-chip silicon 8-channel hybrid (de)multiplexerenabling simultaneous mode- and polarization-division-multiplexing."Laser&Photonics Reviews.8(2):L18 -L22, 2014] presents a dual-polarization mode multiplexer, which can realize the combination/division of the fundamental mode and higher-order modes of two groups of orthogonal polarization states. However, this design requires the asymmetric directional coupler to have significant polarization sensitivity, which is usually realized by using an ultra-high refractive index difference optical waveguide, so it is more suitable for on-chip optical interconnection systems, but there are certain difficulties in coupling with few-mode fibers. . The literature [Nobutomo Hanzawa et al., "Two-mode PLC-based modemulti/demultiplexer for mode and wavelength division multiplexedtransmission." Opt. Express. 21(22): 25752–25760, 2013] gave a SiO 2 -based optical waveguide Asymmetric directional couplers can realize coupling with few-mode fibers, but have polarization insensitivity characteristics, making it difficult to realize polarization multiplexing, and the large size of SiO2 waveguide is not suitable for on-chip optical interconnection systems. Therefore, the prior art lacks a multi-channel integrated optical waveguide dual-polarization mode multiplexer-demultiplexer that is both suitable for on-chip optical interconnection systems and convenient for coupling and connection with few-mode fibers.

发明内容SUMMARY OF THE INVENTION

针对背景技术中存在的问题,本发明的目的在于提供一种基于单片集成的双偏振模式复用-解复用芯片,能将多路信号分别加载至同一多模波导中的N个本征模上,形成模式复用,同时结合偏振复用技术,扩大传输容量,便于与片上光互联系统连接,与少模光纤相耦合。In view of the problems existing in the background technology, the purpose of the present invention is to provide a dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration, which can load multiple signals to N locals in the same multimode waveguide respectively. In the characterization mode, mode multiplexing is formed, and at the same time, the polarization multiplexing technology is combined to expand the transmission capacity, which is convenient for connecting with the on-chip optical interconnection system and coupling with the few-mode fiber.

本发明解决其技术问题采用的技术方案是:The technical scheme adopted by the present invention to solve the technical problem is:

本发明包括:2N+2条输入单模波导,N+1个偏振合束器, N+1条连接波导,模式复用器和输出多模波导,且N>0;还包括:N+1个模斑转换器;The invention includes: 2N+2 input single-mode waveguides, N+1 polarization beam combiners, N+1 connecting waveguides, mode multiplexers and output multi-mode waveguides, and N>0; and also includes: N+1 A mode spot converter;

每个偏振合束器的两个输入端分别与各自输入单模波导连接,输出端与模斑转换器的输入端连接,模斑转换器的输出端则与连接波导的一端连接,连接波导的另一端则经模式复用器与输出多模波导连接;作为复用器时,光信号从输入单模波导输入并从输出多模波导输出;作为解复用器时,光信号从输出多模波导输入并从输入单模波导输出。The two input ends of each polarization beam combiner are respectively connected to the respective input single-mode waveguides, the output end is connected to the input end of the mode spot converter, and the output end of the mode spot converter is connected to one end of the connecting waveguide, which is connected to the The other end is connected to the output multi-mode waveguide through a mode multiplexer; as a multiplexer, the optical signal is input from the input single-mode waveguide and output from the output multi-mode waveguide; as a demultiplexer, the optical signal is output from the output multi-mode waveguide. Waveguide input and output from input single mode waveguide.

所述2N+2条输入单模波导和N+1个偏振合束器均为强限制小截面光波导类型,其截面尺寸为纳米量级,且偏振敏感,即波导双折射大于10-4The 2N+2 input single-mode waveguides and the N+1 polarization beam combiners are all of the strongly confined small-section optical waveguide type, the cross-sectional size is nanometer order, and the polarization is sensitive, that is, the waveguide birefringence is greater than 10 -4 .

所述N+1条连接波导、模式复用器和输出多模波导均为弱限制大截面光波导类型,其截面尺寸为微米量级,且偏振不敏感,即波导双折射小于10-4The N+1 connecting waveguides, the mode multiplexer and the output multi-mode waveguide are all weakly confinement large-section optical waveguides with a cross-sectional size of the order of microns and insensitive to polarization, that is, the waveguide birefringence is less than 10 -4 .

所述N+1个模斑转换器为倒锥形光波导结构,能将局域在强限制小截面光波导中的光斑通过倒锥形结构绝热地转换为弱限制大截面光波导中的光斑;The N+1 mode spot converters are of an inverted tapered optical waveguide structure, which can adiabatically convert a light spot localized in a strong confinement small cross-section optical waveguide to a light spot in a weakly confined large cross-section optical waveguide through the inverted tapered structure ;

偏振合束器的输出端通过模斑转换器将其横电基模和横磁基模分别绝热地转化为连接波导中的横电基模和横磁基模,反之亦然。The output end of the polarization beam combiner adiabatically converts its transverse electric fundamental mode and transverse magnetic fundamental mode into the transverse electric fundamental mode and transverse magnetic fundamental mode in the connecting waveguide, respectively, through a mode-spot converter, and vice versa.

所述模式复用器包括:N+1条连接波导,N条耦合波导,总线波导和输出多模波导;The mode multiplexer includes: N+1 connecting waveguides, N coupling waveguides, bus waveguides and output multi-mode waveguides;

其中一条连接波导与总线波导的输入端连接,其余连接波导与各自耦合波导连接,耦合波导与总线波导中的多模波导耦合连接形成各个模式耦合区,总线波导的输出端与输出多模波导连接。One of the connecting waveguides is connected to the input end of the bus waveguide, the other connecting waveguides are connected to their respective coupling waveguides, the coupling waveguides are coupled and connected to the multimode waveguides in the bus waveguide to form each mode coupling area, and the output end of the bus waveguide is connected to the output multimode waveguides .

所述总线波导,包括:N个锥形光波导,N个多模光波导,或再包含N个模式旋转器,相邻的两个多模波导之间通过锥形光波导绝热连接,宽度最小的多模波导输入端经锥形光波导、连接波导与模斑转换器输出端连接,宽度最大的多模光波导作为末端,其输出端与输出多模光波导连接。The bus waveguide includes: N tapered optical waveguides, N multimode optical waveguides, or N mode rotators, and two adjacent multimode waveguides are connected adiabatically by tapered optical waveguides, with the smallest width. The input end of the multimode waveguide is connected with the output end of the mode spot converter through the tapered optical waveguide and the connecting waveguide, the multimode optical waveguide with the largest width is used as the end, and the output end is connected with the output multimode optical waveguide.

所述N个模式耦合区,采用非对称定向耦合器的结构。The N mode coupling regions adopt the structure of an asymmetric directional coupler.

所述模式复用器,在复用高度方向上有两个或两个以上峰的高阶模时,非对称定向耦合器中多模光波导和耦合区光波导的高度不相等或者非对称定向耦合器中多模光波导和耦合区光波导的高度相等且多模光波导输出端与模式旋转器连接。When the mode multiplexer multiplexes high-order modes with two or more peaks in the height direction, the heights of the multimode optical waveguide and the optical waveguide in the coupling region in the asymmetric directional coupler are not equal or the heights of the asymmetric directional coupler are not equal. The heights of the middle multimode optical waveguide and the coupling region optical waveguide are equal, and the output end of the multimode optical waveguide is connected to the mode rotator.

所述N个模式旋转器为在多模光波导中引入一个凹槽,将横向有多个峰的高阶模式转换为纵向有多个峰的高阶模式。The N mode rotators introduce a groove in the multi-mode optical waveguide to convert the high-order mode with multiple peaks in the transverse direction into the high-order mode with multiple peaks in the longitudinal direction.

所述第n个多模光波导支持至少n+1个本征模式。The n-th multi-mode optical waveguide supports at least n+1 eigenmodes.

本发明具有的有益效果是:The beneficial effects that the present invention has are:

1)本发明能将多路光信号分别加载至同一多模波导中的N个本征模上,形成模式复用,同时结合偏振复用技术,扩大传输容量,适用于模式复用系统;1) The present invention can respectively load multiple optical signals onto N eigenmodes in the same multi-mode waveguide to form mode multiplexing, and at the same time combine polarization multiplexing technology to expand transmission capacity, and is suitable for mode multiplexing systems;

2)利用输入波导为强限制小截面光波导类型,可方便实现与片上光源、调制器、探测器等其他光电子元件的大规模单片集成,适用于光互联系统;2) Using the input waveguide as a type of optical waveguide with strong confinement and small cross-section can easily realize large-scale monolithic integration with other optoelectronic components such as on-chip light sources, modulators, detectors, etc., and is suitable for optical interconnection systems;

3)利用输出波导为弱限制大截面光波导类型,可方便实现与少模光纤的高效耦合。3) It is convenient to realize efficient coupling with few-mode fibers by using the output waveguide as a type of weakly constraining large-section optical waveguide.

附图说明Description of drawings

图1是本发明的结构示意图。Figure 1 is a schematic structural diagram of the present invention.

图2是强限制小截面光波导横截面示意图。Figure 2 is a schematic cross-sectional view of a strongly confined small-section optical waveguide.

图3是弱限制大截面光波导横截面示意图。FIG. 3 is a schematic cross-sectional view of a weakly confinement large-section optical waveguide.

图4是偏振合束器结构示意图。FIG. 4 is a schematic structural diagram of a polarization beam combiner.

图5(a)是模斑转换器结构示意图。Figure 5(a) is a schematic diagram of the structure of the mode spot converter.

图5(b)是模斑转换器尖端横截面示意图。Figure 5(b) is a schematic cross-sectional view of the mode spot converter tip.

图6是复用TE10、TM10模式对应的模式耦合区截面示意图。FIG. 6 is a schematic cross-sectional view of the mode coupling region corresponding to the multiplexing TE 10 and TM 10 modes.

图7是复用TE01、TM01模式对应的模式耦合区截面示意图。FIG. 7 is a schematic cross-sectional view of the mode coupling region corresponding to the multiplexing TE 01 and TM 01 modes.

图8是模式旋转器横截面示意图。Figure 8 is a schematic cross-sectional view of the mode rotator.

具体实施方式Detailed ways

下面结合附图和实施例对本发明做进一步的说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.

如图1所示,本发明包括:2N+2条输入单模波导10a、10b、…、1na、1nb、…、1Na、1Nb,N+1个偏振合束器20、…、2n、…、2N, N+1条连接波导40、…、4n、…、4N,模式复用器5和输出多模波导6,且N>0;还包括:N+1个模斑转换器30、…、3n、…、3N。As shown in FIG. 1, the present invention includes: 2N+2 input single-mode waveguides 10a, 10b,..., 1na, 1nb,..., 1Na, 1Nb, N+1 polarization beam combiners 20,..., 2n,..., 2N, N+1 connecting waveguides 40, . 3n, …, 3N.

每个偏振合束器的两个输入端分别与各自输入单模波导连接,输出端与模斑转换器的输入端连接,模斑转换器的输出端则与连接波导的一端连接,连接波导的另一端则经模式复用器与输出多模波导连接;作为复用器时,光信号从输入单模波导1na、1nb输入并从输出多模波导6输出;作为解复用器时,光信号从输出多模波导6输入并从输入单模波导1na、1nb输出。The two input ends of each polarization beam combiner are respectively connected to the respective input single-mode waveguides, the output end is connected to the input end of the mode spot converter, and the output end of the mode spot converter is connected to one end of the connecting waveguide, which is connected to the The other end is connected to the output multimode waveguide through a mode multiplexer; as a multiplexer, the optical signal is input from the input single-mode waveguides 1na, 1nb and output from the output multimode waveguide 6; as a demultiplexer, the optical signal is Input from the output multimode waveguide 6 and output from the input single mode waveguides 1na, 1nb.

所述2N+2条输入单模波导10a、10b、…、1na、1nb、…、1Na、1Nb和N+1个偏振合束器20、…、2n、…、2N均为强限制小截面光波导类型,其截面尺寸为纳米量级,且偏振敏感,即波导双折射大于10-4The 2N+2 input single-mode waveguides 10a, 10b, . . . , 1na, 1nb, . Waveguide type, its cross-sectional size is on the order of nanometers and is polarization sensitive, that is, the waveguide birefringence is greater than 10 -4 .

所述N+1条连接波导40、…、4n、…、4N,模式复用器5和输出多模波导6均为弱限制大截面光波导类型,其截面尺寸为微米量级,且偏振不敏感,即波导双折射小于10-4。The N+1 connecting waveguides 40, . . . , 4n, . Sensitive, that is, the waveguide birefringence is less than 10-4.

如图1所示,以两条输入波导1na、1nb组成第n对输入光波导,且末端分别与第n偏振合束器2n的两个输入端相连。As shown in FIG. 1 , two input waveguides 1na and 1nb are used to form an nth pair of input optical waveguides, and the ends thereof are respectively connected to the two input ends of the nth polarization beam combiner 2n.

所述N+1个模斑转换器为倒锥形光波导结构,能将局域在强限制小截面光波导中的光斑通过倒锥形结构绝热地转换为弱限制大截面光波导中的光斑。The N+1 mode spot converters are of an inverted tapered optical waveguide structure, which can adiabatically convert a light spot localized in a strong confinement small cross-section optical waveguide to a light spot in a weakly confined large cross-section optical waveguide through the inverted tapered structure .

偏振合束器的输出端通过模斑转换器将其横电基模和横磁基模分别绝热地转化为连接波导中的横电基模和横磁基模,反之亦然。The output end of the polarization beam combiner adiabatically converts its transverse electric fundamental mode and transverse magnetic fundamental mode into the transverse electric fundamental mode and transverse magnetic fundamental mode in the connecting waveguide, respectively, through a mode-spot converter, and vice versa.

所述模式复用器5包括:N+1条连接波导,N条耦合波导,总线波导和输出多模波导6;中一条连接波导40与总线波导的输入端连接,其余连接波导与各自耦合波导连接,耦合波导与总线波导中的多模波导耦合连接形成各个模式耦合区,总线波导的输出端与输出多模波导6连接,The mode multiplexer 5 includes: N+1 connection waveguides, N coupling waveguides, a bus waveguide and an output multimode waveguide 6; one of the connection waveguides 40 is connected to the input end of the bus waveguide, and the remaining connection waveguides are connected to the respective coupling waveguides. connection, the coupling waveguide is coupled and connected to the multimode waveguide in the bus waveguide to form each mode coupling area, and the output end of the bus waveguide is connected to the output multimode waveguide 6,

所述总线波导,包括:N个锥形光波导81、…、8n、…、8N,N个多模光波导91、…、9n、…、9N,或再包含N个模式旋转器101、…、10n、…、10N,相邻的两个多模波导之间通过锥形光波导绝热连接,宽度最小的多模波导输入端经锥形光波导、连接波导与模斑转换器输出端连接,宽度最大的多模光波导作为末端,其输出端与输出多模光波导连接。The bus waveguide includes: N tapered optical waveguides 81, . . ., 8n, . , 10n,...,10N, two adjacent multimode waveguides are connected adiabatically by tapered optical waveguides, the input end of the multimode waveguide with the smallest width is connected to the output end of the mode spot converter through the tapered optical waveguide, connecting waveguide, The multimode optical waveguide with the largest width is used as the end, and its output end is connected with the output multimode optical waveguide.

所述N个模式耦合区,采用非对称定向耦合器的结构。The N mode coupling regions adopt the structure of an asymmetric directional coupler.

所述模式复用器5,在复用高度方向上有两个或两个以上峰的高阶模时,非对称定向耦合器中多模光波导和耦合区光波导的高度不相等或者非对称定向耦合器中多模光波导和耦合区光波导的高度相等且多模光波导输出端与模式旋转器连接。When the mode multiplexer 5 multiplexes high-order modes with two or more peaks in the height direction, the heights of the multi-mode optical waveguide and the optical waveguide in the coupling region in the asymmetric directional coupler are unequal or asymmetric directional coupling The heights of the multimode optical waveguide in the device and the optical waveguide in the coupling region are equal, and the output end of the multimode optical waveguide is connected to the mode rotator.

所述N个模式旋转器为在多模光波导中引入一个凹槽,通过一定长度可将横向有多个峰的高阶模式转换为纵向有多个峰的高阶模式。The N mode rotators introduce a groove in the multi-mode optical waveguide, and can convert the high-order mode with multiple peaks in the transverse direction into the high-order mode with multiple peaks in the longitudinal direction through a certain length.

所述第n个多模光波导支持至少n+1个本征模式。The n-th multi-mode optical waveguide supports at least n+1 eigenmodes.

下面是本发明作为多通道集成光波导模式复用器时的工作工程:The following is the working project of the present invention as a multi-channel integrated optical waveguide mode multiplexer:

2N+2条输入单模波导10a、10b、…、1na、1nb、…、1Na、1Nb,各自加载有一条光信号,其中输入光波导10a、…、1na、…、1Na输入的是横磁基模,输入光波导10b、…、1nb、…、1Nb输入的是横电基模。2N+2 input single-mode waveguides 10a, 10b, . . . , 1na, 1nb, . mode, the input optical waveguide 10b, ..., 1nb, ..., 1Nb input is the transverse electric fundamental mode.

第n对输入光波导1na,1nb所加载的两条光信号经过第n偏振合束器2n合在一起,从第n偏振合束器2n的输出端输出。The two optical signals loaded by the nth pair of input optical waveguides 1na, 1nb are combined by the nth polarization beam combiner 2n and output from the output end of the nth polarization beam combiner 2n.

从第n偏振合束器2n输出端输出的光信号进入第n模斑转换器3n的输入端,从第n模斑转换器3n的输出端输出,并进入连接波导4n中去,n=0,...,N。The optical signal output from the output end of the nth polarization beam combiner 2n enters the input end of the nth mode spot converter 3n, is output from the output end of the nth mode spot converter 3n, and enters the connecting waveguide 4n, n=0 ,...,N.

第0连接波导40中所加载的两路光信号依次经过第一锥形光波导81、第一多模光波导91、或包含第一模式旋转器101、…、第n锥形光波导8n、第n多模光波导9n、或包含第n模式旋转器10n、…、第N锥形光波导81、第N多模光波导91、或包含第N模式旋转器10N,最后输出的是加载到输出多模光波导6的基模的光信号。在此传输过程中,两路信号始终分别加载在光波导的横电基模和横磁基模上,且保持偏振态不变。The two optical signals loaded in the 0th connecting waveguide 40 sequentially pass through the first tapered optical waveguide 81, the first multi-mode optical waveguide 91, or the first mode rotator 101, . . . , the n-th tapered optical waveguide 8n, The n-th multi-mode optical waveguide 9n, or the n-th mode rotator 10n, ..., the N-th tapered optical waveguide 81, the N-th multi-mode optical waveguide 91, or the N-th mode rotator 10N, the final output is the The optical signal of the fundamental mode of the multimode optical waveguide 6 is output. During this transmission process, the two signals are always loaded on the transverse electric fundamental mode and transverse magnetic fundamental mode of the optical waveguide, respectively, and the polarization state remains unchanged.

第n连接波导4n中所加载的两路光信号进入第n耦合波导7n,通过倏逝波耦合的方式从耦合波导7n的基模耦合到第n多模光波导9n的第n个高阶模,且保持偏振态不变。然后依次经过或包含第n模式旋转器10n、第n+1锥形光波导8n+1、第n+1多模光波导9n+1、或包含第n+1模式旋转器10n+1、…、第N锥形光波导8N+1、第N+1多模光波导9N+1、或包含第N+1模式旋转器10N+1 ,最后输出的是加载到输出多模光波导6的第n阶横电高阶模和第n阶横磁高阶模的两路光信号,且保持与第n对输入单模波导1na、1nb所加载的两路光信号偏振态相同,n=1,…,N。The two optical signals loaded in the nth connecting waveguide 4n enter the nth coupling waveguide 7n, and are coupled from the fundamental mode of the coupling waveguide 7n to the nth higher-order mode of the nth multimode optical waveguide 9n by means of evanescent wave coupling, and Keep the polarization state unchanged. Then pass through or include the n-th mode rotator 10n, the n+1-th tapered optical waveguide 8n+1, the n+1-th multi-mode optical waveguide 9n+1, or the n+1-th mode rotator 10n+1, . . . , the N-th tapered optical waveguide 8N+1, the N+1-th multimode optical waveguide 9N+1, or the N+1-th mode rotator 10N+1, and the final output is the output multi-mode optical waveguide 6 which is loaded into the output multi-mode optical waveguide 6 The two optical signals of the n-th order transverse electric high-order mode and the n-th order transverse magnetic high-order mode keep the same polarization state as the two optical signals loaded by the n-th pair of input single-mode waveguides 1na and 1nb, n=1,...,N.

下面给出一个用于模式复用系统的多通道集成光波导模式复用器的具体实施例,反之可实现模式解复用器功能。A specific embodiment of a multi-channel integrated optical waveguide mode multiplexer used in a mode multiplexing system is given below, otherwise the mode demultiplexer function can be implemented.

选取工作波段中心波长为1550nm。考虑模式通道数2(N+1)=6的情形,涉及的模式为TE、TM两组偏振模式,每组模式均各自包含3个模式,分别为TE00、TE01、TE10、TM00、TM01、TM10。在此,下标00表示基模(其模场在横向、高度方向上均只有一个峰),下标01表示模场在横向上仅有一个峰、而高度方向上有两个峰的高阶模,下标10表示模场在横向上有两个峰、而高度方向上仅有一个峰的高阶模。The central wavelength of the working band is selected as 1550nm. Considering the case where the number of mode channels is 2 (N+1) = 6, the modes involved are two groups of polarization modes, TE and TM, each of which contains three modes, namely TE 00 , TE 01 , TE 10 , and TM 00 , TM 01 , TM 10 . Here, the subscript 00 represents the fundamental mode (the mode field has only one peak in the lateral and height directions), and the subscript 01 represents the high-order mode in which the mode field has only one peak in the lateral direction and two peaks in the height direction, The subscript 10 indicates a higher-order mode in which the mode field has two peaks in the lateral direction and only one peak in the height direction.

对于强限制小截面光波导选用Si3N4掩埋型光波导,其横截面如图2所示:其中,芯层112是Si3N4材料,厚度为250nm、折射率为2;其下包层111为纯Si02材料,厚度为8um、折射率为1.444;其上包层113为掺锗Si02材料,厚度为10um、折射率为1.4586;最上面还覆盖一层114为纯Si02材料,厚度为10um、折射率为1.444。For the strongly confined small-section optical waveguide, a Si 3 N 4 buried optical waveguide is selected, and its cross section is shown in Figure 2: the core layer 112 is made of Si 3 N 4 material, with a thickness of 250 nm and a refractive index of 2; The layer 111 is a pure SiO 2 material with a thickness of 8um and a refractive index of 1.444; the upper cladding layer 113 is a germanium-doped SiO 2 material with a thickness of 10um and a refractive index of 1.4586; the top layer is also covered with a layer 114 of pure SiO 2 material , with a thickness of 10um and a refractive index of 1.444.

对于弱限制大截面光波导选用SiO2掩埋型光波导,其横截面如图3所示:其中,芯层113为掺锗Si02材料,厚度为10um、折射率为1.4586;其下包层111为纯Si02材料,厚度为8um、折射率为1.444;其上包层114为纯Si02材料,厚度为10um、折射率为1.444;其芯层包层折射率差为1%。For the weakly confined large-section optical waveguide, SiO 2 buried optical waveguide is selected, and its cross section is shown in Figure 3: wherein, the core layer 113 is made of germanium-doped SiO 2 material, with a thickness of 10um and a refractive index of 1.4586; its lower cladding layer 111 It is a pure SiO 2 material with a thickness of 8um and a refractive index of 1.444; its upper cladding layer 114 is a pure SiO 2 material with a thickness of 10um and a refractive index of 1.444; its core layer and cladding refractive index difference is 1%.

对于一种基于单片集成的双偏振模式复用-解复用芯片,采用分模块设计的方法。For a dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration, a sub-module design method is adopted.

1、偏振合束器的设计1. Design of the polarization beam combiner

对于偏振合束器,采用两个非对称定向耦合器级联的方式。其俯视图如图4所示。各参数如下:单模波导宽度W1=1、多模波导宽度W2=2.9、 波导间距Wg=1、S型弯曲光波导长度Lx=100、横向偏移量Lz=5、偶合区直波导长度Lc=40、两个偶合区直波导的纵向偏移量L0=50。单模波导的宽度W1和多模波导的宽度W2根据相位匹配原理来选择,使单模波导中的TM0模式和多模波导中的TM1模式相位匹配。如此一来单模波导中的TM0模式可以完全耦合到多模波导中的TM1模式中去,而单模波导中的TE0模式和多模波导中的TE1模式由于相位不匹配,仅有少量耦合,通过波导间距Wg的优化选择可使这部分耦合能量忽略不计。对于该优化设计,当TE0 、TM0分别从该偏振合束器的两个输入端口输入时,两者都将从其输出端口输出,即实现了偏振合束的功能。For the polarization beam combiner, two asymmetric directional couplers are cascaded. Its top view is shown in Figure 4. The parameters are as follows: single-mode waveguide width W 1 =1, multi-mode waveguide width W 2 =2.9, waveguide spacing W g =1, S-shaped curved optical waveguide length L x =100, lateral offset L z =5, coupling The length of the straight waveguide is L c =40, and the longitudinal offset of the two coupled straight waveguides is L 0 =50. The width W 1 of the single-mode waveguide and the width W 2 of the multi-mode waveguide are selected according to the phase matching principle, so that the TM 0 mode in the single-mode waveguide and the TM 1 mode in the multi-mode waveguide are phase-matched. In this way, the TM 0 mode in the single-mode waveguide can be completely coupled to the TM 1 mode in the multi-mode waveguide, while the TE 0 mode in the single-mode waveguide and the TE 1 mode in the multi-mode waveguide are only out of phase due to phase mismatch. There is a small amount of coupling, and this part of the coupling energy can be ignored by the optimal choice of the waveguide spacing W g . For the optimized design, when TE 0 and TM 0 are respectively input from the two input ports of the polarization beam combiner, both are output from its output port, that is, the function of polarization beam combiner is realized.

2、模斑转换器的设计:2. Design of the mode spot converter:

对于模斑转换器,采用倒锥形光波导结构。其结构示意图如图5(a)所示,其尖端横截面图如图5(b)所示。各参数如下:Si3N4首端波导宽度W1=1、Si3N4尖端波导宽度Wtip=0.15、SiO2波导宽度Wa=4、高度10、锥形波导的长度L=2000。For the mode spot converter, an inverted tapered optical waveguide structure is used. The schematic diagram of its structure is shown in Figure 5(a), and the cross-sectional view of its tip is shown in Figure 5(b). The parameters are as follows: Si3N4 head-end waveguide width W1=1, Si3N4 tip waveguide width Wtip=0.15, SiO2 waveguide width W a =4, height 10, tapered waveguide length L=2000.

尖端宽度的选择应使尖端处的基模模式与SiO2波导基模模式的重叠积分足够大,降低模式失配引入的损耗,此处选择为0.15,可使横电基模和横磁基模的重叠积分分别为99.1%和98.6%;锥形波导长度的选择应使模式尽可能无损耗地转换,此处选择为2000,可使横电基模和横磁基模的转换效率分别达到97.5%和99.8%;故总的横电基模和横磁基模的模斑转换效率为96.6%和98.4%:The width of the tip should be selected so that the overlap integral of the fundamental mode at the tip and the fundamental mode of the SiO2 waveguide is large enough to reduce the loss caused by mode mismatch. The overlap integrals of are 99.1% and 98.6%, respectively; the length of the tapered waveguide should be selected so that the mode can be converted without loss as much as possible, here it is 2000, which can make the conversion efficiency of the transverse electric fundamental mode and the transverse magnetic fundamental mode reach 97.5 respectively. % and 99.8%; therefore, the total mode-spot conversion efficiencies of the transverse electric fundamental mode and the transverse magnetic fundamental mode are 96.6% and 98.4%:

3、模式复用器的设计:3. Design of the mode multiplexer:

耦合波导中的S型弯曲光波导参数选为:横向偏移20、长度为800;根据绝热条件,第一锥形光波导81和第二锥形光波导82的锥度为1/20弧度。The parameters of the S-shaped curved optical waveguide in the coupling waveguide are selected as: a lateral offset of 20 and a length of 800; according to adiabatic conditions, the taper of the first tapered optical waveguide 81 and the second tapered optical waveguide 82 is 1/20 radian.

3.1复用TE10和TM10模式:3.1 Multiplexing TE 10 and TM 10 modes:

根据相位匹配原理,合理选取多模光波导及相应的耦合区光波导的宽度和高度,使得耦合区光波导的基模TE00与多模光波导的高阶模TE10相匹配。与此同时,由于弱限制光波导偏振不敏感,该耦合结构也是偏振不敏感,因此耦合区光波导的基模TM00与多模光波导的高阶模TM10也自动匹配。根据计算,多模光波导的宽度、高度分别为:10.56、10,而对应耦合区光波导的宽度、高度分别为:4、10,如图6所示。选择两波导间距为4,耦合区中直波导优化长度为2580,使得耦合区光波导中的基模TE00和TM00分别与多模光波导中的高阶模TE10和TM10完全耦合。According to the phase matching principle, the width and height of the multimode optical waveguide and the corresponding optical waveguide in the coupling region are reasonably selected, so that the fundamental mode TE 00 of the optical waveguide in the coupling region matches the higher-order mode TE 10 of the multimode optical waveguide. At the same time, since the weakly confined optical waveguide is not polarization sensitive, the coupling structure is also polarization insensitive, so the fundamental mode TM 00 of the optical waveguide in the coupling region and the higher-order mode TM 10 of the multimode optical waveguide are also automatically matched. According to the calculation, the width and height of the multimode optical waveguide are 10.56 and 10 respectively, while the width and height of the optical waveguide in the corresponding coupling region are 4 and 10 respectively, as shown in FIG. 6 . The distance between the two waveguides is selected to be 4, and the optimal length of the straight waveguide in the coupling region is 2580, so that the fundamental modes TE 00 and TM 00 in the optical waveguide in the coupling region are fully coupled with the higher-order modes TE 10 and TM 10 in the multimode optical waveguide, respectively.

3.2复用TE01和TM01模式:3.2 Multiplexing TE 01 and TM 01 modes:

技术方案1:Technical solution 1:

采用高度不一致的非对称定向耦合器复用TE01和TM01模式。根据相位匹配原理,合理选取多模光波导及相应的耦合区光波导的宽度和高度,使得耦合区光波导的基模TE00与多模光波导的高阶模TE01相匹配。与此同时,由于弱限制光波导偏振不敏感,该耦合结构也是偏振不敏感,因此耦合区光波导的基模TM00与多模光波导的高阶模TM01也自动匹配。根据计算,多模光波导的宽度、高度分别为:5.65、10,而对应耦合区光波导的宽度、高度分别为:4、5,如图7所示。选择两波导间距为4,耦合区中直波导优化长度为4640,使得耦合区光波导中的基模TE00和TM00分别与多模光波导中的高阶模TE01和TM01完全耦合。The TE 01 and TM 01 modes are multiplexed using a highly non-uniform asymmetric directional coupler. According to the phase matching principle, the width and height of the multimode optical waveguide and the corresponding optical waveguide in the coupling region are reasonably selected, so that the fundamental mode TE 00 of the optical waveguide in the coupling region matches the higher-order mode TE 01 of the multimode optical waveguide. At the same time, since the weakly confined optical waveguide is not polarization sensitive, the coupling structure is also polarization insensitive, so the fundamental mode TM 00 of the optical waveguide in the coupling region and the higher-order mode TM 01 of the multimode optical waveguide are also automatically matched. According to the calculation, the width and height of the multimode optical waveguide are: 5.65 and 10, respectively, and the width and height of the optical waveguide in the corresponding coupling region are: 4 and 5, respectively, as shown in FIG. 7 . The distance between the two waveguides is selected to be 4, and the optimal length of the straight waveguide in the coupling region is 4640, so that the fundamental modes TE 00 and TM 00 in the optical waveguide in the coupling region are fully coupled with the higher-order modes TE 01 and TM 01 in the multimode optical waveguide, respectively.

技术方案2:Technical solution 2:

采用高度一致的非对称定向耦合器与模式旋转器级联的方式复用TE01和TM01模式。先用高度一致的非对称定向耦合器复用TE10和TM10模式,同3.1一样,然后在多模光波导后连接一个模式旋转器,则可使TE10和TM10模式转换为TE01和TM01模式,从而实现复用TE01和TM01模式的功能。模式旋转器的横截面图如图8所示,通过合理选取凹槽偏移量t和凹槽宽度s的值打破波导的对称性且保证引入较小的串扰,凹槽深度d的选择为使多模波导中的TE10模式与模式旋转器中的第一横电高阶模和第二横电高阶模的模式重叠积分相等,由于弱限制光波导偏振不敏感,所以多模波导中的TM10模式与模式旋转器中的第一横磁高阶模和第二横磁高阶模的模式重叠积分也自动相等。多模光波导的宽度和高度依次为w=10.56、h=10,根据计算, 凹槽偏移量、宽度和深度依次为t=0、s=1.5和d=4.3,模式旋转器的优化长度取1435,可使E10和TM10模式转换为TE01和TM01模式。The TE 01 and TM 01 modes are multiplexed by cascading highly consistent asymmetric directional couplers and mode rotators. First use a highly consistent asymmetric directional coupler to multiplex the TE 10 and TM 10 modes, as in 3.1, and then connect a mode rotator behind the multimode optical waveguide, the TE 10 and TM 10 modes can be converted into TE 01 and TM 10 modes. TM 01 mode, thus realizing the function of multiplexing TE 01 and TM 01 modes. The cross-sectional view of the mode rotator is shown in Fig. 8. By reasonably selecting the values of the groove offset t and the groove width s, the symmetry of the waveguide is broken and the introduction of small crosstalk is guaranteed. The groove depth d is selected so that the The TE 10 mode in the multimode waveguide is equal to the mode overlap integral of the first transverse electric high-order mode and the second transverse electric high-order mode in the mode rotator. Since the weakly confined optical waveguide is not polarization sensitive, the TM 10 mode in the multimode waveguide is equal to The mode overlap integrals of the first transverse magnetic high-order mode and the second transverse magnetic high-order mode in the mode rotator are also automatically equal. The width and height of the multi-mode optical waveguide are w=10.56, h=10. According to the calculation, the groove offset, width and depth are t=0, s=1.5 and d=4.3, respectively. The optimal length of the mode rotator Take 1435 to convert E 10 and TM 10 modes to TE 01 and TM 01 modes.

上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。The above-mentioned embodiments are used to explain the present invention, rather than limit the present invention. Within the spirit of the present invention and the protection scope of the claims, any modifications and changes made to the present invention all fall into the protection scope of the present invention.

Claims (8)

1.一种基于单片集成的双偏振模式复用-解复用芯片,包括:2N+2条输入单模波导(10a、10b、…、1na、1nb、…、1Na、1Nb),N+1个偏振合束器(20、…、2n、…、2N), N+1条连接波导(40、…、4n、…、4N),模式复用器(5)和输出多模波导(6),且N>0;其特征在于,还包括:N+1个模斑转换器(30、…、3n、…、3N);1. A dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration, comprising: 2N+2 input single-mode waveguides (10a, 10b, ..., 1na, 1nb, ..., 1Na, 1Nb), N+ 1 polarization beam combiner (20,…, 2n,…, 2N), N+1 connecting waveguides (40,…, 4n,…, 4N), mode multiplexer (5) and output multimode waveguide (6 ), and N>0; it is characterized in that, it also includes: N+1 mode-spot converters (30, . . . , 3n, . . , 3N); 每个偏振合束器的两个输入端分别与各自输入单模波导连接,输出端与模斑转换器的输入端连接,模斑转换器的输出端则与连接波导的一端连接,连接波导的另一端则经模式复用器与输出多模波导连接;作为复用器时,光信号从输入单模波导输入并从输出多模波导输出;作为解复用器时,光信号从输出多模波导输入并从输入单模波导输出;The two input ends of each polarization beam combiner are respectively connected to the respective input single-mode waveguides, the output end is connected to the input end of the mode spot converter, and the output end of the mode spot converter is connected to one end of the connecting waveguide, which is connected to the The other end is connected to the output multi-mode waveguide through a mode multiplexer; as a multiplexer, the optical signal is input from the input single-mode waveguide and output from the output multi-mode waveguide; as a demultiplexer, the optical signal is output from the output multi-mode waveguide. waveguide input and output from input single mode waveguide; 所述2N+2条输入单模波导和N+1个偏振合束器均为强限制小截面光波导类型,其截面尺寸为纳米量级,且偏振敏感,即波导双折射大于10-4The 2N+2 input single-mode waveguides and the N+1 polarization beam combiners are all of the strongly restricted small-section optical waveguide type, and the cross-sectional size is in the nanometer order, and is polarization-sensitive, that is, the waveguide birefringence is greater than 10 -4 ; 所述N+1条连接波导、模式复用器(5)和输出多模波导(6)均为弱限制大截面光波导类型,其截面尺寸为微米量级,且偏振不敏感,即波导双折射小于10-4The N+1 connecting waveguides, the mode multiplexer (5) and the output multi-mode waveguide (6) are all of the weakly confinement large-section optical waveguide type, the cross-sectional size of which is in the order of microns, and is insensitive to polarization, that is, the waveguide double-section. The refraction is less than 10 -4 . 2.根据权利要求1所述的一种基于单片集成的双偏振模式复用-解复用芯片,其特征在于:所述N+1个模斑转换器为倒锥形光波导结构,能将局域在强限制小截面光波导中的光斑通过倒锥形结构绝热地转换为弱限制大截面光波导中的光斑,反之亦然;2. A dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration according to claim 1, wherein the N+1 mode spot converters are inverted tapered optical waveguide structures, which can Adiabatically convert the light spot localized in the strong confinement small cross-section optical waveguide to the light spot in the weakly confinement large cross-section optical waveguide through the inverted tapered structure, and vice versa; 偏振合束器的输出端通过模斑转换器将其横电基模和横磁基模分别绝热地转化为连接波导中的横电基模和横磁基模,反之亦然。The output end of the polarization beam combiner adiabatically converts its transverse electric fundamental mode and transverse magnetic fundamental mode into the transverse electric fundamental mode and transverse magnetic fundamental mode in the connecting waveguide, respectively, through a mode-spot converter, and vice versa. 3.根据权利要求1所述的一种基于单片集成的双偏振模式复用-解复用芯片,其特征在于:所述模式复用器(5)包括:N+1条连接波导(40、…、4n、…、4N),N条耦合波导(71、…、7n、…、7N),总线波导和输出多模波导(6);3. A dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration according to claim 1, wherein the mode multiplexer (5) comprises: N+1 connecting waveguides (40 , ..., 4n, ..., 4N), N coupling waveguides (71, ..., 7n, ..., 7N), bus waveguides and output multimode waveguides (6); 其中一条连接波导与总线波导的输入端连接,其余连接波导与各自耦合波导连接,耦合波导与总线波导中的多模波导耦合连接形成各个模式耦合区,总线波导的输出端与输出多模波导(6)连接。One of the connecting waveguides is connected to the input end of the bus waveguide, the other connecting waveguides are connected to their respective coupling waveguides, and the coupling waveguides are coupled to the multimode waveguides in the bus waveguide to form each mode coupling region, and the output end of the bus waveguide is connected to the output multimode waveguide ( 6) Connect. 4.根据权利要求3所述的一种基于单片集成的双偏振模式复用-解复用芯片,其特征在于:所述总线波导,包括:N个锥形光波导(81、…、8n、…、8N),N个多模光波导(91、…、9n、…、9N),或再包含N个模式旋转器(101、…、10n、…、10N),相邻的两个多模波导之间通过锥形光波导绝热连接,宽度最小的多模波导输入端经锥形光波导、连接波导与模斑转换器输出端连接,宽度最大的多模光波导作为末端,其输出端与输出多模光波导连接。4. The dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration according to claim 3, wherein the bus waveguide comprises: N tapered optical waveguides (81, . . . , 8n , . The mode waveguides are connected adiabatically by tapered optical waveguides. The input end of the multimode waveguide with the smallest width is connected to the output end of the mode spot converter through the tapered optical waveguide and the connecting waveguide. The multimode optical waveguide with the largest width is used as the end, and its output end Connect with the output multimode optical waveguide. 5.根据权利要求4所述的一种基于单片集成的双偏振模式复用-解复用芯片,其特征在于:所述N个模式耦合区,采用非对称定向耦合器的结构。5 . The dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration according to claim 4 , wherein the N mode coupling regions adopt the structure of an asymmetric directional coupler. 6 . 6.根据权利要求3所述的一种基于单片集成的双偏振模式复用-解复用芯片,其特征在于:所述模式复用器(5),在复用高度方向上有两个或两个以上峰的高阶模时,非对称定向耦合器中多模光波导和耦合区光波导的高度不相等或者非对称定向耦合器中多模光波导和耦合区光波导的高度相等且多模光波导输出端与模式旋转器连接。6 . The dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration according to claim 3 , wherein the mode multiplexer (5) has two in the multiplexing height direction. 7 . or high-order modes with more than two peaks, the heights of the multimode optical waveguide in the asymmetric directional coupler and the optical waveguide in the coupling region are not equal, or the heights of the multimode optical waveguide and the optical waveguide in the coupling region in the asymmetric directional coupler are equal and multimode The optical waveguide output end is connected to the mode rotator. 7.根据权利要求4所述的一种基于单片集成的双偏振模式复用-解复用芯片,其特征在于:所述N个模式旋转器为在多模光波导中引入一个凹槽,将横向有多个峰的高阶模式转换为纵向有多个峰的高阶模式。7. The monolithic integration-based dual-polarization mode multiplexing-demultiplexing chip according to claim 4, wherein the N mode rotators are for introducing a groove in the multimode optical waveguide, Convert a higher-order mode with multiple peaks in the transverse direction to a higher-order mode with multiple peaks in the longitudinal direction. 8.根据权利要求4所述的一种基于单片集成的双偏振模式复用-解复用芯片,其特征在于:第n个多模光波导支持至少n+1个本征模式。8 . The dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration according to claim 4 , wherein the n-th multi-mode optical waveguide supports at least n+1 eigenmodes. 9 .
CN201910070179.0A 2019-01-24 2019-01-24 Dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration Active CN109709643B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910070179.0A CN109709643B (en) 2019-01-24 2019-01-24 Dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910070179.0A CN109709643B (en) 2019-01-24 2019-01-24 Dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration

Publications (2)

Publication Number Publication Date
CN109709643A CN109709643A (en) 2019-05-03
CN109709643B true CN109709643B (en) 2020-07-14

Family

ID=66262829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910070179.0A Active CN109709643B (en) 2019-01-24 2019-01-24 Dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration

Country Status (1)

Country Link
CN (1) CN109709643B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116594116A (en) * 2022-02-07 2023-08-15 苏州湃矽科技有限公司 On-chip integrated wavelength division multiplexer and chip
CN114966969B (en) * 2022-05-27 2024-05-24 师大海能应急科技(清远)有限公司 Parallel multimode cross structure based on asymmetric directional coupler

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342601C (en) * 2004-12-13 2007-10-10 中国科学院半导体研究所 Method for making laser-electric absorption modulator-spot-size converter single chip integration
JP5834994B2 (en) * 2012-02-21 2015-12-24 住友電気工業株式会社 DP-QPSK optical modulator
CN103023600B (en) * 2012-10-17 2015-05-20 浙江大学 Multi-channel integrating light guide mode multiplexing-demultiplexing device
CN104749707A (en) * 2015-01-28 2015-07-01 浙江大学 Weak-confined large-cross-section optical waveguide based dual-polarization mode multiplexing-demultiplexing device
CN205427236U (en) * 2015-10-15 2016-08-03 扬州瑞威光电科技有限公司 Plane single scale intergration wavelength devision multiplex - demultiplexer
CN106249355B (en) * 2016-10-12 2019-06-25 北京交通大学 Based on the matched mode multiplexing demultiplexer of silicon substrate optical waveguide mode
CN106970443B (en) * 2017-04-14 2019-08-06 浙江大学 A Multi-Channel Dual Polarization Mode Multiplexer-Demultiplexer
CN108508539B (en) * 2018-03-21 2019-12-17 华中科技大学 Silicon-based wavelength division multiplexer based on tapered asymmetric directional coupler

Also Published As

Publication number Publication date
CN109709643A (en) 2019-05-03

Similar Documents

Publication Publication Date Title
CN103023600B (en) Multi-channel integrating light guide mode multiplexing-demultiplexing device
CN111239910B (en) A photonic lantern type degenerate module multiplexer/demultiplexer and transmission method
JP2018510375A (en) Optical fiber coupler
CN110012368A (en) A Silicon-Based Integrated On-Chip Multimode Optical Switching System Compatible with Wavelength Division Multiplexing Signals
CN113484952B (en) A three-dimensional hybrid multiplexing signal all-optical wavelength conversion device on a silicon substrate
CN104749707A (en) Weak-confined large-cross-section optical waveguide based dual-polarization mode multiplexing-demultiplexing device
CN108508539B (en) Silicon-based wavelength division multiplexer based on tapered asymmetric directional coupler
CN103091782B (en) Array waveguide grating module with polarization control
CN104918145A (en) Monolithic integrated multi-wavelength polarization multiplexer/demultiplexer
CN108519641A (en) A Reconfigurable Optical Mode Converter
WO2024174630A1 (en) Array waveguide grating
CN109709643B (en) Dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration
Jiang et al. Ultra-broadband mode splitter based on phase controlling of bridged subwavelength grating
Lin et al. Dual-mode 2× 2 thermo-optic switch based on polymer waveguide Mach-Zehnder interferometer
CN109491175B (en) Reconfigurable steering logic device based on mode multiplexing
CN104730645A (en) Multiplexer-demultiplexer for mode multiplexing-wavelength division multiplexing hybrid technology
CN104393925B (en) Transmitter module based on mode-wavelength hybrid multiplexing
CN104393926B (en) Transmitter module for mode multiplexing-wavelength division multiplexing
CN108196339B (en) An on-chip mode multiplexing and demultiplexing device
Gao et al. Compact six-mode (de) multiplexer based on cascaded asymmetric Y-junctions with mode rotators
CN103576238A (en) N-mode multiplexer/demultiplexer based on asymmetric Y-furcate structure
CN110095841A (en) A kind of mode selective attenuator based on sub-wave length grating waveguide
CN115980926A (en) A Hybrid Integrated Multimode Waveguide Coupler
CN102749679A (en) Polarization-insensitive reflective waveguide grating wavelength division multiplexing device
CN108061927B (en) A photonic crystal wavelength division mode division hybrid multiplexing demultiplexer and method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant