CN109686586A - 基于双亲性核壳结构纤维的电化学电容器及其制备方法 - Google Patents
基于双亲性核壳结构纤维的电化学电容器及其制备方法 Download PDFInfo
- Publication number
- CN109686586A CN109686586A CN201811575738.5A CN201811575738A CN109686586A CN 109686586 A CN109686586 A CN 109686586A CN 201811575738 A CN201811575738 A CN 201811575738A CN 109686586 A CN109686586 A CN 109686586A
- Authority
- CN
- China
- Prior art keywords
- electrochemical capacitor
- preparation
- electrochemical
- electrode
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 57
- 239000003990 capacitor Substances 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 28
- 239000011258 core-shell material Substances 0.000 title claims abstract description 23
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 35
- 239000002131 composite material Substances 0.000 claims abstract description 18
- 230000000694 effects Effects 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 14
- 239000004020 conductor Substances 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 6
- 239000002082 metal nanoparticle Substances 0.000 claims abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 40
- 239000010408 film Substances 0.000 claims description 18
- 229910052737 gold Inorganic materials 0.000 claims description 18
- 239000010931 gold Substances 0.000 claims description 18
- 239000002041 carbon nanotube Substances 0.000 claims description 17
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 17
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 16
- 229910021389 graphene Inorganic materials 0.000 claims description 13
- 230000008021 deposition Effects 0.000 claims description 12
- 229910052697 platinum Inorganic materials 0.000 claims description 8
- 239000010409 thin film Substances 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 7
- 239000011245 gel electrolyte Substances 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 239000005357 flat glass Substances 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 239000002322 conducting polymer Substances 0.000 claims description 3
- 229920001940 conductive polymer Polymers 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 2
- 239000004917 carbon fiber Substances 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000010422 painting Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 239000011149 active material Substances 0.000 claims 1
- 239000002305 electric material Substances 0.000 claims 1
- 229910000000 metal hydroxide Inorganic materials 0.000 claims 1
- 150000004692 metal hydroxides Chemical class 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 abstract description 8
- 238000004146 energy storage Methods 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000002238 carbon nanotube film Substances 0.000 description 8
- 235000013339 cereals Nutrition 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 230000005611 electricity Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 229920000767 polyaniline Polymers 0.000 description 5
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- RRKGBEPNZRCDAP-UHFFFAOYSA-N [C].[Ag] Chemical compound [C].[Ag] RRKGBEPNZRCDAP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/40—Fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Carbon And Carbon Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明属于储能器件技术领域,具体为一种基于双亲性核壳结构的复合纤维的电化学电容器及其制备方法。本发明的电化学电容器,其中纤维电极采用特殊设计,使得器件在保证结构完整性的同时大大提升了其综合性能:在纤维电极的疏水导电材料内核引入金属纳米颗粒,可加快电子传输,降低器件的内阻;其外包裹亲水导电材料薄膜、复合高电化学活性材料,可促进水系电解液中离子与电极的接触,增大高电化学活性材料的利用率。本发明的电化学电容器比容量高、倍率性能好,并具有很高的能量密度及功率密度。此外,该器件也具有良好的柔性和可弯折性。本发明所制备的电化学电容器,在柔性电子和可穿戴设备领域有广阔的应用前景。
Description
技术领域
本发明属于储能器件技术领域,具体涉及一种电化学电容器及其制备方法。
背景技术
近年来,可穿戴设备的兴起推动了纤维状能源器件的发展。[1-3]作为纤维状能源器件的一个重要分支,纤维状超级电容器的直径一般在几十到几百微米之间,可以适应柔性应用场景下的复杂变形,还可以编织成柔软、透气、舒适的织物对各类商用电子设备充电,且充电速度快、使用寿命长,从而受到了学术界的广泛关注。[4-12]其中,纤维电极是纤维状能源器件的关键部分。通常地,碳纳米材料如碳纳米管和石墨烯经常被用来制备纤维电极,因为碳纳米材料机械强度高、电导率高、比表面积大。[13-16] 为了实现更高的能量密度和比容量,常用的方法是将碳纳米材料与赝电容性材料如金属氧化物、导电高分子进行复合制备复合纤维电极。[16, 17]然而,由于电化学氧化还原反应过程中,电子供给和离子可接近性无法同时保证,这些赝电容尤其是在大电流下的赝电容没有被完全利用。[18]因此,迫切需要发展出新型的纤维电极,可以在一根纤维电极上同时实现有效的电子供给和离子可接近性。
发明内容
本发明的目的在于提供一种综合性能优异的电化学电容器及其制备方法。
本发明提供的电化学电容器,是基于双亲性核壳结构的复合纤维材料的,其制备的具体步骤如下:
(1)高导电电极内核的制备:将疏水的导电材料薄膜,悬置于玻璃片上,再以溅射或蒸镀的方式在疏水的导电材料薄膜上沉积高导电的金属纳米颗粒,控制厚度在5~500nm(优选60-100 nm)内,然后纺成纤维,作为电极内核;
(2)高活性电极外壳的制备:借助等离子体仪或紫外臭氧清洗机处理疏水的导电材料薄膜,处理时间为1~120min(优选3-15 min),得到亲水的导电材料薄膜;用该亲水的导电材料薄膜包裹步骤(1)制备的纤维,再复合高电化学活性材料,得到双亲性核壳结构的复合纤维;
(3)电化学电容器的构建和组装:将步骤(2)制备的复合纤维涂抹上凝胶电解液,稍微晾干后缠绕在一起,再涂抹一次凝胶电解液,即可得到目标电化学电容器。
本发明步骤(1)中,所述的导电材料可采用碳纳米管、石墨烯或碳纤维;沉积的金属为金、铂、银或镍。
本发明步骤(2)中,所述的高电化学活性材料可采用导电高分子、金属氧化物或金属氢氧化物。
本发明所制备的电化学电容器,其中纤维电极的设计,使得该电化学电容器在保证结构完整性的同时大大提升了其综合性能。在纤维电极的疏水导电材料内核引入金属纳米颗粒,可加快电子传输,降低器件的内阻;其外包裹亲水导电材料薄膜,复合高电化学活性材料,可促进水系电解液中离子与电极的接触,增大高电化学活性材料的利用率。本发明的电化学电容器比容量高(0.5 A cm-3电流下比容量高达324 F cm-3)、倍率性能好(在大电流50A cm-3下比容量可达256 F cm-3,仍可保持小电流下比容量的79%);同时,具有很高的能量密度及功率密度,可分别达到7.2 mWh cm-3和10 W cm-3。此外,该器件也具有良好的柔性和可弯折性。本发明所制备的基于双亲性核壳结构的复合纤维的电化学电容器,在柔性电子和可穿戴设备领域有广阔的应用前景。
附图说明
图1为双亲性核壳结构的复合纤维电极的结构示意图。
图2为电极的形貌表征。其中,a,电极侧面扫描电子显微镜照片;b,电极截面扫描电子显微镜照片;c,电极截面金元素面扫描分布图d,对应图a中矩形虚线框的扫描电子显微镜照片。
图3为高活性纤维外壳的影响。其中,a,疏水碳纳米管外壳沉积聚苯胺的在低倍和高倍下扫描电子显微镜照片;b,亲水碳纳米管外壳沉积聚苯胺在低倍和高倍下的扫描电子显微镜照片;c,带有疏水和亲水碳纳米管外壳沉积聚苯胺电极的在扫描速度10mV s-1下的循环伏安曲线对比。
图4为高导电纤维内核的影响。其中,a, 带有疏水碳纳米管内核与金纳米颗粒修饰的疏水碳纳米管内核电极的电化学阻抗谱比较;b, 带有疏水碳纳米管内核与金纳米颗粒修饰的疏水碳纳米管内核电极的阻抗谱相位角与频率的关系对比;c,基于带有疏水碳纳米管内核与金纳米颗粒修饰的疏水碳纳米管内核电极的电化学电容器在大扫描速度200mVs-1下的循环伏安曲线比较。
图5为基于双亲性核壳结构的复合纤维的电化学电容器表征。其中,a,基于高活性外壳、高导电内核和同时具有高活性外壳与高导电内核的双亲性核壳结构的复合纤维电极的电化学电容器的电化学阻抗谱比较;b,带有高活性外壳、高导电内核和同时具有高活性外壳与高导电内核的双亲性核壳结构的复合纤维在不同电流密度下的比容量变化。
图6为基于双亲性核壳结构的复合纤维的电化学电容器在实测的最大电流密度、倍率性能、比容量、能量密度和功率密度方面与其它文献报道的纤维状电化学电容器的对比。其中,倍率性能在此处表示为相较于最小电流下的容量,最大电流下可以达到的容量保持率。
图7为基于双亲性核壳结构的复合纤维的电化学电容器的应用示范。其中,a,该电化学电容器与普通棉线编织成能源织物的光学照片;b,织物在平铺和弯曲状态下的充放电曲线;c-d,将图a中的能源织物集成到衣服中并为一块LCD屏供电。
具体实施方式
下面通过具体实施例进一步介绍本发明。
实施例1
(1)疏水取向碳纳米管薄膜的制备:用化学气相沉积法制备取向可纺多壁碳纳米管阵列,从阵列中拉出疏水的取向碳纳米管薄膜,悬置于玻璃片上;
(2)沉积高导电的金纳米颗粒:用磁控溅射的方式,在压强10Pa的条件下,在疏水碳纳米管薄膜上溅射金纳米颗粒,控制厚度为60nm。然后用纺丝机将金沉积的疏水碳纳米管薄膜纺成纤维,即得到包含有疏水碳纳米管和金的纤维内核;
(3)双亲性核壳结构的纤维的制备:将疏水碳纳米管薄膜经过等离子体仪在功率为100W的条件下处理3min,得到亲水的碳纳米管薄膜,再将该薄膜裹附于金沉积的碳纳米管纤维内核外表,得到双亲性核壳结构的纤维;
(4)高电化学活性材料的沉积:将得到的纤维在由0.75M的硫酸和0.1M苯胺构成的水系电解液中,在0.75V的电位下,以铂丝和Ag/AgCl分别为对电极和参比电极进行电化学沉积,用去离子水清洗后,得到疏水碳纳米管-金@亲水碳纳米管-聚苯胺核壳结构的复合纤维电极;
(5)电化学电容器的制备:将凝胶电解液(质量百分比: 10%磷酸、 10%聚乙烯醇、80%水)涂抹于纤维电极表面,等待电解液稍微晾干后将两个电极缠绕在一起,再补涂抹凝胶电解液即得到纤维状的电化学电容器;
(6)电化学电容器的性能测试:将制备得到的电化学电容器的两个电极分别接入电化学工作站,调用恒流充放电、循环伏安和电化学阻抗测试程序进行测试。另外,利用三电极体系测试时,工作电极为步骤(4)中制备得到的复合纤维电极,对电极和参比电极分别为铂丝和饱和甘汞电极。根据电化学性能测试曲线计算得到,在0.5 A cm-3电流下比容量为324F cm-3;在大电流50 A cm-3下比容量为256 F cm-3,容量保持率在79%;同时,器件的能量密度及功率密度分别为7.2 mWh cm-3和10 W cm-3。
实施例2
(1)疏水的还原氧化石墨烯薄膜的制备:采用改进的Hummer法制备得到氧化石墨烯悬浮液并抽滤,再将得到的滤饼真空干燥即得氧化石墨薄膜,然后在80 oC水浴条件下,在氢碘酸中还原氧化石墨烯薄膜8 h后取出,交替使用乙醇和去离子水洗涤各3次,干燥后,得到还原氧化石墨烯薄膜,悬置于玻璃片上;
(2)沉积高导电的金纳米颗粒:用磁控溅射的方式,在压强10Pa的条件下,在疏水还原氧化石墨烯薄膜上溅射金纳米颗粒,控制厚度为80 nm。然后用纺丝机将金沉积的还原氧化石墨烯薄膜纺成纤维,即得到包含有疏水还原氧化石墨烯和金的纤维内核;
(3)双亲性核壳结构的纤维的制备:将疏水还原氧化石墨烯薄膜经过等离子体仪在功率为100W的条件下处理5 min,得到亲水的还原氧化石墨烯薄膜,再将该薄膜裹附于金沉积的还原氧化石墨烯纤维内核外表,得到双亲性核壳结构的纤维;
(4)高电化学活性材料的沉积:将得到的纤维在由0.75M的硫酸和0.1M苯胺构成的水系电解液中,在0.75V的电位下,以铂丝和Ag/AgCl分别为对电极和参比电极进行电化学沉积,用去离子水清洗后,得到疏水还原氧化石墨烯-金@亲水还原氧化石墨烯-聚苯胺核壳结构的复合纤维电极;
(5)电化学电容器的制备:将凝胶电解液(质量百分比: 10%磷酸、 10%聚乙烯醇、80%水)涂抹于纤维电极表面,等待电解液稍微晾干后将两个电极缠绕在一起,再补涂抹凝胶电解液即得到纤维状的电化学电容器;
(6)电化学电容器的性能测试:将制备得到的电化学电容器的两个电极分别接入电化学工作站,调用恒流充放电、循环伏安和电化学阻抗测试程序进行测试。另外,利用三电极体系测试时,工作电极为步骤(4)中制备得到的复合纤维电极,对电极和参比电极分别为铂丝和饱和甘汞电极。根据电化学性能测试曲线计算得到,在0.5 A cm-3电流下比容量为300F cm-3;在大电流50 A cm-3下比容量为192 F cm-3,容量保持率在64%;同时,器件的能量密度及功率密度分别为6.7mWh cm-3和10 W cm-3。
实施例3
(1)疏水取向碳纳米管薄膜的制备:用化学气相沉积法制备取向可纺多壁碳纳米管阵列,从阵列中拉出疏水的取向碳纳米管薄膜,悬置于玻璃片上;
(2)沉积高导电的银纳米颗粒:用热蒸镀的方式,在压强 1×10-4Pa以下时,在疏水碳纳米管薄膜上蒸镀银纳米颗粒,控制厚度为100nm。然后用纺丝机将银沉积的疏水碳纳米管薄膜纺成纤维,即得到包含有疏水碳纳米管和银的纤维内核;
(3)双亲性核壳结构的纤维的制备:将疏水碳纳米管薄膜经过等离子体仪在功率为120W的条件下处理15min,得到亲水的碳纳米管薄膜,再将该薄膜裹附于银沉积的碳纳米管纤维内核外表,得到双亲性核壳结构的纤维;
(4)高电化学活性材料的沉积:将得到的纤维在由0.1M的醋酸锰和1.0M硫酸钠构成的水系电解液中,在0.7V的电位下,以铂丝和Ag/AgCl分别为对电极和参比电极进行电化学沉积,用去离子水清洗后,得到疏水碳纳米管-银@亲水碳纳米管-二氧化锰核壳结构的复合纤维电极;
(5)电化学电容器的制备:将凝胶电解液(质量百分比: 10%磷酸、 10%聚乙烯醇、80%水)涂抹于纤维电极表面,等待电解液稍微晾干后将两个电极缠绕在一起,再补涂抹凝胶电解液即得到纤维状的电化学电容器;
(6)电化学电容器的性能测试:将制备得到的电化学电容器的两个电极分别接入电化学工作站,调用恒流充放电、循环伏安和电化学阻抗测试程序进行测试。另外,利用三电极体系测试时,工作电极为步骤(4)中制备得到的复合纤维电极,对电极和参比电极分别为铂丝和饱和甘汞电极。根据电化学性能测试曲线计算得到,在0.5 A cm-3电流下比容量为459F cm-3;在大电流50 A cm-3下比容量为234 F cm-3,容量保持率在51%;同时,器件的能量密度及功率密度分别为10.2mWh cm-3和10 W cm-3。
参考文献
[1] Wu, G.; Tan, P.; Wu, X.; Peng, L.; Cheng, H.; Wang, C. F.; Chen, W.;Yu, Z.; Chen, S. Adv. Funct. Mater.2017, 27, 1702493.
[2] Wang, L.; Wang, L.; Zhang, Y.; Pan, J.; Li, S.; Sun, X.; Zhang, B.;Peng, H. Adv. Funct. Mater.2018, 28, 1804456.
[3] Liu, P.; Gao, Z.; Xu, L.; Shi, X.; Fu, X.; Li, K.; Zhang, B.; Sun,X.; Peng, H. J. Mater. Chem. A2018, 6, 19947-19953.
[4] Wang, X.; Zhang, Q.; Sun, J.; Zhou, Z.; Li, Q.; He, B.; Zhao, J.; Lu,W.; Wong, C.-P.; Yao, Y. J. Mater. Chem. A2018, 6, 8030-8038.
[5] Lee, J. A.; Shin, M. K.; Kim, S. H.; Cho, H. U.; Spinks, G. M.;Wallace, G. G.; Lima, M. D.; Lepro, X.; Kozlov, M. E.; Baughman, R. H.; Kim,S. J. Nat. Commun.2013, 4, 1970.
[6] Sun, H.; Zhang, Y.; Zhang, J.; Sun, X.; Peng, H. Nat. Rev. Mater.2017, 2, 17023.
[7]Tao, J.; Liu, N.; Ma, W.; Ding, L.; Li, L.; Su, J.; Gao, Y. Sci. Rep.2013, 3, 2286.
[8]Liu, L.; Yu, Y.; Yan, C.; Li, K.; Zheng, Z. Nat. Commun.2015, 6, 7260.
[9]Li, G.-X.; Hou, P.-X.; Luan, J.; Li, J.-C.; Li, X.; Wang, H.; Shi, C.;Liu, C.; Cheng, H.-M. Carbon2018, 140, 634-643.
[10]Sun, Y.; Sills, R. B.; Hu, X.; Seh, Z. W.; Xiao, X.; Xu, H.; Luo, W.;Jin, H.; Xin, Y.; Li, T.; Zhang, Z.; Zhou, J.; Cai, W.; Huang, Y.; Cui, Y.Nano Lett.2015, 15, 3899-3906.
[11]Yu, D.; Zhai, S.; Jiang, W.; Goh, K.; Wei, L.; Chen, X.; Jiang, R.;Chen, Y. Adv. Mater.2015, 27, 4895-4901.
[12] PadmajanSasikala, S.; Lee, K. E.; Lim, J.; Lee, H. J.; Koo, S. H.;Kim, I. H.; Jung, H.; J.; Kim, S. O. ACS Nano2017, 11, 9424-9434.
[13]Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun,H.; Gao, C. Nat. Commun.2014, 5, 3754.
[14]Liang, Y.; Wang, Z.; Huang, J.; Cheng, H.; Zhao, F.; Hu, Y.; Jiang,L.; Qu, L. J. Mater. Chem. A2015, 3, 2547-2551.
[15]Lima, M. D.; Fang, S.; Lepró, X.; Lewis, C.; Ovalle-Robles, R.;Carretero-González, J.; Castillo-Martínez, E.; Kozlov, M. E.; Oh, J.; Rawat,N.,Haines, C. S.; Haque, M. H.; Aare, V.; Stoughton, S.; Zakhidov, A. A.;Baughman, R. H. Science2011, 331, 51-55.
[16]Sun, H.; Fu, X.; Xie, S.; Jiang, Y.; Peng, H. Adv. Mater.2016, 28,2070-2076.
[17]Kim, J. H.; Choi, C.; Lee, J. M.; de Andrade, M. J.; Baughman, R. H.;Kim, S. J. Sci. Rep.2018, 8, 13309.
[18]Lukatskaya, M. R.; Kota, S.; Lin, Z.; Zhao, M.-Q.; Shpigel, N.; Levi,M. D.; Halim, J.; Taberna, P.-L.; Barsoum, M. W.; Simon, P.; Gogotsi, Y. Nat. Energy2017, 2, 17105.。
Claims (5)
1.一种基于双亲性核壳结构的复合纤维的电化学电容器的制备方法,其特征在于,具体步骤为:
(1)高导电电极内核的制备:将疏水的导电材料薄膜悬置于玻璃片上,再以溅射或蒸镀的方式在疏水的导电材料薄膜上沉积高导电的金属纳米颗粒,控制厚度在5~500nm内,然后纺成纤维,作为电极内核;
(2)高活性电极外壳的制备:借助等离子体仪或紫外臭氧清洗机处理疏水的导电材料薄膜,处理时间为1~120min,得到亲水的导电材料薄膜;用亲水的导电材料薄膜包裹步骤(1)制备的纤维,再复合高电化学活性材料,得到双亲性核壳结构的复合纤维;
(3)电化学电容器的构建和组装:将步骤(2)制备的复合纤维涂抹上凝胶电解液,晾干后缠绕在一起,再涂抹一次凝胶电解液,即得到电化学电容器。
2.根据权利要求1所述的电化学电容器的制备方法,其特征在于,步骤(1)中所述的导电材料为碳纳米管、石墨烯或碳纤维;沉积的金属为金、铂、银或镍。
3.根据权利要求1所述的电化学电容器的制备方法,其特征在于,步骤(2)中所述的高电化学活性材料为导电高分子、金属氧化物或金属氢氧化物。
4.由权利要求1-3之一所述的制备方法制备得到的电化学电容器。
5. 根据权利要求4所述的电化学电容器,在0.5 A cm-3电流下比容量达324 F cm-3;在大电流50A cm-3下比容量达256 F cm-3,仍可保持小电流下比容量的79%;能量密度达到7.2mWh cm-3,功率密度达到10 W cm-3;并具有良好的柔性和可弯折性。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811575738.5A CN109686586B (zh) | 2018-12-22 | 2018-12-22 | 基于双亲性核壳结构纤维的电化学电容器及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811575738.5A CN109686586B (zh) | 2018-12-22 | 2018-12-22 | 基于双亲性核壳结构纤维的电化学电容器及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109686586A true CN109686586A (zh) | 2019-04-26 |
CN109686586B CN109686586B (zh) | 2021-07-23 |
Family
ID=66188940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811575738.5A Active CN109686586B (zh) | 2018-12-22 | 2018-12-22 | 基于双亲性核壳结构纤维的电化学电容器及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109686586B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105140048A (zh) * | 2015-09-11 | 2015-12-09 | 复旦大学 | 一种连续制备复合纤维状超级电容器的方法 |
CN105350130A (zh) * | 2015-09-28 | 2016-02-24 | 复旦大学 | 水驱动的多级管道碳纳米管纤维及其制备方法 |
CN106229160A (zh) * | 2016-09-26 | 2016-12-14 | 常州大学 | 一种高功率的可拉伸超级电容器及其制备方法 |
CN108831752A (zh) * | 2018-06-20 | 2018-11-16 | 苏州大学 | 一种芳纶纤维电化学电容器及其制备方法 |
-
2018
- 2018-12-22 CN CN201811575738.5A patent/CN109686586B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105140048A (zh) * | 2015-09-11 | 2015-12-09 | 复旦大学 | 一种连续制备复合纤维状超级电容器的方法 |
CN105350130A (zh) * | 2015-09-28 | 2016-02-24 | 复旦大学 | 水驱动的多级管道碳纳米管纤维及其制备方法 |
CN106229160A (zh) * | 2016-09-26 | 2016-12-14 | 常州大学 | 一种高功率的可拉伸超级电容器及其制备方法 |
CN108831752A (zh) * | 2018-06-20 | 2018-11-16 | 苏州大学 | 一种芳纶纤维电化学电容器及其制备方法 |
Non-Patent Citations (1)
Title |
---|
HUISHENG PENG等: "A fiber-shaped solar cell showing a record power conversion efficiency of 10%", 《JOURNAL OF MATERIALS CHEMISTRY A》 * |
Also Published As
Publication number | Publication date |
---|---|
CN109686586B (zh) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application | |
Krishnamoorthy et al. | Titanium carbide sheet based high performance wire type solid state supercapacitors | |
Kumar et al. | Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT: PSS/reduced-graphene oxide | |
Pullanchiyodan et al. | Metal coated conductive fabrics with graphite electrodes and biocompatible gel electrolyte for wearable supercapacitors | |
Miao et al. | Electrospinning of nanomaterials and applications in electronic components and devices | |
Senthilkumar et al. | Advances and prospects of fiber supercapacitors | |
Wang et al. | Graphene oxide-assisted deposition of carbon nanotubes on carbon cloth as advanced binder-free electrodes for flexible supercapacitors | |
Karami et al. | An efficient textile-based electrode utilizing silver nanoparticles/reduced graphene oxide/cotton fabric composite for high-performance wearable supercapacitors | |
Zhou et al. | Highly stable multi-wall carbon nanotubes@ poly (3, 4-ethylenedioxythiophene)/poly (styrene sulfonate) core–shell composites with three-dimensional porous nano-network for electrochemical capacitors | |
CN104795252B (zh) | 超薄Ti3C2纳米片自组装的超级电容器电极的制备方法 | |
Liu et al. | NiO/LaNiO3 film electrode with binder-free for high performance supercapacitor | |
Shi et al. | Low cost and flexible mesh-based supercapacitors for promising large-area flexible/wearable energy storage | |
Anjum et al. | Humidity-modulated properties of hydrogel polymer electrolytes for flexible supercapacitors | |
KR101041931B1 (ko) | 리빙 고분자로 그라프트되어 개질된 탄소나노튜브를 이용한 염료감응형 태양전지 전극 및 그 제조 방법 | |
CN102436934A (zh) | 复合纳米碳纸及其制备方法 | |
Pan et al. | Nylon-graphene composite nonwovens as monolithic conductive or capacitive fabrics | |
Kwon et al. | Electrochemical performance evaluation of tin oxide nanorod‐embedded woven carbon fiber composite supercapacitor | |
Li et al. | A monolithic integrated ultra-flexible all-solid-state supercapacitor based on a polyaniline conducting polymer | |
Li et al. | TiO 2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO 2 asymmetric supercapacitors | |
Wu et al. | A high performance flexible recyclable supercapacitor with polyaniline by casting in unconventional proportion | |
CN108682559B (zh) | 一种导电共聚体修饰的MWCNTs/硫化钼三元复合电极及其制备方法 | |
CN105448536B (zh) | 氧化镍/氧化钛纳米复合材料及其制备方法和储能应用 | |
Zhang et al. | Continuous carbon nanotube composite fibers for flexible aqueous lithium-ion batteries | |
KR101198307B1 (ko) | 탄소나노튜브 마이크로볼의 제조방법, 이에 의해 제조된 탄소나노튜브 마이크로볼 및 이를 이용한 전극의 제조방법 | |
Jiang et al. | Development of flexible supercapacitors with coplanar integrated multi-walled carbon nanotubes/textile electrode and current collectors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211215 Address after: 200335 room a710, No. 268, Tongxie Road, Changning District, Shanghai Patentee after: Shanghai Rongwei Industrial Co.,Ltd. Address before: 200433 No. 220, Handan Road, Shanghai, Yangpu District Patentee before: FUDAN University |