CN109669479B - 一种基于事件触发的移动机器人轨迹跟踪控制方法 - Google Patents

一种基于事件触发的移动机器人轨迹跟踪控制方法 Download PDF

Info

Publication number
CN109669479B
CN109669479B CN201811228284.4A CN201811228284A CN109669479B CN 109669479 B CN109669479 B CN 109669479B CN 201811228284 A CN201811228284 A CN 201811228284A CN 109669479 B CN109669479 B CN 109669479B
Authority
CN
China
Prior art keywords
robot
mobile robot
error
event
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811228284.4A
Other languages
English (en)
Other versions
CN109669479A (zh
Inventor
樊渊
陈浩浩
宋程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201811228284.4A priority Critical patent/CN109669479B/zh
Publication of CN109669479A publication Critical patent/CN109669479A/zh
Application granted granted Critical
Publication of CN109669479B publication Critical patent/CN109669479B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/12Target-seeking control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop

Abstract

本发明提供一种基于事件触发的移动机器人轨迹跟踪控制方法,包括:1)建立移动机器人运动方程和参考机器人的动态方程,引入误差坐标系,得到跟踪误差的动态方程;2)设计控制输入并给定控制输入的状态测量误差;3)设计事件触发条件,使误差动态系统稳定,并且移动机器人可以跟踪到参考机器人的轨迹;4)计算3)中的事件触发条件,满足则事件被触发,控制器状态进行更新;否则,不更新;5)返回步骤2)。优点为:本发明基于事件触发的移动机器人轨迹跟踪控制方法,在系统控制输入中加入事件触发机制,不仅保证了系统的渐近稳定性,使得机器人可以跟踪到给定的参考机器人轨迹,而且减少了系统控制中的采样次数,减少资源消耗,提升利用率。

Description

一种基于事件触发的移动机器人轨迹跟踪控制方法
技术领域
本发明涉及机器人控制技术领域,具体来说是一种基于事件触发的移动机器人轨迹跟踪控制方法。
背景技术
移动机器人相对于传统的工业机器人,具有工作效率高、驱动和控制简单、运行灵活方便等优点,因此在各领域具有广泛的应用。其中在民用领域,移动机器人可以代替人类从事各种繁重的任务,例如变电站设备的巡检、商场安保巡视、仓储物流配送等场合。在军事领域,各种无人作战机、拆弹防爆机器人等的应用也日益广泛。因此,随着智能化技术的日益成熟,各类移动机器人将会有更加广泛的应用。
轨迹跟踪控制是移动机器人研究的基础性问题,是智能化技术的核心,因此,提高移动机器人的轨迹跟踪控制性能对于提高机器人自动化水平具有重要的理论意义和实用价值;另一方面,目前大多数移动机器人都是通过各种算法进行控制的,由于不同算法对于计算资源和通信带宽的消耗不同,机器人的轨迹跟踪的精确度和消耗的能量也不同。因此,如何利用有限的计算资源,提高机器人轨迹跟踪的精度成为一个至关重要的课题。
机器人估计跟踪控制主要有两个难点:
1)如何建立机器人运动控制系统模型;
2)如何选取合适的事件触发条件,使得闭环系统稳定且跟踪到给定的机器人参考轨迹。
与本发明相关的现有技术一——基于机器视觉的机器人运动控制系统
现有技术一的技术方案为:
该方案提供了基于机器视觉的机器人运动控制系统,属于机器人技术领域。该技术方案包括机器人、视觉定位系统和运动控制系统,视觉定位系统包括定位相机和集成图像采集模块及图像数据处理模块的工控机,图像采集模块与定位相机连接,定位相机能将获取的图像输送给图像采集模块,图像经转换成数字信号传送给图像数据处理模块处理、储存及输送,图像数据处理模块与运动控制系统连接用于控制机器人空间位置。
现有技术一的缺点为:
1)由于需要对图像数据进行处理,数据处理量大;
2)没有对机器人系统进行建模。
与本发明相关的现有技术二——一种基于节能考虑的轮式移动机器人轨迹跟踪控制方法
现有技术二的技术方案为:
该发明提供了一种基于节能考虑的轮式移动机器人轨迹跟踪控制方法,属于机器人控制领域。该方案根据轮式移动机器人的能耗特点,考虑机器人巡航时的驱动电机能耗优化,构建电机的能耗模型;根据轮式移动机器人轨迹跟踪的特点,建立运动学模型及跟踪误差模型,设计运动学控制子控制器;根据运动学模型和电机能耗模型之间的内在关联机制,构建起关联模型;最后得到节能子控制器,从而获得一种基于节能考虑的轮是移动机器人轨迹跟踪控制方法。
现有技术二的缺点为:
1)系统中将运动控制器和节能控制器分开考虑,使得整体系统控制较复杂;
2)系统中只考虑后轮驱动电机的能耗,未考虑前导向轮中控制转向的电机能耗。
与本发明相关的现有技术三——运动控制系统及机器人系统
现有技术三的技术方案为:
该发明公开了一种运动控制系统及机器人系统。其中,该运动控制系统,用于控制机器人包括:第一处理器,用于运行运动控制算法,以生成用于控制机器人运动的控制逻辑;第二处理器,与第一处理器连接,用于将控制逻辑通过网络总线传输给对应的机器人。
现有技术三的缺点
1)没有实现精确的运动控制,即机器人不能准确的运动到目标点;
2)系统的实时性要求高,通信量很大。
发明内容
本发明要解决的技术问题是如何减少机器人轨迹跟踪控制时的资源消耗和提升资源利用率。
本发明通过以下技术方案来解决上述技术问题:
一种基于事件触发的移动机器人轨迹跟踪控制方法,包括以下步骤:
1)建立移动机器人运动方程,给出参考机器人的动态方程,引入误差坐标系,得到系统跟踪误差的动态方程;
2)设计控制输入并给定控制输入的状态测量误差;
3)引入Lyapunov函数,依据Lyapunov函数设计事件触发条件,使误差动态系统稳定,并且移动机器人可以跟踪到参考机器人的轨迹;
4)计算3)中的事件触发条件,若满足则事件被触发,控制器状态进行更新;否则,控制器状态不更新,直到下一个触发时刻到来再更新;
5)返回步骤2)。
优选的,所述步骤1)中,移动机器人的运动方程为:
Figure RE-GDA0001956247070000031
其中(x,y)是移动机器人在笛卡尔坐标系下的坐标,θ是机器人运动方向与 x轴正向的夹角,(v,ω)是控制输入向量;
参考机器人的动力学方程为:
Figure RE-GDA0001956247070000032
其中(xr,yr)是参考机器人在笛卡尔坐标下的坐标,θr是参考机器人运动方向与x轴正向的夹角,(vrr)是参考机器人的控制输入向量;
引入误差坐标系如下:
Figure RE-GDA0001956247070000041
其中(xe,yee)是移动机器人与参考机器人的位姿误差;
根据式(1)~(3)可得系统跟踪误差的动态方程为:
Figure RE-GDA0001956247070000042
其中t表示信号采样时间。
优选的,所述步骤2)中,设计控制器如下:
Figure RE-GDA0001956247070000043
p(t),q(t)满足如下
Figure RE-GDA0001956247070000044
(7)式中,ε>0且
Figure RE-GDA0001956247070000047
p(t),q(t)表示控制器的状态;
控制器状态测量误差定义为:
Figure RE-GDA0001956247070000045
其中tp(k),tq(k)分别表示p(t),q(t)的第k次事件触发时刻;tp(k+1),tq(k+1)表示第 k+1次事件触发时刻,p(tp(k)),q(tq(k))分别为第k次触发时刻p(t),q(t)的状态值。
优选的,所述步骤3)中,选取Lyapunov函数如下:
Figure RE-GDA0001956247070000046
其中常数δ>0;
对(8)式两边求一阶导数可得
Figure RE-GDA0001956247070000051
由于v(t)=p(t),ω(t)=q(t),因此上式中v(tp(k))=p(tp(k)),ω(tq(k))=q(tq(k));
将(6)式带入(9)式中得到
Figure RE-GDA0001956247070000052
定义事件触发条件为:
Figure RE-GDA0001956247070000056
其中0<σp<1并且0<σq<1;
将(11)式带入到(10)式中可得:
Figure RE-GDA0001956247070000053
综合以上分析可知V(x)单调递减且趋于零,因此
Figure RE-GDA0001956247070000054
进一步由Barbalat引理可得:
Figure RE-GDA0001956247070000055
因此,由位姿误差可知,机器人可以跟踪到给定的参考机器人轨迹。
本发明的优点在于:
本文提出了一种基于事件触发控制的方法,相比于采用时间采样的控制方法,该方法可以有效节约计算和通信资源。事件触发机制只需要在某一预先设定的事件条件发生时才进行采样传送,并且控制系统的性能与时间触发下的系统性能相似。通过选择合适的事件条件,事件触发机制显著地减少了采样点,从而有效地节约了网络带宽资源。
本发明基于事件触发的移动机器人轨迹跟踪控制方法,在系统控制输入中加入事件触发机制,不仅保证了系统的渐近稳定性,使得机器人可以跟踪到给定的参考机器人轨迹,而且减少了系统控制中的采样次数,因此减少了系统资源的消耗,提升了资源的利用率。
附图说明
图1是本发明的控制算法流程图;
图2是本发明的移动机器人轨迹跟踪控制的结构图。
具体实施方式
为使对本发明的结构特征及所达成的功效有更进一步的了解与认识,用以较佳的实施例及附图配合详细的说明,说明如下:
本发明提供的完整技术方案(总的流程如图1所示)
3.2.1本发明的技术方案:
1)建立移动机器人运动方程,给出参考机器人的动态方程,引入误差坐标系,得到系统跟踪误差的动态方程;
2)设计控制输入并给定控制输入的状态测量误差;
3)引入Lyapunov函数V(t),依据Lyapunov函数设计事件触发条件,使误差动态系统稳定,并且移动机器人可以跟踪到参考机器人的轨迹;
4)计算3)中的事件触发条件,若满足则事件被触发,控制器状态进行更新;否则,控制器状态不更新,直到下一个触发时刻到来再更新;
5)返回步骤2)。
3.2.2本发明的具体实施方式:
1)建立系统的误差动态方程
首先建立移动机器人的运动方程:
Figure RE-GDA0001956247070000071
其中(x,y)是移动机器人在笛卡尔坐标系下的坐标,θ是机器人运动方向与x轴正向的夹角,(v,ω)是控制输入向量。
参考机器人的动力学方程为:
Figure RE-GDA0001956247070000072
其中(xr,yr)是参考机器人在笛卡尔坐标系下的坐标,θr是参考机器人运动方向与x轴正向的夹角,(vrr)是参考机器人的控制输入向量。
引入误差坐标系如下:
Figure RE-GDA0001956247070000073
根据式(1)~(3)可得系统跟踪误差的动态方程为
Figure RE-GDA0001956247070000074
2)控制器设计,测量误差定义
本发明中,为了解决移动机器人轨迹跟踪问题,设计控制器如下:
Figure RE-GDA0001956247070000075
p(t),q(t)满足如下
Figure RE-GDA0001956247070000076
(6)式中,ε>0且
Figure RE-GDA0001956247070000086
p(t),q(t)表示控制器的状态;
控制器状态测量误差定义为
Figure RE-GDA0001956247070000081
其中tp(k),tq(k)分别表示p(t),q(t)的第k次事件触发时刻;tp(k+1),tq(k+1)表示第k+1次事件触发时刻,p(tp(k)),q(tq(k))分别为第k次触发时刻p(t),q(t)的状态值。
3)构造Lyapunov函数,结合设计的事件触发条件,利用Lyapunov第二法证明系统稳定性
选取Lyapunov函数如下
Figure RE-GDA0001956247070000082
其中常数δ>0。
对(8)式两边求一阶导数可得
Figure RE-GDA0001956247070000083
将(6)式带入(9)式中得到
Figure RE-GDA0001956247070000084
定义事件触发条件为
Figure RE-GDA0001956247070000085
其中0<σp<1并且0<σq<1。
将(11)式带入到(10)式中可得
Figure RE-GDA0001956247070000091
综合以上分析可知V(x)单调递减且趋于零,因此
Figure RE-GDA0001956247070000092
进一步由Barbalat引理可得
Figure RE-GDA0001956247070000093
因此,由位姿误差可知,机器人可以跟踪到给定的参考机器人轨迹。
具体工作原理:
如图2所示,由给定的参考机器人动态和移动机器人的动态,得到关于状态误差的动态方程,通过传感器将状态误差传送给事件发生器,以得到控制器状态的误差并进一步得到控制器的状态测量误差,再将误差信号的采样状态保持送给控制器,然后控制器将控制信号发送给执行器,然后控制输入返回给机器人。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (3)

1.一种基于事件触发的移动机器人轨迹跟踪控制方法,其特征在于:包括以下步骤:
1)建立移动机器人运动方程,给出参考机器人的动态方程,引入误差坐标系,得到系统跟踪误差的动态方程;
2)设计控制输入并给定控制输入的状态测量误差;
3)引入Lyapunov函数,依据Lyapunov函数设计事件触发条件,使误差动态系统稳定,并且移动机器人可以跟踪到参考机器人的轨迹;
所述步骤3)中,选取Lyapunov函数如下:
Figure FDA0003421530790000011
其中常数δ>0,t表示信号采样时间;(xe,yee)是移动机器人与参考机器人的位姿误差;
对(8)式两边求一阶导数可得
Figure FDA0003421530790000012
其中tp(k),tq(k)分别表示p(t),q(t)的第k次事件触发时刻,p(t),q(t)表示控制器的状态,由于v(t)=p(t),ω(t)=q(t),因此上式中v(tp(k))=p(tp(k)),ω(tq(k))=q(tq(k));将(6)式带入(9)式中得到
Figure FDA0003421530790000013
其中ε>0且
Figure FDA0003421530790000014
定义事件触发条件为:
Figure FDA0003421530790000021
其中0<σp<1并且0<σq<1,ep(t)、eq(t)均为控制器状态测量误差;
将(11)式带入到(10)式中可得:
Figure FDA0003421530790000022
综合以上分析可知V(x)单调递减且趋于零,因此
Figure FDA0003421530790000023
进一步由Barbalat引理可得:
Figure FDA0003421530790000024
因此,由位姿误差可知,机器人可以跟踪到给定的参考机器人轨迹;4)计算3)中的事件触发条件,若满足则事件被触发,控制器状态进行更新;否则,控制器状态不更新,直到下一个触发时刻到来再更新;5)返回步骤2)。
2.根据权利要求1所述的一种基于事件触发的移动机器人轨迹跟踪控制方法,其特征在于:所述步骤1)中,移动机器人的运动方程为:
Figure FDA0003421530790000025
其中(x,y)是移动机器人在笛卡尔坐标系下的坐标,θ是机器人运动方向与x轴正向的夹角,(v,ω)是控制输入向量;
参考机器人的动力学方程为:
Figure FDA0003421530790000026
其中(xr,yr)是参考机器人在笛卡尔坐标下的坐标,θr是参考机器人运动方向与x轴正向的夹角,(vrr)是参考机器人的控制输入向量;
引入误差坐标系如下:
Figure FDA0003421530790000031
根据式(1)~(3)可得系统跟踪误差的动态方程为:
Figure FDA0003421530790000032
3.根据权利要求2所述的一种基于事件触发的移动机器人轨迹跟踪控制方法,其特征在于:所述步骤2)中,设计控制器如下:
Figure FDA0003421530790000033
p(t),q(t)满足如下
Figure FDA0003421530790000034
控制器状态测量误差定义为:
Figure FDA0003421530790000035
tp(k+1),tq(k+1)表示第k+1次事件触发时刻,p(tp(k)),q(tq(k))分别为第k次触发时刻p(t),q(t)的状态值。
CN201811228284.4A 2018-10-22 2018-10-22 一种基于事件触发的移动机器人轨迹跟踪控制方法 Active CN109669479B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811228284.4A CN109669479B (zh) 2018-10-22 2018-10-22 一种基于事件触发的移动机器人轨迹跟踪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811228284.4A CN109669479B (zh) 2018-10-22 2018-10-22 一种基于事件触发的移动机器人轨迹跟踪控制方法

Publications (2)

Publication Number Publication Date
CN109669479A CN109669479A (zh) 2019-04-23
CN109669479B true CN109669479B (zh) 2022-05-03

Family

ID=66142480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811228284.4A Active CN109669479B (zh) 2018-10-22 2018-10-22 一种基于事件触发的移动机器人轨迹跟踪控制方法

Country Status (1)

Country Link
CN (1) CN109669479B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456821B (zh) * 2019-08-22 2022-04-12 安徽大学 基于动态触发机制的飞行器轨迹最优控制方法和系统
CN111915262B (zh) * 2020-08-14 2024-03-12 杭州网易再顾科技有限公司 任务处理方法、装置、电子设备及计算机可读存储介质
CN112549021B (zh) * 2020-11-16 2022-06-14 北京配天技术有限公司 机器人的控制方法、机器人及存储装置
CN112685835B (zh) * 2020-12-31 2022-08-19 中国科学院数学与系统科学研究院 车辆自主驾驶的弹性事件触发控制方法及系统
CN113031436B (zh) * 2021-02-25 2024-02-02 西安建筑科技大学 一种基于事件触发的移动机器人模型预测轨迹跟踪控制系统及方法
CN113093548A (zh) * 2021-04-07 2021-07-09 安徽大学 基于事件触发机制的移动机器人轨迹跟踪最优控制方法
CN113211446B (zh) * 2021-05-20 2023-12-08 长春工业大学 一种事件触发-神经动态规划的机械臂分散跟踪控制方法
CN113377115B (zh) * 2021-07-05 2023-10-20 沈阳工业大学 服务机器人具有自主学习暂态运动时间的稳定控制方法
CN114035588B (zh) * 2021-11-30 2023-03-07 黄山学院 一种移动机器人轨迹跟踪事件触发控制方法
CN114326393B (zh) * 2021-12-16 2024-03-12 安徽大学 非完整小车轨迹跟踪控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104483967A (zh) * 2014-11-11 2015-04-01 浙江师范大学 一种基于节能考虑的轮式移动机器人轨迹跟踪控制方法
CN108107725A (zh) * 2017-12-05 2018-06-01 南京航空航天大学 基于事件触发的二阶时变时延多智能体系统包容控制方法
CN108681324A (zh) * 2018-05-14 2018-10-19 西北工业大学 基于全局视觉的移动机器人轨迹跟踪控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104483967A (zh) * 2014-11-11 2015-04-01 浙江师范大学 一种基于节能考虑的轮式移动机器人轨迹跟踪控制方法
CN108107725A (zh) * 2017-12-05 2018-06-01 南京航空航天大学 基于事件触发的二阶时变时延多智能体系统包容控制方法
CN108681324A (zh) * 2018-05-14 2018-10-19 西北工业大学 基于全局视觉的移动机器人轨迹跟踪控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Centralized event-triggered control of multi-agent systems with dynamic triggering mechanisms;Shi Wang等;《The 27th Chinese Control and Decision Conference (2015 CCDC)》;IEEE;20150720;第2183-2187页 *
Distributed consensus-based event-triggered approximate control of nonholonomic mobile robot formations;H. M. Guzey等;《2017 American Control Conference (ACC)》;IEEE;20170703;第3194-3199页 *
基于事件触发的独轮车移动机器人跟踪控制系统设计;张莉等;《计算机测量与控制》;中国计算机自动测量与控制技术协会;20150930;第23卷(第9期);第3060-3062页 *

Also Published As

Publication number Publication date
CN109669479A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
CN109669479B (zh) 一种基于事件触发的移动机器人轨迹跟踪控制方法
CN107490965B (zh) 一种空间自由漂浮机械臂的多约束轨迹规划方法
CN111975768B (zh) 一种基于固参神经网络的机械臂运动规划方法
CN108638068B (zh) 一种携带冗余度机械臂的飞行机器人控制系统设计方法
Xie et al. An acceleration-level data-driven repetitive motion planning scheme for kinematic control of robots with unknown structure
CN112091976B (zh) 一种水下机械臂任务空间控制方法
CN111975771A (zh) 一种基于偏差重定义神经网络的机械臂运动规划方法
CN116182837A (zh) 基于视觉激光雷达惯性紧耦合的定位建图方法
CN115431271A (zh) 一种飞行机械臂末端抗干扰指向控制方法
CN114721275B (zh) 一种基于预设性能的视觉伺服机器人自适应跟踪控制方法
CN110967017B (zh) 一种用于双移动机器人刚体协作搬运的协同定位方法
Gao et al. Time-optimal trajectory planning of industrial robots based on particle swarm optimization
Ren et al. Integrated task sensing and whole body control for mobile manipulation with series elastic actuators
CN110744552A (zh) 一种基于奇异摄动理论的柔性机械臂运动控制方法
CN111251303B (zh) 一种周期性姿态调整的机器人运动控制方法
WO2021217341A1 (zh) 避障方法、可移动平台、控制设备和存储介质
CN108015761B (zh) 一种单连杆柔性机械臂控制方法及系统
CN115890735B (zh) 机械臂系统、机械臂及其控制方法、控制器和存储介质
CN113954077B (zh) 带有能量优化的水下游动机械臂轨迹跟踪控制方法及装置
CN113778082B (zh) 一种基于自触发机制的无人车轨迹跟踪控制方法及系统
CN114063621B (zh) 一种轮式机器人编队跟踪与避障控制方法
CN112008731B (zh) 一种空中作业机器人的柔顺控制方法、装置、终端、系统及可读存储介质
CN114967441A (zh) 一种网络化非完整约束多机器人分群一致追踪控制方法、微控单元及控制系统
CN112034869B (zh) 一种无人机变参神经动力学控制器的设计方法及其应用
Yan et al. Adaptive and intelligent control of a dual-arm space robot for target manipulation during the post-capture phase

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant