CN109686586B - 基于双亲性核壳结构纤维的电化学电容器及其制备方法 - Google Patents

基于双亲性核壳结构纤维的电化学电容器及其制备方法 Download PDF

Info

Publication number
CN109686586B
CN109686586B CN201811575738.5A CN201811575738A CN109686586B CN 109686586 B CN109686586 B CN 109686586B CN 201811575738 A CN201811575738 A CN 201811575738A CN 109686586 B CN109686586 B CN 109686586B
Authority
CN
China
Prior art keywords
electrochemical capacitor
electrode
electrochemical
conductive material
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811575738.5A
Other languages
English (en)
Other versions
CN109686586A (zh
Inventor
彭慧胜
付雪梅
许黎敏
黎卓尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Rongwei Industrial Co.,Ltd.
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201811575738.5A priority Critical patent/CN109686586B/zh
Publication of CN109686586A publication Critical patent/CN109686586A/zh
Application granted granted Critical
Publication of CN109686586B publication Critical patent/CN109686586B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于储能器件技术领域,具体为一种基于双亲性核壳结构的复合纤维的电化学电容器及其制备方法。本发明的电化学电容器,其中纤维电极采用特殊设计,使得器件在保证结构完整性的同时大大提升了其综合性能:在纤维电极的疏水导电材料内核引入金属纳米颗粒,可加快电子传输,降低器件的内阻;其外包裹亲水导电材料薄膜、复合高电化学活性材料,可促进水系电解液中离子与电极的接触,增大高电化学活性材料的利用率。本发明的电化学电容器比容量高、倍率性能好,并具有很高的能量密度及功率密度。此外,该器件也具有良好的柔性和可弯折性。本发明所制备的电化学电容器,在柔性电子和可穿戴设备领域有广阔的应用前景。

Description

基于双亲性核壳结构纤维的电化学电容器及其制备方法
技术领域
本发明属于储能器件技术领域,具体涉及一种电化学电容器及其制备方法。
背景技术
近年来,可穿戴设备的兴起推动了纤维状能源器件的发展。[1-3]作为纤维状能源器件的一个重要分支,纤维状超级电容器的直径一般在几十到几百微米之间,可以适应柔性应用场景下的复杂变形,还可以编织成柔软、透气、舒适的织物对各类商用电子设备充电,且充电速度快、使用寿命长,从而受到了学术界的广泛关注。[4-12]其中,纤维电极是纤维状能源器件的关键部分。通常地,碳纳米材料如碳纳米管和石墨烯经常被用来制备纤维电极,因为碳纳米材料机械强度高、电导率高、比表面积大。[13-16] 为了实现更高的能量密度和比容量,常用的方法是将碳纳米材料与赝电容性材料如金属氧化物、导电高分子进行复合制备复合纤维电极。[16, 17]然而,由于电化学氧化还原反应过程中,电子供给和离子可接近性无法同时保证,这些赝电容尤其是在大电流下的赝电容没有被完全利用。[18]因此,迫切需要发展出新型的纤维电极,可以在一根纤维电极上同时实现有效的电子供给和离子可接近性。
发明内容
本发明的目的在于提供一种综合性能优异的电化学电容器及其制备方法。
本发明提供的电化学电容器,是基于双亲性核壳结构的复合纤维材料的,其制备的具体步骤如下:
(1)高导电电极内核的制备:将疏水的导电材料薄膜,悬置于玻璃片上,再以溅射或蒸镀的方式在疏水的导电材料薄膜上沉积高导电的金属纳米颗粒,控制厚度在5~500nm(优选60-100 nm)内,然后纺成纤维,作为电极内核;
(2)高活性电极外壳的制备:借助等离子体仪或紫外臭氧清洗机处理疏水的导电材料薄膜,处理时间为1~120min(优选3-15 min),得到亲水的导电材料薄膜;用该亲水的导电材料薄膜包裹步骤(1)制备的纤维,再复合高电化学活性材料,得到双亲性核壳结构的复合纤维;
(3)电化学电容器的构建和组装:将步骤(2)制备的复合纤维涂抹上凝胶电解液,稍微晾干后缠绕在一起,再涂抹一次凝胶电解液,即可得到目标电化学电容器。
本发明步骤(1)中,所述的导电材料可采用碳纳米管、石墨烯或碳纤维;沉积的金属为金、铂、银或镍。
本发明步骤(2)中,所述的高电化学活性材料可采用导电高分子、金属氧化物或金属氢氧化物。
本发明所制备的电化学电容器,其中纤维电极的设计,使得该电化学电容器在保证结构完整性的同时大大提升了其综合性能。在纤维电极的疏水导电材料内核引入金属纳米颗粒,可加快电子传输,降低器件的内阻;其外包裹亲水导电材料薄膜,复合高电化学活性材料,可促进水系电解液中离子与电极的接触,增大高电化学活性材料的利用率。本发明的电化学电容器比容量高(0.5 A cm-3电流下比容量高达324 F cm-3)、倍率性能好(在大电流50A cm-3下比容量可达256 F cm-3,仍可保持小电流下比容量的79%);同时,具有很高的能量密度及功率密度,可分别达到7.2 mWh cm-3和10 W cm-3。此外,该器件也具有良好的柔性和可弯折性。本发明所制备的基于双亲性核壳结构的复合纤维的电化学电容器,在柔性电子和可穿戴设备领域有广阔的应用前景。
附图说明
图1为双亲性核壳结构的复合纤维电极的结构示意图。
图2为电极的形貌表征。其中,a,电极侧面扫描电子显微镜照片;b,电极截面扫描电子显微镜照片;c,电极截面金元素面扫描分布图d,对应图a中矩形虚线框的扫描电子显微镜照片。
图3为高活性纤维外壳的影响。其中,a,疏水碳纳米管外壳沉积聚苯胺的在低倍和高倍下扫描电子显微镜照片;b,亲水碳纳米管外壳沉积聚苯胺在低倍和高倍下的扫描电子显微镜照片;c,带有疏水和亲水碳纳米管外壳沉积聚苯胺电极的在扫描速度10mV s-1下的循环伏安曲线对比。
图4为高导电纤维内核的影响。其中,a, 带有疏水碳纳米管内核与金纳米颗粒修饰的疏水碳纳米管内核电极的电化学阻抗谱比较;b, 带有疏水碳纳米管内核与金纳米颗粒修饰的疏水碳纳米管内核电极的阻抗谱相位角与频率的关系对比;c,基于带有疏水碳纳米管内核与金纳米颗粒修饰的疏水碳纳米管内核电极的电化学电容器在大扫描速度200mVs-1下的循环伏安曲线比较。
图5为基于双亲性核壳结构的复合纤维的电化学电容器表征。其中,a,基于高活性外壳、高导电内核和同时具有高活性外壳与高导电内核的双亲性核壳结构的复合纤维电极的电化学电容器的电化学阻抗谱比较;b,带有高活性外壳、高导电内核和同时具有高活性外壳与高导电内核的双亲性核壳结构的复合纤维在不同电流密度下的比容量变化。
图6为基于双亲性核壳结构的复合纤维的电化学电容器在实测的最大电流密度、倍率性能、比容量、能量密度和功率密度方面与其它文献报道的纤维状电化学电容器的对比。其中,倍率性能在此处表示为相较于最小电流下的容量,最大电流下可以达到的容量保持率。
图7为基于双亲性核壳结构的复合纤维的电化学电容器的应用示范。其中,a,该电化学电容器与普通棉线编织成能源织物的光学照片;b,织物在平铺和弯曲状态下的充放电曲线;c-d,将图a中的能源织物集成到衣服中并为一块LCD屏供电。
具体实施方式
下面通过具体实施例进一步介绍本发明。
实施例1
(1)疏水取向碳纳米管薄膜的制备:用化学气相沉积法制备取向可纺多壁碳纳米管阵列,从阵列中拉出疏水的取向碳纳米管薄膜,悬置于玻璃片上;
(2)沉积高导电的金纳米颗粒:用磁控溅射的方式,在压强10Pa的条件下,在疏水碳纳米管薄膜上溅射金纳米颗粒,控制厚度为60nm。然后用纺丝机将金沉积的疏水碳纳米管薄膜纺成纤维,即得到包含有疏水碳纳米管和金的纤维内核;
(3)双亲性核壳结构的纤维的制备:将疏水碳纳米管薄膜经过等离子体仪在功率为100W的条件下处理3min,得到亲水的碳纳米管薄膜,再将该薄膜裹附于金沉积的碳纳米管纤维内核外表,得到双亲性核壳结构的纤维;
(4)高电化学活性材料的沉积:将得到的纤维在由0.75M的硫酸和0.1M苯胺构成的水系电解液中,在0.75V的电位下,以铂丝和Ag/AgCl分别为对电极和参比电极进行电化学沉积,用去离子水清洗后,得到疏水碳纳米管-金@亲水碳纳米管-聚苯胺核壳结构的复合纤维电极;
(5)电化学电容器的制备:将凝胶电解液(质量百分比: 10%磷酸、 10%聚乙烯醇、80%水)涂抹于纤维电极表面,等待电解液稍微晾干后将两个电极缠绕在一起,再补涂抹凝胶电解液即得到纤维状的电化学电容器;
(6)电化学电容器的性能测试:将制备得到的电化学电容器的两个电极分别接入电化学工作站,调用恒流充放电、循环伏安和电化学阻抗测试程序进行测试。另外,利用三电极体系测试时,工作电极为步骤(4)中制备得到的复合纤维电极,对电极和参比电极分别为铂丝和饱和甘汞电极。根据电化学性能测试曲线计算得到,在0.5 A cm-3电流下比容量为324 F cm-3;在大电流50 A cm-3下比容量为256 F cm-3,容量保持率在79%;同时,器件的能量密度及功率密度分别为7.2 mWh cm-3和10 W cm-3
实施例2
(1)疏水的还原氧化石墨烯薄膜的制备:采用改进的Hummer法制备得到氧化石墨烯悬浮液并抽滤,再将得到的滤饼真空干燥即得氧化石墨薄膜,然后在80 oC水浴条件下,在氢碘酸中还原氧化石墨烯薄膜8 h后取出,交替使用乙醇和去离子水洗涤各3次,干燥后,得到还原氧化石墨烯薄膜,悬置于玻璃片上;
(2)沉积高导电的金纳米颗粒:用磁控溅射的方式,在压强10Pa的条件下,在疏水还原氧化石墨烯薄膜上溅射金纳米颗粒,控制厚度为80 nm。然后用纺丝机将金沉积的还原氧化石墨烯薄膜纺成纤维,即得到包含有疏水还原氧化石墨烯和金的纤维内核;
(3)双亲性核壳结构的纤维的制备:将疏水还原氧化石墨烯薄膜经过等离子体仪在功率为100W的条件下处理5 min,得到亲水的还原氧化石墨烯薄膜,再将该薄膜裹附于金沉积的还原氧化石墨烯纤维内核外表,得到双亲性核壳结构的纤维;
(4)高电化学活性材料的沉积:将得到的纤维在由0.75M的硫酸和0.1M苯胺构成的水系电解液中,在0.75V的电位下,以铂丝和Ag/AgCl分别为对电极和参比电极进行电化学沉积,用去离子水清洗后,得到疏水还原氧化石墨烯-金@亲水还原氧化石墨烯-聚苯胺核壳结构的复合纤维电极;
(5)电化学电容器的制备:将凝胶电解液(质量百分比: 10%磷酸、 10%聚乙烯醇、80%水)涂抹于纤维电极表面,等待电解液稍微晾干后将两个电极缠绕在一起,再补涂抹凝胶电解液即得到纤维状的电化学电容器;
(6)电化学电容器的性能测试:将制备得到的电化学电容器的两个电极分别接入电化学工作站,调用恒流充放电、循环伏安和电化学阻抗测试程序进行测试。另外,利用三电极体系测试时,工作电极为步骤(4)中制备得到的复合纤维电极,对电极和参比电极分别为铂丝和饱和甘汞电极。根据电化学性能测试曲线计算得到,在0.5 A cm-3电流下比容量为300 F cm-3;在大电流50 A cm-3下比容量为192 F cm-3,容量保持率在64%;同时,器件的能量密度及功率密度分别为6.7mWh cm-3和10 W cm-3
实施例3
(1)疏水取向碳纳米管薄膜的制备:用化学气相沉积法制备取向可纺多壁碳纳米管阵列,从阵列中拉出疏水的取向碳纳米管薄膜,悬置于玻璃片上;
(2)沉积高导电的银纳米颗粒:用热蒸镀的方式,在压强 1×10-4Pa以下时,在疏水碳纳米管薄膜上蒸镀银纳米颗粒,控制厚度为100nm。然后用纺丝机将银沉积的疏水碳纳米管薄膜纺成纤维,即得到包含有疏水碳纳米管和银的纤维内核;
(3)双亲性核壳结构的纤维的制备:将疏水碳纳米管薄膜经过等离子体仪在功率为120W的条件下处理15min,得到亲水的碳纳米管薄膜,再将该薄膜裹附于银沉积的碳纳米管纤维内核外表,得到双亲性核壳结构的纤维;
(4)高电化学活性材料的沉积:将得到的纤维在由0.1M的醋酸锰和1.0M硫酸钠构成的水系电解液中,在0.7V的电位下,以铂丝和Ag/AgCl分别为对电极和参比电极进行电化学沉积,用去离子水清洗后,得到疏水碳纳米管-银@亲水碳纳米管-二氧化锰核壳结构的复合纤维电极;
(5)电化学电容器的制备:将凝胶电解液(质量百分比: 10%磷酸、 10%聚乙烯醇、80%水)涂抹于纤维电极表面,等待电解液稍微晾干后将两个电极缠绕在一起,再补涂抹凝胶电解液即得到纤维状的电化学电容器;
(6)电化学电容器的性能测试:将制备得到的电化学电容器的两个电极分别接入电化学工作站,调用恒流充放电、循环伏安和电化学阻抗测试程序进行测试。另外,利用三电极体系测试时,工作电极为步骤(4)中制备得到的复合纤维电极,对电极和参比电极分别为铂丝和饱和甘汞电极。根据电化学性能测试曲线计算得到,在0.5 A cm-3电流下比容量为459 F cm-3;在大电流50 A cm-3下比容量为234 F cm-3,容量保持率在51%;同时,器件的能量密度及功率密度分别为10.2mWh cm-3和10 W cm-3
参考文献
[1] Wu, G.; Tan, P.; Wu, X.; Peng, L.; Cheng, H.; Wang, C. F.; Chen,W.; Yu, Z.; Chen, S. Adv. Funct. Mater.2017, 27, 1702493.
[2] Wang, L.; Wang, L.; Zhang, Y.; Pan, J.; Li, S.; Sun, X.; Zhang,B.; Peng, H. Adv. Funct. Mater.2018, 28, 1804456.
[3] Liu, P.; Gao, Z.; Xu, L.; Shi, X.; Fu, X.; Li, K.; Zhang, B.;Sun, X.; Peng, H. J. Mater. Chem. A2018, 6, 19947-19953.
[4] Wang, X.; Zhang, Q.; Sun, J.; Zhou, Z.; Li, Q.; He, B.; Zhao, J.;Lu, W.; Wong, C.-P.; Yao, Y. J. Mater. Chem. A2018, 6, 8030-8038.
[5] Lee, J. A.; Shin, M. K.; Kim, S. H.; Cho, H. U.; Spinks, G. M.;Wallace, G. G.; Lima, M. D.; Lepro, X.; Kozlov, M. E.; Baughman, R. H.; Kim,S. J. Nat. Commun.2013, 4, 1970.
[6] Sun, H.; Zhang, Y.; Zhang, J.; Sun, X.; Peng, H. Nat. Rev. Mater.2017, 2, 17023.
[7]Tao, J.; Liu, N.; Ma, W.; Ding, L.; Li, L.; Su, J.; Gao, Y. Sci. Rep.2013, 3, 2286.
[8]Liu, L.; Yu, Y.; Yan, C.; Li, K.; Zheng, Z. Nat. Commun.2015, 6,7260.
[9]Li, G.-X.; Hou, P.-X.; Luan, J.; Li, J.-C.; Li, X.; Wang, H.; Shi,C.; Liu, C.; Cheng, H.-M. Carbon2018, 140, 634-643.
[10]Sun, Y.; Sills, R. B.; Hu, X.; Seh, Z. W.; Xiao, X.; Xu, H.; Luo,W.; Jin, H.; Xin, Y.; Li, T.; Zhang, Z.; Zhou, J.; Cai, W.; Huang, Y.; Cui,Y. Nano Lett.2015, 15, 3899-3906.
[11]Yu, D.; Zhai, S.; Jiang, W.; Goh, K.; Wei, L.; Chen, X.; Jiang,R.; Chen, Y. Adv. Mater.2015, 27, 4895-4901.
[12] PadmajanSasikala, S.; Lee, K. E.; Lim, J.; Lee, H. J.; Koo, S.H.; Kim, I. H.; Jung, H.; J.; Kim, S. O. ACS Nano2017, 11, 9424-9434.
[13]Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.;Sun, H.; Gao, C. Nat. Commun.2014, 5, 3754.
[14]Liang, Y.; Wang, Z.; Huang, J.; Cheng, H.; Zhao, F.; Hu, Y.;Jiang, L.; Qu, L. J. Mater. Chem. A2015, 3, 2547-2551.
[15]Lima, M. D.; Fang, S.; Lepró, X.; Lewis, C.; Ovalle-Robles, R.;Carretero-González, J.; Castillo-Martínez, E.; Kozlov, M. E.; Oh, J.; Rawat,N.,Haines, C. S.; Haque, M. H.; Aare, V.; Stoughton, S.; Zakhidov, A. A.;Baughman, R. H. Science2011, 331, 51-55.
[16]Sun, H.; Fu, X.; Xie, S.; Jiang, Y.; Peng, H. Adv. Mater.2016,28, 2070-2076.
[17]Kim, J. H.; Choi, C.; Lee, J. M.; de Andrade, M. J.; Baughman, R.H.; Kim, S. J. Sci. Rep.2018, 8, 13309.
[18]Lukatskaya, M. R.; Kota, S.; Lin, Z.; Zhao, M.-Q.; Shpigel, N.;Levi, M. D.; Halim, J.; Taberna, P.-L.; Barsoum, M. W.; Simon, P.; Gogotsi,Y. Nat. Energy2017, 2, 17105.。

Claims (5)

1.一种基于双亲性核壳结构的复合纤维的电化学电容器的制备方法,其特征在于,具体步骤为:
(1)高导电电极内核的制备:将疏水的导电材料薄膜悬置于玻璃片上,再以溅射或蒸镀的方式在疏水的导电材料薄膜上沉积高导电的金属纳米颗粒,控制厚度在5~500nm内,然后纺成纤维,作为电极内核;
(2)高活性电极外壳的制备:借助等离子体仪或紫外臭氧清洗机处理疏水的导电材料薄膜,处理时间为1~120min,得到亲水的导电材料薄膜;用亲水的导电材料薄膜包裹步骤(1)制备的纤维,再复合高电化学活性材料,得到双亲性核壳结构的复合纤维;
(3)电化学电容器的构建和组装:将步骤(2)制备的复合纤维涂抹上凝胶电解液,晾干后缠绕在一起,再涂抹一次凝胶电解液,即得到电化学电容器。
2.根据权利要求1所述的电化学电容器的制备方法,其特征在于,步骤(1)中所述的导电材料为碳纳米管、石墨烯或碳纤维;沉积的金属为金、铂、银或镍。
3.根据权利要求1所述的电化学电容器的制备方法,其特征在于,步骤(2)中所述的高电化学活性材料为导电高分子、金属氧化物或金属氢氧化物。
4.由权利要求1-3之一所述的制备方法制备得到的电化学电容器。
5. 根据权利要求4所述的电化学电容器,在0.5 A cm-3电流下比容量达324 F cm-3;在大电流50A cm-3下比容量达256 F cm-3,仍可保持小电流下比容量的79%;能量密度达到7.2mWh cm-3,功率密度达到10 W cm-3;并具有良好的柔性和可弯折性。
CN201811575738.5A 2018-12-22 2018-12-22 基于双亲性核壳结构纤维的电化学电容器及其制备方法 Active CN109686586B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811575738.5A CN109686586B (zh) 2018-12-22 2018-12-22 基于双亲性核壳结构纤维的电化学电容器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811575738.5A CN109686586B (zh) 2018-12-22 2018-12-22 基于双亲性核壳结构纤维的电化学电容器及其制备方法

Publications (2)

Publication Number Publication Date
CN109686586A CN109686586A (zh) 2019-04-26
CN109686586B true CN109686586B (zh) 2021-07-23

Family

ID=66188940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811575738.5A Active CN109686586B (zh) 2018-12-22 2018-12-22 基于双亲性核壳结构纤维的电化学电容器及其制备方法

Country Status (1)

Country Link
CN (1) CN109686586B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140048A (zh) * 2015-09-11 2015-12-09 复旦大学 一种连续制备复合纤维状超级电容器的方法
CN105350130A (zh) * 2015-09-28 2016-02-24 复旦大学 水驱动的多级管道碳纳米管纤维及其制备方法
CN106229160A (zh) * 2016-09-26 2016-12-14 常州大学 一种高功率的可拉伸超级电容器及其制备方法
CN108831752A (zh) * 2018-06-20 2018-11-16 苏州大学 一种芳纶纤维电化学电容器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140048A (zh) * 2015-09-11 2015-12-09 复旦大学 一种连续制备复合纤维状超级电容器的方法
CN105350130A (zh) * 2015-09-28 2016-02-24 复旦大学 水驱动的多级管道碳纳米管纤维及其制备方法
CN106229160A (zh) * 2016-09-26 2016-12-14 常州大学 一种高功率的可拉伸超级电容器及其制备方法
CN108831752A (zh) * 2018-06-20 2018-11-16 苏州大学 一种芳纶纤维电化学电容器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A fiber-shaped solar cell showing a record power conversion efficiency of 10%;Huisheng Peng等;《Journal of Materials Chemistry A》;20171127;45-51页 *

Also Published As

Publication number Publication date
CN109686586A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
Hu et al. MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application
US10950392B2 (en) High performance nano/micro composite fiber capable of storing electrical energy and method for fabricating thereof
Wang et al. Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites
Lyu et al. Two-ply yarn supercapacitor based on carbon nanotube/stainless steel core-sheath yarn electrodes and ionic liquid electrolyte
Zhang et al. Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes
CN103718360B (zh) 用于燃料电池的聚合物电解质膜和制备该聚合物电解质膜的方法
Lai et al. Scalable fabrication of highly crosslinked conductive nanofibrous films and their applications in energy storage and electromagnetic interference shielding
US20110242731A1 (en) Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
Hong et al. One-step production of continuous supercapacitor fibers for a flexible power textile
WO2013100412A1 (ko) 실 형태의 마이크로-슈퍼커패시터 및 그 제조 방법
Zhou et al. Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers
Wang et al. High performance two-ply carbon nanocomposite yarn supercapacitors enhanced with a platinum filament and in situ polymerized polyaniline nanowires
CN106207124A (zh) 石墨烯包覆的硅/碳纳米复合纳米纤维膜及其应用
CN102403050A (zh) 基于纳米复合材料及其制备方法和在柔性储能器件的应用
Zhang et al. Preparation of inflorescence-like ACNF/PANI/NiO composite with three-dimension nanostructure for high performance supercapacitors
Ghanashyam et al. Plasma treated carbon nanofiber for flexible supercapacitors
Zhang et al. A high-performance all-solid-state yarn supercapacitor based on polypyrrole-coated stainless steel/cotton blended yarns
CN104638294B (zh) 一种纳米掺杂网格图案化凝胶聚合物电解质的制备方法
CN108109855B (zh) 一种基于复合纱线的柔性超级电容器的制备方法
CN112323498A (zh) 一种多功能织物及其制备方法和应用
Zhang et al. Continuous carbon nanotube composite fibers for flexible aqueous lithium-ion batteries
Wang et al. High-performance yarn supercapacitor based on directly twisted carbon nanotube@ bacterial cellulose membrane
Wang et al. Reliable coaxial wet spinning strategy to fabricate flexible MnO2-based fiber supercapacitors
Wei et al. Ultra-flexible and foldable gel polymer lithium–ion batteries enabling scalable production
CN110136994B (zh) 一种高能量密度的纤维状超级电容器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211215

Address after: 200335 room a710, No. 268, Tongxie Road, Changning District, Shanghai

Patentee after: Shanghai Rongwei Industrial Co.,Ltd.

Address before: 200433 No. 220, Handan Road, Shanghai, Yangpu District

Patentee before: FUDAN University