CN109678534A - 钢包炉衬用铝镁碳砖 - Google Patents

钢包炉衬用铝镁碳砖 Download PDF

Info

Publication number
CN109678534A
CN109678534A CN201811543461.8A CN201811543461A CN109678534A CN 109678534 A CN109678534 A CN 109678534A CN 201811543461 A CN201811543461 A CN 201811543461A CN 109678534 A CN109678534 A CN 109678534A
Authority
CN
China
Prior art keywords
aluminium
magnesia
carbon brick
granularity
magnesia carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811543461.8A
Other languages
English (en)
Other versions
CN109678534B (zh
Inventor
阳灿
徐源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Iron and Steel Group Corp
Original Assignee
Wuhan Iron and Steel Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Iron and Steel Group Corp filed Critical Wuhan Iron and Steel Group Corp
Priority to CN201811543461.8A priority Critical patent/CN109678534B/zh
Publication of CN109678534A publication Critical patent/CN109678534A/zh
Application granted granted Critical
Publication of CN109678534B publication Critical patent/CN109678534B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9676Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

本发明公开了一种钢包炉衬用铝镁碳砖,按重量百分比包括50~70%的铝镁碳再生料、5~20%的镁砂、10~25%的α‑Al2O3、3~10%的AlN、2~6%的鳞片石墨、2~3%的碳化硅及2.5~3.5%的酚醛树脂。本发明的铝镁碳砖由于加入AlN,相比传统铝镁碳砖,更耐高温冲刷,在使用温度下降低了砖体膨胀悉数,维持了体积稳定性,AlN的不受熔融金属侵蚀,提高了材料的抗渣性;加入的石墨量较少,有利于钢水脱碳,冶炼超低碳钢种;大量采用了铝镁碳砖再生料,较大降低了高铝矾土熟料或刚玉颗粒料的使用量,生产成本更低,具有较好的社会效益和经济效益。

Description

钢包炉衬用铝镁碳砖
技术领域
本发明涉及钢包精炼用炉衬砖,具体涉及一种钢包炉衬用铝镁碳砖。
背景技术
通常钢包内衬用耐火材料为铝镁碳砖,有矾土(刚玉)、镁砂、石墨通过酚醛树脂结合机压制成,具有较好的性能;其损毁方式主要为钢液和渣侵蚀、热冲刷剥落、热态体积变化过大造成的损毁。随着精炼工艺的提高,传统铝镁碳砖难以满足精炼工艺要求。市场常见的铝镁碳砖中石墨的加入量为6~12%wt,碳的引入加强了材料与钢水的不润湿性,提高了材料的抗渣性和热稳定性,但碳含量过高不利于超洁净钢的生产。
发明内容
本发明的目的就是针对上述技术的不足,提供一种既能少量引入石墨,又能确保材料良好的热稳定性、抗渣性和热态强度的钢包炉衬用铝镁碳砖。
为实现上述目的,本发明所设计的钢包炉衬用铝镁碳砖,按重量百分比包括如下原料:
进一步地,所述铝镁碳砖按重量百分比包括如下原料:
进一步地,所述铝镁碳再生料中Al2O3的质量百分比≥45%,且铝镁碳砖再生料粒度为0.088mm≤粒度≤6mm;其中:0.088mm≤粒度≤1mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的5~25%,1mm≤粒度≤3mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的15~50%,3mm≤粒度≤5mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的30~50%。
进一步地,所述镁砂中MgO的质量百分比≥97%,且镁砂的粒度≤1mm;其中:0.088mm≤粒度≤1mm的镁砂占镁砂总质量的60~65%,粒度≤0.088mm的镁砂占镁砂总质量的35~40%。
进一步地,所述α-Al2O3中Al2O3的的质量百分比≥99%,且粒度≤0.088mm。
进一步地,所述氮化铝中AlN的质量百分比≥98%,且粒度≤0.088mm。
进一步地,所述鳞片石墨中C的质量百分比≥94%,且粒度≤0.088mm。
进一步地,所述碳化硅中SiC的质量百分比≥96%,且粒度≤0.088mm。
进一步地,所述硅微粉粒度≤0.088mm。
进一步地,所述酚醛树脂为热固型酚醛树脂。
控制镁砂的粒度≤1mm、Al2O3粒度≤0.088mm能增加铝镁碳砖的高温反应产物MgAl2O3的量,使砖体产生微膨胀,填充颗粒间空隙,降低铝镁碳砖的显气孔率,改善铝镁碳砖在使用过程中抗渣性,并具有良好的热震稳定性。若镁砂粒度≥1mm、Al2O3粒度≥0.088mm,高温下,颗粒间难以充分反应,MgAl2O3仅在镁砂颗粒表面形成极少量,难以达到提高高温使用性能的效果。
AlN的导热率高达260W/(M.K),比Al2O3高5~8倍,已细粉形式(粒度≤0.088mm)引入使得铝镁碳砖基质更耐高温冲刷,提高了铝镁碳砖的热态强度,AlN不受熔融金属侵蚀,提高了铝镁碳砖的抗渣性;另外,AlN高温下可向Al2O3和MgAl2O4中固溶,对砖的基质部分有增强作用。
与现有技术相比,本发明的有益效果如下:
1)本发明的铝镁碳砖由于加入AlN,相比传统铝镁碳砖,更耐高温冲刷,在使用温度下降低了砖体膨胀悉数,维持了体积稳定性,AlN的不受熔融金属侵蚀,提高了材料的抗渣性;加入的石墨量较少,有利于钢水脱碳,冶炼超低碳钢种;大量采用了铝镁碳砖再生料,较大降低了高铝矾土熟料或刚玉颗粒料的使用量,生产成本更低,具有较好的社会效益和经济效益;
2)本发明的铝镁碳砖热膨胀系数低、热稳定性好、热态强度好,且碳含量较低、抗渣侵蚀性好、使用寿命长,能满足钢包精炼工艺,尤其是LF精炼。
具体实施方式
下面结合具体实施例和对比例对本发明作进一步的详细说明,便于更清楚地了解本发明,但它们不对本发明构成限定。
实施例1
铝镁碳砖按重量百分比包括如下原料:
其中,所述铝镁碳再生料中Al2O3的质量百分比≥45%,且铝镁碳砖再生料粒度为0.088mm≤粒度≤6mm,其中:0.088mm≤粒度≤1mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的5%、1mm≤粒度≤3mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的50%、3mm≤粒度≤5mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的45%;镁砂中MgO的质量百分比≥97%,且镁砂的粒度≤1mm,其中:0.088mm≤粒度≤1mm的镁砂占镁砂总质量的65%,粒度≤0.088mm的镁砂占镁砂总质量的35%;α-Al2O3中Al2O3的的质量百分比≥99%,且粒度≤0.088mm;氮化铝中AlN的质量百分比≥98%,且粒度≤0.088mm;鳞片石墨中C的质量百分比≥94%,且粒度≤0.088mm;碳化硅中SiC的质量百分比≥96%,且粒度≤0.088mm;硅微粉粒度≤0.088mm;酚醛树脂为热固型酚醛树脂。
实施例1制得的铝镁碳砖体积密度为2.93g/cm3,显气孔率8.1%,1400℃保温半小时的抗折强度为16.9MPa,静态坩埚法检测抗渣侵蚀性指标为26.3%。
实施例2
铝镁碳砖按重量百分比包括如下原料:
其中,所述铝镁碳再生料中Al2O3的质量百分比≥45%,且铝镁碳砖再生料粒度为0.088mm≤粒度≤6mm,其中:0.088mm≤粒度≤1mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的5%、1mm≤粒度≤3mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的50%、3mm≤粒度≤5mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的45%;镁砂中MgO的质量百分比≥97%,且镁砂的粒度≤1mm,其中:0.088mm≤粒度≤1mm的镁砂占镁砂总质量的65%,粒度≤0.088mm的镁砂占镁砂总质量的35%;α-Al2O3中Al2O3的的质量百分比≥99%,且粒度≤0.088mm;氮化铝中AlN的质量百分比≥98%,且粒度≤0.088mm;鳞片石墨中C的质量百分比≥94%,且粒度≤0.088mm;碳化硅中SiC的质量百分比≥96%,且粒度≤0.088mm;硅微粉粒度≤0.088mm;酚醛树脂为热固型酚醛树脂。
实施例2制得的铝镁碳砖体积密度为2.95g/cm3,显气孔率7.9%,1400℃保温半小时的抗折强度为17.5MPa,静态坩埚法检测抗渣侵蚀性指标为25.9%。
实施例3
铝镁碳砖按重量百分比包括如下原料:
其中,所述铝镁碳再生料中Al2O3的质量百分比≥45%,且铝镁碳砖再生料粒度为0.088mm≤粒度≤6mm,其中:0.088mm≤粒度≤1mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的5%、1mm≤粒度≤3mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的50%、3mm≤粒度≤5mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的45%;镁砂中MgO的质量百分比≥97%,且镁砂的粒度≤1mm,其中:0.088mm≤粒度≤1mm的镁砂占镁砂总质量的65%,粒度≤0.088mm的镁砂占镁砂总质量的35%;α-Al2O3中Al2O3的的质量百分比≥99%,且粒度≤0.088mm;氮化铝中AlN的质量百分比≥98%,且粒度≤0.088mm;鳞片石墨中C的质量百分比≥94%,且粒度≤0.088mm;碳化硅中SiC的质量百分比≥96%,且粒度≤0.088mm;硅微粉粒度≤0.088mm;酚醛树脂为热固型酚醛树脂。
实施例3制得的铝镁碳砖体积密度为2.94g/cm3,显气孔率8.0%,1400℃保温半小时的抗折强度为17.1MPa,静态坩埚法检测抗渣侵蚀性指标为26.1%。
对比例1
铝镁碳砖按重量百分比包括如下原料:
其中,所述铝镁碳再生料中Al2O3的质量百分比≥45%,且铝镁碳砖再生料粒度为0.088mm≤粒度≤6mm,其中:0.088mm≤粒度≤1mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的20%、1mm≤粒度≤3mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的30%、3mm≤粒度≤5mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的50%;镁砂中MgO的质量百分比≥97%,且镁砂的粒度≤1mm,其中:0.088mm≤粒度≤1mm的镁砂占镁砂总质量的60%,粒度≤0.088mm的镁砂占镁砂总质量的40%;α-Al2O3中Al2O3的的质量百分比≥99%,且粒度≤0.088mm;氮化铝中AlN的质量百分比≥98%,且粒度≤0.088mm;鳞片石墨中C的质量百分比≥94%,且粒度≤0.088mm;碳化硅中SiC的质量百分比≥96%,且粒度≤0.088mm;硅微粉粒度≤0.088mm;酚醛树脂为热固型酚醛树脂。
对比例1制得的铝镁碳砖体积密度为2.87g/cm3,显气孔率9.4%,1400℃保温半小时的抗折强度为10.3MPa,静态坩埚法检测抗渣侵蚀性指标为40.2%。
对比例2
铝镁碳砖按重量百分比包括如下原料:
其中,所述铝镁碳再生料中Al2O3的质量百分比≥45%,且铝镁碳砖再生料粒度为0.088mm≤粒度≤6mm,其中:0.088mm≤粒度≤1mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的20%、1mm≤粒度≤3mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的50%、3mm≤粒度≤5mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的30%;镁砂中MgO的质量百分比≥97%,且镁砂的粒度≤1mm,其中:0.088mm≤粒度≤1mm的镁砂占镁砂总质量的10%,粒度≤0.088mm的镁砂占镁砂总质量的90%;α-Al2O3中Al2O3的的质量百分比≥99%,且粒度≤0.088mm;氮化铝中AlN的质量百分比≥98%,且粒度≤0.088mm;鳞片石墨中C的质量百分比≥94%,且粒度≤0.088mm;碳化硅中SiC的质量百分比≥96%,且粒度≤0.088mm;硅微粉粒度≤0.088mm;酚醛树脂为热固型酚醛树脂。
对比例2制得的铝镁碳砖体积密度为2.87g/cm3,显气孔率9.1%,1400℃保温半小时的抗折强度为11.5MPa,静态坩埚法检测抗渣侵蚀性指标为39.4%。
对比例3
铝镁碳砖按重量百分比包括如下原料:
其中,所述铝镁碳再生料中Al2O3的质量百分比≥45%,且铝镁碳砖再生料粒度为0.088mm≤粒度≤6mm,其中:0.088mm≤粒度≤1mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的5%、1mm≤粒度≤3mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的50%、3mm≤粒度≤5mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的45%;镁砂中MgO的质量百分比≥97%,且镁砂的粒度≤1mm,其中:0.088mm≤粒度≤1mm的镁砂占镁砂总质量的65%,粒度≤0.088mm的镁砂占镁砂总质量的35%;α-Al2O3中Al2O3的的质量百分比≥99%,且粒度≤0.088mm;氮化铝中AlN的质量百分比≥98%,且粒度≤0.088mm;鳞片石墨中C的质量百分比≥94%,且粒度≤0.088mm;碳化硅中SiC的质量百分比≥96%,且粒度≤0.088mm;硅微粉粒度≤0.088mm;酚醛树脂为热固型酚醛树脂。
对比例3制得的铝镁碳砖体积密度为2.88g/cm3,显气孔率8.4%,1400℃保温半小时的抗折强度为13.5MPa,静态坩埚法检测抗渣侵蚀性指标为29.9%。
由上述三个对比例和三个实施例可以看出,加入了α-Al2O3和AlN且重量百分比分别为10~25%、3~10%的铝镁碳砖体积密度大于对比例,显气孔率小于对比例,抗折强度大于对比例,抗渣侵蚀小于对比例,即本发明由于加入AlN,相比传统铝镁碳砖,更耐高温冲刷,在使用温度下降低了砖体膨胀悉数,维持了体积稳定性,AlN的不受熔融金属侵蚀,提高了材料的抗渣性,AlN高温下可向Al2O3和MgAl2O4中固溶,对砖的基质部分有增强作用。

Claims (10)

1.一种钢包炉衬用铝镁碳砖,其特征在于:所述铝镁碳砖按重量百分比包括如下原料:
2.根据权利要求1所述钢包炉衬用铝镁碳砖,其特征在于:所述铝镁碳砖按重量百分比包括如下原料:
3.根据权利要求1所述钢包炉衬用铝镁碳砖,其特征在于:所述铝镁碳再生料中Al2O3的质量百分比≥45%,且铝镁碳砖再生料粒度为0.088mm≤粒度≤6mm;其中:0.088mm≤粒度≤1mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的5~25%,1mm≤粒度≤3mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的15~50%,3mm≤粒度≤5mm的铝镁碳砖再生料占铝镁碳砖再生料总质量的30~50%。
4.根据权利要求1所述钢包炉衬用铝镁碳砖,其特征在于:所述镁砂中MgO的质量百分比≥97%,且镁砂的粒度≤1mm;其中:0.088mm≤粒度≤1mm的镁砂占镁砂总质量的60~65%,粒度≤0.088mm的镁砂占镁砂总质量的35~40%。
5.根据权利要求1所述钢包炉衬用铝镁碳砖,其特征在于:所述α-Al2O3中Al2O3的的质量百分比≥99%,且粒度≤0.088mm。
6.根据权利要求1所述钢包炉衬用铝镁碳砖,其特征在于:所述氮化铝中AlN的质量百分比≥98%,且粒度≤0.088mm。
7.根据权利要求1所述钢包炉衬用铝镁碳砖,其特征在于:所述鳞片石墨中C的质量百分比≥94%,且粒度≤0.088mm。
8.根据权利要求1所述钢包炉衬用铝镁碳砖,其特征在于:所述碳化硅中SiC的质量百分比≥96%,且粒度≤0.088mm。
9.根据权利要求1所述钢包炉衬用铝镁碳砖,其特征在于:所述硅微粉粒度≤0.088mm。
10.根据权利要求1所述钢包炉衬用铝镁碳砖,其特征在于:所述酚醛树脂为热固型酚醛树脂。
CN201811543461.8A 2018-12-17 2018-12-17 钢包炉衬用铝镁碳砖 Active CN109678534B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811543461.8A CN109678534B (zh) 2018-12-17 2018-12-17 钢包炉衬用铝镁碳砖

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811543461.8A CN109678534B (zh) 2018-12-17 2018-12-17 钢包炉衬用铝镁碳砖

Publications (2)

Publication Number Publication Date
CN109678534A true CN109678534A (zh) 2019-04-26
CN109678534B CN109678534B (zh) 2021-10-15

Family

ID=66187905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811543461.8A Active CN109678534B (zh) 2018-12-17 2018-12-17 钢包炉衬用铝镁碳砖

Country Status (1)

Country Link
CN (1) CN109678534B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110668831A (zh) * 2019-10-21 2020-01-10 上海利尔耐火材料有限公司 一种用于钢包包沿部位的再生铝镁碳砖制备方法
CN111348898A (zh) * 2019-07-08 2020-06-30 营口石兴耐火材料科技有限公司 一种优化低碳镁碳材料抗渣侵蚀和渗透的方法
CN112010662A (zh) * 2020-09-07 2020-12-01 郑州四季火耐火材料有限公司 一种高温耐火胶泥及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438309A (en) * 1977-08-31 1979-03-22 Tokyo Shibaura Electric Co Method of making ceramic sintered body
JP2002167283A (ja) * 2000-11-27 2002-06-11 Kurosaki Harima Corp 高炉出銑樋用不定形耐火物
CN101037341A (zh) * 2007-02-09 2007-09-19 江苏苏嘉集团新材料有限公司 一种非氧化物复合低碳镁碳砖
CN101333088A (zh) * 2008-08-06 2008-12-31 郑州振东耐磨材料有限公司 以废铝镁碳砖为主原料生产铝镁碳砖的方法
CN102584292A (zh) * 2012-02-22 2012-07-18 北京首钢耐材炉料有限公司 一种低碳钢包包壁砖及其生产方法
CN102898156A (zh) * 2012-09-13 2013-01-30 山西高科耐火材料股份有限公司 一种钢包渣线镁碳砖及其制备方法
CN102936142A (zh) * 2012-11-06 2013-02-20 河北联合大学 一种添加二氧化锰的镁碳砖及其制备方法
CN103402946A (zh) * 2011-03-02 2013-11-20 黑崎播磨株式会社 耐火物
CN103601509A (zh) * 2013-11-14 2014-02-26 营口欣立耐材科技有限公司 铝镁碳砖及其制备方法
CN104478455A (zh) * 2014-12-24 2015-04-01 辽宁中镁控股股份有限公司 一种具有非氧化物增强增韧结构的低碳镁碳砖及其制备方法
CN106396705A (zh) * 2016-08-31 2017-02-15 浙江金汇华特种耐火材料有限公司 一种再生环保型铝镁碳砖
CN107176845A (zh) * 2017-05-14 2017-09-19 长兴县煤山工业炉料有限公司 一种利用废旧耐火砖生产再生镁碳砖的方法
CN108585806A (zh) * 2018-06-15 2018-09-28 辽宁中镁控股股份有限公司 利用再生镁碳砖和铝镁碳砖制造铝镁碳耐火砖的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438309A (en) * 1977-08-31 1979-03-22 Tokyo Shibaura Electric Co Method of making ceramic sintered body
JP2002167283A (ja) * 2000-11-27 2002-06-11 Kurosaki Harima Corp 高炉出銑樋用不定形耐火物
CN101037341A (zh) * 2007-02-09 2007-09-19 江苏苏嘉集团新材料有限公司 一种非氧化物复合低碳镁碳砖
CN101333088A (zh) * 2008-08-06 2008-12-31 郑州振东耐磨材料有限公司 以废铝镁碳砖为主原料生产铝镁碳砖的方法
CN103402946A (zh) * 2011-03-02 2013-11-20 黑崎播磨株式会社 耐火物
CN102584292A (zh) * 2012-02-22 2012-07-18 北京首钢耐材炉料有限公司 一种低碳钢包包壁砖及其生产方法
CN102898156A (zh) * 2012-09-13 2013-01-30 山西高科耐火材料股份有限公司 一种钢包渣线镁碳砖及其制备方法
CN102936142A (zh) * 2012-11-06 2013-02-20 河北联合大学 一种添加二氧化锰的镁碳砖及其制备方法
CN103601509A (zh) * 2013-11-14 2014-02-26 营口欣立耐材科技有限公司 铝镁碳砖及其制备方法
CN104478455A (zh) * 2014-12-24 2015-04-01 辽宁中镁控股股份有限公司 一种具有非氧化物增强增韧结构的低碳镁碳砖及其制备方法
CN106396705A (zh) * 2016-08-31 2017-02-15 浙江金汇华特种耐火材料有限公司 一种再生环保型铝镁碳砖
CN107176845A (zh) * 2017-05-14 2017-09-19 长兴县煤山工业炉料有限公司 一种利用废旧耐火砖生产再生镁碳砖的方法
CN108585806A (zh) * 2018-06-15 2018-09-28 辽宁中镁控股股份有限公司 利用再生镁碳砖和铝镁碳砖制造铝镁碳耐火砖的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
呼丹明等: "镁质滑板的研究进展", 《第十六届全国耐火材料青年学术报告会论文集》 *
孙枫等: "再生铝镁碳砖的研制", 《武钢技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111348898A (zh) * 2019-07-08 2020-06-30 营口石兴耐火材料科技有限公司 一种优化低碳镁碳材料抗渣侵蚀和渗透的方法
CN110668831A (zh) * 2019-10-21 2020-01-10 上海利尔耐火材料有限公司 一种用于钢包包沿部位的再生铝镁碳砖制备方法
CN112010662A (zh) * 2020-09-07 2020-12-01 郑州四季火耐火材料有限公司 一种高温耐火胶泥及其制备方法

Also Published As

Publication number Publication date
CN109678534B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN106699206B (zh) 一种大中型高炉无水炮泥及其制备方法
CN109678534A (zh) 钢包炉衬用铝镁碳砖
CN108218408B (zh) 一种Al4SiC4结合Al2O3-SiC复合材料的制备方法
CN101134238A (zh) 低碳镁质整体复合塞棒
CN101503302B (zh) 一种炉衬用炭质耐火材料及其制备方法
CN107298586A (zh) 一种管线钢连铸用抗侵蚀中间包塞棒
CN102020481A (zh) 高炉用新型无水炮泥
CN110423125A (zh) 复合转炉镁碳砖及其制备方法与应用
CN107324784A (zh) 一种转炉挡渣用铝镁碳滑板砖及其制备方法
CN102674868A (zh) 一种转炉出钢挡渣用镁碳质滑板及其生产方法
CN110937905B (zh) 一种高抗热震性复合窑口浇注料
JP5697210B2 (ja) 転炉の操業方法、その転炉に使用するマグネシアカーボン質れんが、当該れんがの製造方法、及び転炉内張りのライニング構造
CN101597176B (zh) 一种适用于提钒转炉用的耐火材料
CN101096312A (zh) 一种低成本耐用高炉主沟料
CN110372406A (zh) 一种转炉挡渣Al2O3-C外水口砖及其制备方法
CN101417881A (zh) 鱼雷式铁水罐用改性氧化铝-碳化硅-碳砖及其制造方法
CN113754450A (zh) Corex炉出铁口高稳定性炮泥制备方法
CN105732056A (zh) 一种炼铁高炉出铁沟用免烘烤捣打料
CN110606758B (zh) 一种以除尘灰作为部分原料的高炉用炮泥及制备方法
CN112358305A (zh) 一种防纵裂的电炉钢包包壁镁碳砖及其制备工艺
CN1061015C (zh) 混铁车炉口用超低水泥浇注料
CN104086194A (zh) 高炉出铁沟捣打料及其制备方法
CN103936431B (zh) 一种熔融还原炉出铁口用捣打料
CN100467425C (zh) 一种低成本耐用高炉渣沟料
CN115636662A (zh) 一种添加碳化铬的高炉出铁沟主沟浇注料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant