CN109654665A - 空调器的控制方法及装置和空调器 - Google Patents

空调器的控制方法及装置和空调器 Download PDF

Info

Publication number
CN109654665A
CN109654665A CN201811533624.4A CN201811533624A CN109654665A CN 109654665 A CN109654665 A CN 109654665A CN 201811533624 A CN201811533624 A CN 201811533624A CN 109654665 A CN109654665 A CN 109654665A
Authority
CN
China
Prior art keywords
water temperature
leaving water
air conditioner
current
history
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811533624.4A
Other languages
English (en)
Other versions
CN109654665B (zh
Inventor
李元阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midea Group Co Ltd
Guangdong Midea HVAC Equipment Co Ltd
Original Assignee
Midea Group Co Ltd
Guangdong Midea HVAC Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midea Group Co Ltd, Guangdong Midea HVAC Equipment Co Ltd filed Critical Midea Group Co Ltd
Priority to CN201811533624.4A priority Critical patent/CN109654665B/zh
Publication of CN109654665A publication Critical patent/CN109654665A/zh
Priority to EP19897374.5A priority patent/EP3839364A4/en
Priority to PCT/CN2019/089189 priority patent/WO2020119038A1/zh
Application granted granted Critical
Publication of CN109654665B publication Critical patent/CN109654665B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1902Control of temperature characterised by the use of electric means characterised by the use of a variable reference value
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1931Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明提供了一种空调器的控制方法、一种空调器的控制装置和一种空调器,其中,空调器的控制方法包括:根据历史时间、历史时间对应的历史制冷量和历史室外气象参数、以及当前室外气象参数,得到当前制冷量预测值的关系式为:当前制冷量预测值=A*负荷时间补偿系数*f1;根据当前室外气象参数和历史出水温度,确定出水温度时间补偿值;根据基准出水温度或基准回水温度、出水温度时间补偿值,确定温控目标值以控制主机的出水温度;其中,A为大于零的常数,负荷时间补偿系数根据当前建筑物的使用情况进行预设,f1为当前室外气象参数对应的历史制冷量,实现了空调器的负荷巡航,提升空调器控制的精准度,降低空调能耗的技术效果。

Description

空调器的控制方法及装置和空调器
技术领域
本发明涉及空调设备技术领域,具体而言,涉及一种空调器的控制方法、一种空调器的控制装置和一种空调器。
背景技术
由于不同时间建筑物内部负荷以及外部环境变化比较大,不同季节或者时刻中央制冷空调系统的负荷是不同的,导致不同季节或者不同时刻下中央制冷空调系统的负荷是不同的。而现有的空调器在工作中以恒定的工作状态工作,因此会出现空调器的工况与当前建筑物内部负荷和外部环境不匹配的情况,产生空调器无法满足用户的温度调节需求或空调器工况超出当前负荷造成不必要的能源浪费。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
为此,本发明第一方面提供了一种空调器的控制方法。
本发明第二方面提供了一种空调器的控制装置。
本发明第三方面提供了一种空调器。
有鉴于此,本发明的第一方面提供了一种空调器的控制方法,包括:根据历史时间、历史时间对应的历史制冷量和历史室外气象参数、以及当前室外气象参数,得到当前制冷量预测值的关系式为:当前制冷量预测值=A*负荷时间补偿系数*f1(室外气象参数);根据当前室外气象参数和历史出水温度,确定出水温度时间补偿值;根据基准出水温度或基准回水温度、出水温度时间补偿值,确定温控目标值以控制主机的出水温度;其中,A为大于零的常数,负荷时间补偿系数根据当前建筑物的使用情况进行预设,f1(室外气象参数)为当前室外气象参数对应的历史制冷量。
本发明提供的空调器的控制方法,通过当前数据库或者云端数据库获取当前建筑内的历史制冷数据,历史制冷数据具体包括了历史时间(单位对应年月日),每个历史时间对应的历史气象参数和对应的历史制冷量;通过当前时间和当前室外气象参数与历史制冷数据进行对比分析,以得出当前制冷量预测值的关系式,该关系式具体为:当前制冷量预测值=A*负荷时间补偿系数*f1,在该公式中,A为大于零的常数,负荷时间补偿系数根据当前建筑的使用情况进行预设,具体地,负荷时间补偿系数为受建筑物内部负荷影响的补偿系数,该补偿系数随使用建筑物的人员习惯和人流量相关,跟建筑物内的业态直接相关;f1(室外气象参数)为当前室外气象参数对应的历史制冷量。通过根据当前建筑内的当前使用情况设置对应的负荷时间补偿系数以调整历史制冷量进而得到当前制冷量的预测值。
进一步地,根据当前室外气象参数和历史出水温度得到出水温度的补偿值。最终根据基准出水温度或基准回水温度以及出水温度时间补偿值来确定温控目标值,并通过温控目标值来控制主机的出水温度。应用本发明提供的控制方法可以使空调器在工作过程中根据历史数据和当前室外环境综合分析出当前制冷量的预测值,并依据计算得到的当前制冷量预测值实时修正空调器的运行状态,从而使空调器可以针对当前环境的历史制冷数据、历史气象数据和当前气象数据做出随动调整,以保证该空调器可以在满足温度调节要求的同时,大幅度降低工作的能耗,从而在满足精确的负荷需求同时提供用户的舒适度、降低空调器的能耗,进而实现了空调器的负荷巡航,提升空调器控制的精准度,降低空调能耗,缩减用户使用成本的技术效果。
具体地,现有的空调设备在工作过程中,由于不同时间建筑物内部负荷以及外部环境变化较大,导致不同季节或者不同时刻下中央制冷空调系统的负荷是不同的,在此情况下若空调器保持以恒定的工作状态,则会出现空调器的工况与当前建筑物内部负荷和外部环境不匹配的情况,产生空调器无法满足用户的温度调节需求和空调器工况超出当前负荷造成不必要的能源浪费的技术问题。针对上述技术问题,本发明提供了一种可以实时获取空调器负荷的控制方法,该控制方法中限定了一种通过历史时间内的历史制冷量、历史室外气象参数和当前室外气象参数确定当前制冷量预测值的计算公式,其中,历史制冷量和历史室外参数可以作为当前建筑内部的负荷参考值,用于避免因不同建筑内部结构不同或建材不同所导致的负荷误差;当前室外气象参数为当前环境的负荷参考值,用于降低当前环境负荷和预设环境负荷间的误差。计算得出当前制冷量的预测值后,通过该预测值控制空调工作,使得空调在工作过程中可以通过历史负荷参数和当前外部环境负荷对当前的工作负荷做出修订和校准,从而大幅度提升空调器工况与实际负荷的匹配程度,降低环境因素对空调工作的影响,提升工效、降低能耗,进而完美解决了上述现有技术中所存在的技术问题。
另外,本发明提供的上述技术方案中的空调器的控制方法还可以具有如下附加技术特征:
在上述技术方案中,优选地,根据当前室外气象参数和历史出水温度,确定出水温度时间补偿值的步骤,具体包括:获取与当前室外气象参数相对应的历史出水温度;根据负荷时间补偿系数和历史出水温度,确定出水温度时间补偿值。
在该技术方案中,空调器工作过程中获取与当前室外气象参数相对应的历史出水温度,并根据负荷时间补偿系数和历史出水温度得出出水温度时间补偿值。通过计算得出出水温度时间补偿值,使得空调器在工作过程中可以根据出水温度时间补偿值对应调整分水器和集水器的工作状态,从而通过改变出水时间来调整空调器的当前负荷,并且将与当前室外气象参数相对应的历史出水温度作为出水温度时间补偿值的参考值可以使计算结果更加接近当前环境下的空调负荷,从而大幅度提升该控制方法的精准性,使得采用该控制方法的空调器可以在不同环境中选取最优的工作状态,进而实现提升产品智能化程度,提升控制精准性,提升用户使用体验的技术效果。
在上述任一技术方案中,优选地,空调器的控制方法还包括:获取当前室外气象参数对应的历史出水温度,并将历史出水温度作为基准出水温度;目标出水温度等于基准出水温度与出水温度时间补偿值之和。
在该技术方案中,将与当前室外气象参数对应的历史出水温度作为基准出水温度,并在此基础上加上出水温度时间补偿值以得到目标出水温度。在大体情况一致的情况下,历史统计过程中获取的出水温度和室外气象参数的对照值最具有参考性,因此,通过将与当前室外气象温度对应的历史出水温度作为当前出水温度的基准值,可以快速地实现目标出水温度的初步定位,从而避免目标出水温度出现较大偏差。在此基础上将基准出水温度加上出水温度时间补偿值以得到目标出水温度,使得该控制方法可以更进一步地校准目标出水温度,使目标出水温度可以和空调器的当前负荷相匹配,从而在保证空调器可以满足用户的工作需求的情况下,尽量缩减空调的能耗,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
在上述任一技术方案中,优选地,获取室外气象参数对应的历史回水温度,并将历史回水温度作为基准回水温度;目标出水温度等于基准回水温温度与出水温度时间补偿值之和减去当前冷冻水进出水温差值。
在该技术方案中,将与当前室外气象参数对应的历史回水温度作为基准回水温度,在此基础上加上回水温度时间补偿值并减去当前冷冻水进出水温差以得到目标回水温度。历史统计过程中获取的回水温度和室外气象参数的对照值具有一定的参考价值,因此,通过将与当前室外气象温度对应的历史回水温度作为当前回水温度的基准值,可以快速地实现目标出水温度的初步定位,从而避免目标出水温度出现较大偏差。在此基础上将基准回水温度加上出水温度时间补偿值并减去冷冻水进出水温差以得到目标出水温度,使得该控制方法可以更进一步地校准目标出水温度,使目标出水温度可以和空调器的当前负荷相匹配,从而在保证空调器可以满足用户的工作需求的情况下,尽量缩减空调的能耗,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
在上述任一技术方案中,优选地,空调器的控制方法还包括:根据当前冷冻水进水温度和当前冷冻水出水温度及冷冻水流量,确定实时制冷量;当实时制冷量与当前制冷量预测值的差值超出预设范围时,更新负荷时间补偿系数,以重新确定当前制冷量预测值和出水温度时间补偿值。
在该技术方案中,通过当前冷冻水进水温度和当前冷冻水出水温度及冷冻水流量,得到当前空调器的实时制冷量,随后将实时制冷量与当前制冷量预测值进行比较,当实时制冷量与当前制冷量预测值的差值超出预设范围时,更新负荷时间补偿系数,重新确定当前制冷量预测值和出水温度时间补偿值,通过比对实时制冷量和制冷量预测值,可以随时监控空调器在工作过程中的实时制冷量和计算得出的预测制冷量的偏差情况,若出现偏差过大的情况,则说明该空调器的工况及室外气象参数发生了较大的变化,致使对照得出的基准回水温度和计算得出的出水温度时间补偿值不在适用,在此情况下重新获取室外气象参数并重新计算制冷量预测值和出水温度补偿值可以避免空调器出现进一步的偏差,从而实现了空调器的实时校准,避免外界因素影响空调器的正常工作,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
在上述人员任一技术方案中,优选地,空调器的控制方法还包括:按照预设频率,发送温控指令以调节温控目标值。
在该技术方案中,该控制方法采用时滞控制算法,计算并发送温控指令,以及调节智能温控目标值,可以降低时滞效应对计算结果所造成的影响,大幅度提升控制指令的精准性和可靠性,使空调器可以在该控制方法的指引下选取最贴合当前负荷的工作状态,从而进一步降低空调器在工作过程中的偏差,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
本发明的第二方面提供了一种空调器的控制装置,包括:存储器,用于存储计算机程序;处理器,用于执行计算机程序以实现:根据历史时间、历史时间对应的历史制冷量和历史室外气象参数、以及当前室外气象参数,得到当前制冷量预测值的关系式为:当前制冷量预测值=A*负荷时间补偿系数*f1(室外气象参数);根据当前室外气象参数和历史出水温度,确定出水温度时间补偿值;根据基准出水温度或基准回水温度、出水温度时间补偿值,确定温控目标值以控制主机的出水温度;其中,A为大于零的常数,负荷时间补偿系数根据当前建筑物的使用情况进行预设,f1(室外气象参数)为当前室外气象参数对应的历史制冷量。
本发明提供的空调器的控制装置,通过当前数据库或者云端数据库获取当前建筑内的历史制冷数据,历史制冷数据具体包括了历史时间(单位对应年月日),每个历史时间对应的历史气象参数和对应的历史制冷量;通过当前时间和当前室外气象参数与历史制冷数据进行对比分析,以得出当前制冷量预测值的关系式,该关系式具体为:当前制冷量预测值=A*负荷时间补偿系数*f1,在该公式中,A为大于零的常数,负荷时间补偿系数根据当前建筑的使用情况进行预设,具体地,负荷时间补偿系数为受建筑物内部负荷影响的补偿系数,该补偿系数随使用建筑物的人员习惯和人流量相关,跟建筑物内的业态直接相关;f1(室外气象参数)为当前室外气象参数对应的历史制冷量。通过根据当前建筑内的当前使用情况设置对应的负荷时间补偿系数以调整历史制冷量进而得到当前制冷量的预测值。
进一步地,根据当前室外气象参数和历史出水温度得到出水温度的补偿值。最终根据基准出水温度或基准回水温度以及出水温度时间补偿值来确定温控目标值,并通过温控目标值来控制主机的出水温度。应用本发明提供的控制方法可以使空调器在工作过程中根据历史数据和当前室外环境综合分析出当前制冷量的预测值,并依据计算得到的当前制冷量预测值实时修正空调器的运行状态,从而使空调器可以针对当前环境的历史制冷数据、历史气象数据和当前气象数据做出随动调整,以保证该空调器可以在满足温度调节要求的同时,大幅度降低工作的能耗,从而在满足精确的负荷需求同时提供用户的舒适度、降低空调器的能耗,进而实现了空调器的负荷巡航,提升空调器控制的精准度,降低空调能耗,缩减用户使用成本的技术效果。
在上述技术方案中,优选地,处理器用于执行计算机程序以实现根据当前室外气象参数和历史出水温度,确定出水温度时间补偿值的步骤,具体包括:获取与当前室外气象参数相对应的历史出水温度;根据负荷时间补偿系数和历史出水温度,确定出水温度时间补偿值。
在该技术方案中,空调器工作过程中获取与当前室外气象参数相对应的历史出水温度,并根据负荷时间补偿系数和历史出水温度得出出水温度时间补偿值。通过计算得出出水温度时间补偿值,使得空调器在工作过程中可以根据出水温度时间补偿值对应调整分水器和集水器的工作状态,从而通过改变出水时间来调整空调器的当前负荷,并且将与当前室外气象参数相对应的历史出水温度作为出水温度时间补偿值的参考值可以使计算结果更加接近当前环境下的空调负荷,从而大幅度提升该控制方法的精准性,使得采用该控制方法的空调器可以在不同环境中选取最优的工作状态,进而实现提升产品智能化程度,提升控制精准性,提升用户使用体验的技术效果。
在上述任一技术方案中,优选地,处理器还用于执行计算机程序以实现:获取当前室外气象参数对应的历史出水温度,并将历史出水温度作为基准出水温度;目标出水温度等于基准出水温度与出水温度时间补偿值之和。
在该技术方案中,将与当前室外气象参数对应的历史出水温度作为基准出水温度,并在此基础上加上出水温度时间补偿值以得到目标出水温度。在大体情况一致的情况下,历史统计过程中获取的出水温度和室外气象参数的对照值最具有参考性,因此,通过将与当前室外气象温度对应的历史出水温度作为当前出水温度的基准值,可以快速地实现目标出水温度的初步定位,从而避免目标出水温度出现较大偏差。在此基础上将基准出水温度加上出水温度时间补偿值以得到目标出水温度,使得该控制方法可以更进一步地校准目标出水温度,使目标出水温度可以和空调器的当前负荷相匹配,从而在保证空调器可以满足用户的工作需求的情况下,尽量缩减空调的能耗,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
在上述任一技术方案中,优选地,处理器还用于执行计算机程序以实现:获取室外气象参数对应的历史回水温度,并将历史回水温度作为基准回水温度;目标出水温度等于基准回水温温度与出水温度时间补偿值之和减去当前冷冻水进出水温差。
在该技术方案中,将与当前室外气象参数对应的历史回水温度作为基准回水温度,在此基础上加上回水温度时间补偿值并减去当前冷冻水进出水温差以得到目标回水温度。在大体情况一致的情况下,历史统计过程中获取的回水温度和室外气象参数的对照值最具有参考性,因此,通过将与当前室外气象温度对应的历史回水温度作为当前回水温度的基准值,可以快速地实现目标出水温度的初步定位,从而避免目标出水温度出现较大偏差。在此基础上将基准回水温度加上出水温度时间补偿值并减去冷冻水进出水温差以得到目标出水温度,使得该控制方法可以更进一步地校准目标出水温度,使目标出水温度可以和空调器的当前负荷相匹配,从而在保证空调器可以满足用户的工作需求的情况下,尽量缩减空调的能耗,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
在上述任一技术方案中,优选地,处理器还用于执行计算机程序以实现:根据当前冷冻水进水温度和当前冷冻水出水温度及冷冻水流量,确定实时制冷量;当实时制冷量与当前制冷量预测值的差值超出预设范围时,更新负荷时间补偿系数,以重新确定当前制冷量预测值和出水温度时间补偿值。
在该技术方案中,通过当前冷冻水进水温度和当前冷冻水出水温度及冷冻水流量,得到当前空调器的实时制冷量,随后将实时制冷量与当前制冷量预测值进行比较,当实时制冷量与当前制冷量预测值的差值超出预设范围时,更新负荷时间补偿系数,重新确定当前制冷量预测值和出水温度时间补偿值,通过比对实时制冷量和制冷量预测值,可以随时监控空调器在工作过程中的实时制冷量和计算得出的预测制冷量的偏差情况,若出现偏差过大的情况,则说明该空调器的工况及室外气象参数发生了较大的变化,致使对照得出的基准回水温度和计算得出的出水温度时间补偿值不在适用,在此情况下重新获取室外气象参数并重新计算制冷量预测值和出水温度补偿值可以避免空调器出现进一步的偏差,从而实现了空调器的实时校准,避免外界因素影响空调器的正常工作,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
在上述任一技术方案中,优选地,处理器还用于执行计算机程序以实现:根据时滞控制算法,按照预设频率,发送温控指令以调节温控目标值。
在该技术方案中,该控制方法采用时滞控制算法,计算并发送温控指令,以及调节智能温控目标值,可以降低时滞效应对计算结果所造成的影响,大幅度提升控制指令的精准性和可靠性,使空调器可以在该控制方法的指引下选取最贴合当前负荷的工作状态,从而进一步降低空调器在工作过程中的偏差,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
本发明的第三方面提供了一种空调器,包括如上述任一技术方案中所述的空调器的控制装置,因此,该空调器包括如上述任一技术方案中所述的空调器的控制装置的全部有益效果。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本发明的一个实施例的空调器的控制方法的流程图;
图2示出了根据本发明的另一个实施例的空调器的控制方法的流程图;
图3示出了根据本发明的又一个实施例的空调器的控制方法的流程图;
图4示出了根据本发明的再一个实施例的空调器的控制方法的流程图;
图5示出了根据本发明的再一个实施例的空调器的控制方法的流程图;
图6示出了根据本发明的再一个实施例的空调器的控制方法的流程图;
图7示出了根据本发明的一个实施例的空调器的控制装置的框图;
图8示出了根据本发明的一个具体实施例的空调器的控制方法的流程示意图;
图9示出了根据本发明的一个实施例的空调器的控制方法的负荷时间补偿系数与计算得出的出水温度时间补偿值的对照图;
图10示出了根据本发明的一个实施例的空调器的控制方法的负荷预测图;
图11示出了根据本发明的一个实施例的空调器的控制装置的示意图;
其中,图11中的附图标记与部件名称之间的对应关系为:
10智能温控装置,12压缩机,14冷凝器,16节流阀,18蒸发器,20冷却水泵,22冷却水塔,24冷冻水泵,26分水器,28集水器。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图11来描述根据本发明一些实施例提供的空调器的控制方法、一种空调器的控制装置和一种空调器。
如图1所示,在本发明第一方面的实施例中,提供了一种空调器的控制方法,包括:
S102,根据历史时间、历史时间对应的历史制冷量和历史室外气象参数、以及当前室外气象参数,得到当前制冷量预测值的关系式;
当前制冷量预测值=A*负荷时间补偿系数*f1(室外气象参数);
S104,根据当前室外气象参数和历史出水温度,确定出水温度时间补偿值;
S106,根据基准出水温度或基准回水温度、出水温度时间补偿值,确定温控目标值以控制主机的出水温度;
其中,A为大于零的常数,负荷时间补偿系数根据当前建筑物的使用情况进行预设,f1(室外气象参数)为当前室外气象参数对应的历史制冷量。
本发明提供的空调器的控制方法,通过当前数据库或者云端数据库获取当前建筑内的历史制冷数据,历史制冷数据具体包括了历史时间(单位对应年月日),每个历史时间对应的历史气象参数和对应的历史制冷量;通过当前时间和当前室外气象参数与历史制冷数据进行对比分析,以得出当前制冷量预测值的关系式,该关系式具体为:当前制冷量预测值=A*负荷时间补偿系数*f1,在该公式中,A为大于零的常数,负荷时间补偿系数根据当前建筑的使用情况进行预设,具体地,负荷时间补偿系数为受建筑物内部负荷影响的补偿系数,该补偿系数随使用建筑物的人员习惯和人流量相关,跟建筑物内的业态直接相关;f1(室外气象参数)为当前室外气象参数对应的历史制冷量。通过根据当前建筑内的当前使用情况设置对应的负荷时间补偿系数以调整历史制冷量进而得到当前制冷量的预测值。
进一步地,根据当前室外气象参数和历史出水温度得到出水温度的补偿值。最终根据基准出水温度或基准回水温度以及出水温度时间补偿值来确定温控目标值,并通过温控目标值来控制主机的出水温度。应用本发明提供的控制方法可以使空调器在工作过程中根据历史数据和当前室外环境综合分析出当前制冷量的预测值,并依据计算得到的当前制冷量预测值实时修正空调器的运行状态,从而使空调器可以针对当前环境的历史制冷数据、历史气象数据和当前气象数据做出随动调整,以保证该空调器可以在满足温度调节要求的同时,大幅度降低工作的能耗,从而在满足精确的负荷需求同时提供用户的舒适度、降低空调器的能耗,进而实现了空调器的负荷巡航,提升空调器控制的精准度,降低空调能耗,缩减用户使用成本的技术效果。
具体地,现有的空调设备在工作过程中,由于不同时间建筑物内部负荷以及外部环境变化较大,导致不同季节或者不同时刻下中央制冷空调系统的负荷是不同的,在此情况下若空调器保持以恒定的工作状态,则会出现空调器的工况与当前建筑物内部负荷和外部环境不匹配的情况,产生空调器无法满足用户的温度调节需求和空调器工况超出当前负荷造成不必要的能源浪费的技术问题。针对上述技术问题,本发明提供了一种可以实时获取空调器负荷的控制方法,该控制方法中限定了一种通过历史时间内的历史制冷量、历史室外气象参数和当前室外气象参数确定当前制冷量预测值的计算公式,其中,历史制冷量和历史室外参数可以作为当前建筑内部的负荷参考值,用于避免因不同建筑内部结构不同或建材不同所导致的负荷误差;当前室外气象参数为当前环境的负荷参考值,用于降低当前环境负荷和预设环境负荷间的误差。计算得出当前制冷量的预测值后,通过该预测值控制空调工作,使得空调在工作过程中可以通过历史负荷参数和当前外部环境负荷对当前的工作负荷做出修订和校准,从而大幅度提升空调器工况与实际负荷的匹配程度,降低环境因素对空调工作的影响,提升工效、降低能耗,进而完美解决了上述现有技术中所存在的技术问题。
在本发明的一个实施例中,优选地,如图2所示,空调器的控制方法,包括:
S202,根据历史时间、历史时间对应的历史制冷量和历史室外气象参数、以及当前室外气象参数,得到当前制冷量预测值的关系式;
S204,获取与当前室外气象参数相对应的历史出水温度;
S206,根据负荷时间补偿系数和历史出水温度,确定出水温度时间补偿值;
S208,根据基准出水温度或基准回水温度、出水温度时间补偿值,确定温控目标值以控制主机的出水温度。
在该实施例中,空调器工作过程中获取与当前室外气象参数相对应的历史出水温度,并根据负荷时间补偿系数和历史出水温度得出出水温度时间补偿值。通过计算得出出水温度时间补偿值,使得空调器在工作过程中可以根据出水温度时间补偿值对应调整分水器和集水器的工作状态,从而通过改变出水时间来调整空调器的当前负荷,并且将与当前室外气象参数相对应的历史出水温度作为出水温度时间补偿值的参考值可以使计算结果更加接近当前环境下的空调负荷,从而大幅度提升该控制方法的精准性,使得采用该控制方法的空调器可以在不同环境中选取最优的工作状态,进而实现提升产品智能化程度,提升控制精准性,提升用户使用体验的技术效果。
在本发明的一个实施例中,优选地,如图3所示,空调器的控制方法,包括:
S302,根据历史时间、历史时间对应的历史制冷量和历史室外气象参数、以及当前室外气象参数,得到当前制冷量预测值的关系式;
S304,根据当前室外气象参数和历史出水温度,确定出水温度时间补偿值;
S306,根据基准出水温度、出水温度时间补偿值,确定温控目标值以控制主机的出水温度;
S308,获取当前室外气象参数对应的历史出水温度,并将历史出水温度作为基准出水温度;
S310,目标出水温度等于基准出水温度与出水温度时间补偿值之和。
在该实施例中,将与当前室外气象参数对应的历史出水温度作为基准出水温度,并在此基础上加上出水温度时间补偿值以得到目标出水温度。在大体情况一致的情况下,历史统计过程中获取的出水温度和室外气象参数的对照值最具有参考性,因此,通过将与当前室外气象温度对应的历史出水温度作为当前出水温度的基准值,可以快速地实现目标出水温度的初步定位,从而避免目标出水温度出现较大偏差。在此基础上将基准出水温度加上出水温度时间补偿值以得到目标出水温度,使得该控制方法可以更进一步地校准目标出水温度,使目标出水温度可以和空调器的当前负荷相匹配,从而在保证空调器可以满足用户的工作需求的情况下,尽量缩减空调的能耗,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
在本发明的一个实施例中,优选地,如图4所示,空调器的控制方法,包括:
S402,根据历史时间、历史时间对应的历史制冷量和历史室外气象参数、以及当前室外气象参数,得到当前制冷量预测值的关系式;
S404,根据当前室外气象参数和历史出水温度,确定出水温度时间补偿值;
S406,根据基准回水温度、出水温度时间补偿值,确定温控目标值以控制主机的出水温度;
S408,获取室外气象参数对应的历史回水温度,并将历史回水温度作为基准回水温度;
S410,目标出水温度等于基准回水温温度与出水温度时间补偿值之和减去当前冷冻水进出水温差。
在该实施例中,将与当前室外气象参数对应的历史回水温度作为基准回水温度,在此基础上加上回水温度时间补偿值并减去当前冷冻水进出水温差以得到目标回水温度。在大体情况一致的情况下,历史统计过程中获取的回水温度和室外气象参数的对照值最具有参考性,因此,通过将与当前室外气象温度对应的历史回水温度作为当前回水温度的基准值,可以快速地实现目标出水温度的初步定位,从而避免目标出水温度出现较大偏差。在此基础上将基准回水温度加上出水温度时间补偿值并减去冷冻水进出水温差以得到目标出水温度,使得该控制方法可以更进一步地校准目标出水温度,使目标出水温度可以和空调器的当前负荷相匹配,从而在保证空调器可以满足用户的工作需求的情况下,尽量缩减空调的能耗,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
在本发明的一个实施例中,优选地,如图5所示,空调器的控制方法,包括:
S502,根据历史时间、历史时间对应的历史制冷量和历史室外气象参数、以及当前室外气象参数,得到当前制冷量预测值的关系式;
S504,根据当前室外气象参数和历史出水温度,确定出水温度时间补偿值;
S506,根据基准出水温度或基准回水温度、出水温度时间补偿值,确定温控目标值以控制主机的出水温度;
S508,根据当前冷冻水进水温度和当前冷冻水出水温度及冷冻水流量,确定实时制冷量;
S510,当实时制冷量与当前制冷量预测值的差值超出预设范围时,更新负荷时间补偿系数,以重新确定当前制冷量预测值和出水温度时间补偿值。
在该实施例中,通过当前冷冻水进水温度和当前冷冻水出水温度及冷冻水流量,得到当前空调器的实时制冷量,随后将实时制冷量与当前制冷量预测值进行比较,当实时制冷量与当前制冷量预测值的差值超出预设范围时,更新负荷时间补偿系数,重新确定当前制冷量预测值和出水温度时间补偿值,通过比对实时制冷量和制冷量预测值,可以随时监控空调器在工作过程中的实时制冷量和计算得出的预测制冷量的偏差情况,若出现偏差过大的情况,则说明该空调器的工况及室外气象参数发生了较大的变化,致使对照得出的基准回水温度和计算得出的出水温度时间补偿值不在适用,在此情况下重新获取室外气象参数并重新计算制冷量预测值和出水温度补偿值可以避免空调器出现进一步的偏差,从而实现了空调器的实时校准,避免外界因素影响空调器的正常工作,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
在本发明的一个实施例中,优选地,如图6所示,空调器的控制方法,包括:
S602,根据历史时间、历史时间对应的历史制冷量和历史室外气象参数、以及当前室外气象参数,得到当前制冷量预测值的关系式;
S604,根据当前室外气象参数和历史出水温度,确定出水温度时间补偿值;
S606,根据基准出水温度或基准回水温度、出水温度时间补偿值,确定温控目标值以控制主机的出水温度;
S608,根据时滞控制算法,按照预设频率,发送温控指令以调节温控目标值。
在该实施例中,该控制方法采用时滞控制算法,计算并发送温控指令,以及调节智能温控目标值,可以降低时滞效应对计算结果所造成的影响,大幅度提升控制指令的精准性和可靠性,使空调器可以在该控制方法的指引下选取最贴合当前负荷的工作状态,从而进一步降低空调器在工作过程中的偏差,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
如图7所示,在本发明第二方面的实施例中,提供了一种空调器的控制装置700,包括:存储器702,用于存储计算机程序;处理器704,用于执行计算机程序以实现:根据历史时间、历史时间对应的历史制冷量和历史室外气象参数、以及当前室外气象参数,得到当前制冷量预测值的关系式为:当前制冷量预测值=A*负荷时间补偿系数*f1(室外气象参数);根据当前室外气象参数和历史出水温度,确定出水温度时间补偿值;根据基准出水温度或基准回水温度、出水温度时间补偿值,确定温控目标值以控制主机的出水温度;其中,A为大于零的常数,负荷时间补偿系数根据当前建筑物的使用情况进行预设,f1(室外气象参数)为当前室外气象参数对应的历史制冷量。
本发明提供的空调器的控制装置,通过当前数据库或者云端数据库获取当前建筑内的历史制冷数据,历史制冷数据具体包括了历史时间(单位对应年月日),每个历史时间对应的历史气象参数和对应的历史制冷量;通过当前时间和当前室外气象参数与历史制冷数据进行对比分析,以得出当前制冷量预测值的关系式,该关系式具体为:当前制冷量预测值=A*负荷时间补偿系数*f1,在该公式中,A为大于零的常数,负荷时间补偿系数根据当前建筑的使用情况进行预设,具体地,负荷时间补偿系数为受建筑物内部负荷影响的补偿系数,该补偿系数随使用建筑物的人员习惯和人流量相关,跟建筑物内的业态直接相关;f1(室外气象参数)为当前室外气象参数对应的历史制冷量。通过根据当前建筑内的当前使用情况设置对应的负荷时间补偿系数以调整历史制冷量进而得到当前制冷量的预测值。
进一步地,根据当前室外气象参数和历史出水温度得到出水温度的补偿值。最终根据基准出水温度或基准回水温度以及出水温度时间补偿值来确定温控目标值,并通过温控目标值来控制主机的出水温度。应用本发明提供的控制方法可以使空调器在工作过程中根据历史数据和当前室外环境综合分析出当前制冷量的预测值,并依据计算得到的当前制冷量预测值实时修正空调器的运行状态,从而使空调器可以针对当前环境的历史制冷数据、历史气象数据和当前气象数据做出随动调整,以保证该空调器可以在满足温度调节要求的同时,大幅度降低工作的能耗,从而在满足精确的负荷需求同时提供用户的舒适度、降低空调器的能耗,进而实现了空调器的负荷巡航,提升空调器控制的精准度,降低空调能耗,缩减用户使用成本的技术效果。
在本发明的一个实施例中,优选地,处理器704用于执行计算机程序以实现根据当前室外气象参数和历史出水温度,确定出水温度时间补偿值的步骤,具体包括:获取与当前室外气象参数相对应的历史出水温度;根据负荷时间补偿系数和历史出水温度,确定出水温度时间补偿值。
在该实施例中,空调器工作过程中获取与当前室外气象参数相对应的历史出水温度,并根据负荷时间补偿系数和历史出水温度得出出水温度时间补偿值。通过计算得出出水温度时间补偿值,使得空调器在工作过程中可以根据出水温度时间补偿值对应调整分水器和集水器的工作状态,从而通过改变出水时间来调整空调器的当前负荷,并且将与当前室外气象参数相对应的历史出水温度作为出水温度时间补偿值的参考值可以使计算结果更加接近当前环境下的空调负荷,从而大幅度提升该控制方法的精准性,使得采用该控制方法的空调器可以在不同环境中选取最优的工作状态,进而实现提升产品智能化程度,提升控制精准性,提升用户使用体验的技术效果。
在本发明的一个实施例中,优选地,处理器704还用于执行计算机程序以实现:获取当前室外气象参数对应的历史出水温度,并将历史出水温度作为基准出水温度;目标出水温度等于基准出水温度与出水温度时间补偿值之和。
在该实施例中,将与当前室外气象参数对应的历史出水温度作为基准出水温度,并在此基础上加上出水温度时间补偿值以得到目标出水温度。在大体情况一致的情况下,历史统计过程中获取的出水温度和室外气象参数的对照值最具有参考性,因此,通过将与当前室外气象温度对应的历史出水温度作为当前出水温度的基准值,可以快速地实现目标出水温度的初步定位,从而避免目标出水温度出现较大偏差。在此基础上将基准出水温度加上出水温度时间补偿值以得到目标出水温度,使得该控制方法可以更进一步地校准目标出水温度,使目标出水温度可以和空调器的当前负荷相匹配,从而在保证空调器可以满足用户的工作需求的情况下,尽量缩减空调的能耗,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
在本发明的一个实施例中,优选地,处理器704还用于执行计算机程序以实现:获取室外气象参数对应的历史回水温度,并将历史回水温度作为基准回水温度;目标出水温度等于基准回水温温度与出水温度时间补偿值之和减去当前冷冻水进出水温差。
在该实施例中,将与当前室外气象参数对应的历史回水温度作为基准回水温度,在此基础上加上回水温度时间补偿值并减去当前冷冻水进出水温差以得到目标回水温度。在大体情况一致的情况下,历史统计过程中获取的回水温度和室外气象参数的对照值最具有参考性,因此,通过将与当前室外气象温度对应的历史回水温度作为当前回水温度的基准值,可以快速地实现目标出水温度的初步定位,从而避免目标出水温度出现较大偏差。在此基础上将基准回水温度加上出水温度时间补偿值并减去冷冻水进出水温差以得到目标出水温度,使得该控制方法可以更进一步地校准目标出水温度,使目标出水温度可以和空调器的当前负荷相匹配,从而在保证空调器可以满足用户的工作需求的情况下,尽量缩减空调的能耗,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
在本发明的一个实施例中,优选地,处理器704还用于执行计算机程序以实现:根据当前冷冻水进水温度和当前冷冻水出水温度及冷冻水流量,确定实时制冷量;当实时制冷量与当前制冷量预测值的差值超出预设范围时,更新负荷时间补偿系数,以重新确定当前制冷量预测值和出水温度时间补偿值。
在该实施例中,通过当前冷冻水进水温度和当前冷冻水出水温度及冷冻水流量,得到当前空调器的实时制冷量,随后将实时制冷量与当前制冷量预测值进行比较,当实时制冷量与当前制冷量预测值的差值超出预设范围时,更新负荷时间补偿系数,重新确定当前制冷量预测值和出水温度时间补偿值,通过比对实时制冷量和制冷量预测值,可以随时监控空调器在工作过程中的实时制冷量和计算得出的预测制冷量的偏差情况,若出现偏差过大的情况,则说明该空调器的工况及室外气象参数发生了较大的变化,致使对照得出的基准回水温度和计算得出的出水温度时间补偿值不在适用,在此情况下重新获取室外气象参数并重新计算制冷量预测值和出水温度补偿值可以避免空调器出现进一步的偏差,从而实现了空调器的实时校准,避免外界因素影响空调器的正常工作,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
在本发明的一个实施例中,优选地,处理器704还用于执行计算机程序以实现:根据时滞控制算法,按照预设频率,发送温控指令以调节智能温控目标值。
在该实施例中,该控制方法采用时滞控制算法,计算并发送温控指令,以及调节智能温控目标值,可以降低时滞效应对计算结果所造成的影响,大幅度提升控制指令的精准性和可靠性,使空调器可以在该控制方法的指引下选取最贴合当前负荷的工作状态,从而进一步降低空调器在工作过程中的偏差,进而起到优化产品控制流程,提升控制精准性,提高产品性能,降低产品能耗的技术效果。
在本发明的第三方面的实施例中,提供了一种空调器,包括如上述任一实施例中所述的空调器的控制装置,因此,该空调器包括如上述任一实施例中所述的空调器的控制装置的全部有益效果。
在本发明的一个具体实施例中,如图8所示,采用该空调器的控制方法控制中央空调系统工作时的具体步骤为:
步骤802,通过对中央空调系统的冷冻水的进水温度和出水温度及冷冻水流量进行采集并计算出当前制冷量,通过云端或现场采集得到室外气象参数(干球温度和湿球温度等)。
该步骤中,空调器实时采集当前的进出水温度和进出水流量,并依此计算出该空调器的当前制冷量,该当前制冷量用于后续的比对和参考。与此同时空调器还通过云端数据下载或布置在现场的传感器获得当前的室外气象参数,该室外气象参数包括干球温度、湿球温度等多种气象参数。
步骤804,对比分析历史制冷量和室外气象参数和时间关系。
该步骤中,通过对比历史制冷量和室外气象参数得到在每一个时间段内的历史制冷量和室外气象参数的对照关系,通过该对照关系可以直接的反映出在不同时间段以及不同室外环境下对应的历史制冷量,从而方便该控制方法通过采集到的当前室外气象参数得出可供参考的历史制冷量。
步骤806,通过公式:当前制冷量预测值=A*负荷时间补偿系数*f1(室外气象参数),计算出当前制冷量的预测值;其中,A为大于零的常数,负荷时间补偿系数根据当前建筑物的使用情况进行预设,f1(室外气象参数)为当前室外气象参数对应的历史制冷量。
步骤808,通过公式:出水温度时间补偿值=f2(负荷时间补偿系数),计算出出水温度时间补偿值,其中,f2(负荷时间补偿系数)为所述当前室外气象参数相对应的所述历史出水温度,负荷时间补偿系数与计算得出的出水温度时间补偿值成反比,如图9所示。
步骤810,通过公式:目标出水温度=f3(室外气象参数)+出水温度时间补偿值,或通过公式:目标出水温度=f4(室外气象参数)+出水温度时间补偿值-前冷冻水进出水温差,计算出目标出水温度。其中,基准出水温度=f3(室外气象参数),f3(室外气象参数)为室外气象参数对应的历史出水温度;基准回水温度=f4(室外气象参数),f4(室外气象参数)为室外气象参数对应的历史回水温度。该目标出水温度为计算得出的出水温度参考值,该参考值与当前的环境负载相对应。其中,根据负荷巡航的该控制方法中的负荷预测图如图10所示。
步骤812,每次计算得到新的目标出水温度后根据时滞控制算法,间断发送温控指令至空调器,从而使空调器系统的每次调节都能达到稳定状态。
步骤814,后续运行过程中当实时制冷量与当前制冷量预测值的差值超出预设范围时,则重新分析并更新负荷时间补偿系数并计算出新的当前制冷量预测值,进而得到新的出水温度时间补偿值。
该控制方法具备实时的监控和校准方法,当实时制冷量和预测值差别过大时,判定该预测值失效,并重新计算得出新的预测值,从而完成修正。
步骤816,根据新的当前制冷量预测值和出水温度时间补偿值获得新的目标出水温度,从而达到基于负荷巡航的智能控制。以实现在舒适的前提下,精准按需供冷。
在本发明的一个具体实施例中,如图11所示,一种基于负荷巡航的空调器智能温控装置的系统图,中央空调系统包括:压缩机12、冷凝器14、节流阀16、蒸发器18,制冷剂依次在上述四大部件循环,压缩机12出来的冷媒(制冷剂)高温高压的气体,流经冷凝器14,降温降压,冷凝器14通过冷却水系统的冷却水泵20将热量带到冷却水塔22排出,冷媒继续流动经过节流阀16,成低温低压液体,流经蒸发器18,吸热,再经压缩。在蒸发器18的两端接有冷冻水循环系统,冷冻水循环系统包括冷冻水泵24、分水器26和集水器28,制冷剂在此次吸收的热量将冷冻水温度降低,使低温的水流到用户端,再经过风机盘管进行热交换,将冷风吹出。该智能温控装置10与制冷主机直接通讯并采集主机的温度传感器信息,并可以采集主机的流量信息,可以自带显示界面,显示主机各传感器参数,及智能温控过程曲线,负荷预测,历史制冷量保证系统提供舒适服务的基础上进行节能运行,还可以显示其他功能图表及参数。
本发明提供了一种空调器的控制方法,基于负荷巡航对中央空调进行智能温控,首先通过对比分析历史冷量和室外气象参数和时间的关系得到制冷量预测关系式,进而得到智能控温目标值,在根据负荷预测对智能控温目标值进行随时间的修正,从而得到适合当前及下一时刻的制冷量需求的智能温控目标值。
本发明的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所述的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本发明中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

1.一种空调器的控制方法,其特征在于,包括:
根据历史时间、所述历史时间对应的历史制冷量和历史室外气象参数、以及当前室外气象参数,得到当前制冷量预测值的关系式为:
当前制冷量预测值=A*负荷时间补偿系数*f1(室外气象参数);
根据所述当前室外气象参数和历史出水温度,确定出水温度时间补偿值;
根据基准出水温度或基准回水温度、所述出水温度时间补偿值,确定温控目标值以控制主机的出水温度;
其中,A为大于零的常数,所述负荷时间补偿系数根据当前建筑物的使用情况进行预设,所述f1(室外气象参数)为所述当前室外气象参数对应的所述历史制冷量。
2.根据权利要求1所述的空调器的控制方法,其特征在于,所述根据所述当前室外气象参数和历史出水温度,确定出水温度时间补偿值的步骤,具体包括:
获取与所述当前室外气象参数相对应的所述历史出水温度;
根据负荷时间补偿系数和所述历史出水温度,确定所述出水温度时间补偿值。
3.根据权利要求1所述的空调器的控制方法,其特征在于,还包括:
获取所述当前室外气象参数对应的历史出水温度,并将所述历史出水温度作为所述基准出水温度;
所述目标出水温度等于所述基准出水温度与所述出水温度时间补偿值之和。
4.根据权利要求1所述的空调器的控制方法,其特征在于,
获取所述室外气象参数对应的历史回水温度,并将所述历史回水温度作为所述基准回水温度;
所述目标出水温度等于所述基准回水温温度与所述出水温度时间补偿值之和减去当前冷冻水进出水温差值。
5.根据权利要求1所述的空调器的控制方法,其特征在于,还包括:
根据当前冷冻水进水温度和当前冷冻水出水温度及冷冻水流量,确定实时制冷量;
当所述实时制冷量与所述当前制冷量预测值的差值超出预设范围时,更新所述负荷时间补偿系数,以重新确定所述当前制冷量预测值和所述出水温度时间补偿值。
6.根据权利要求1至5中任一项所述的空调器的控制方法,其特征在于,还包括:
按照预设频率,发送温控指令以调节所述温控目标值。
7.一种空调器的控制装置,其特征在于,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序以实现:
根据历史时间、所述历史时间对应的历史制冷量和历史室外气象参数、以及当前室外气象参数,得到当前制冷量预测值的关系式为:
当前制冷量预测值=A*负荷时间补偿系数*f1(室外气象参数);
根据所述当前室外气象参数和历史出水温度,确定出水温度时间补偿值;
根据基准出水温度或基准回水温度、所述出水温度时间补偿值,确定温控目标值以控制主机的出水温度;
其中,A为大于零的常数,所述负荷时间补偿系数根据当前建筑物的使用情况进行预设,所述f1(室外气象参数)为所述当前室外气象参数对应的所述历史制冷量。
8.根据权利要求7所述的空调器的控制装置,其特征在于,所述处理器用于执行所述计算机程序以实现所述根据所述当前室外气象参数和历史出水温度,确定出水温度时间补偿值的步骤,具体包括:
获取与所述当前室外气象参数相对应的所述历史出水温度;
根据负荷时间补偿系数和所述历史出水温度,确定所述出水温度时间补偿值。
9.根据权利要求7所述的空调器的控制装置,其特征在于,所述处理器还用于执行所述计算机程序以实现:
获取所述当前室外气象参数对应的历史出水温度,并将所述历史出水温度作为所述基准出水温度;
所述目标出水温度等于所述基准出水温度与所述出水温度时间补偿值之和。
10.根据权利要求7所述的空调器的控制装置,其特征在于,所述处理器还用于执行所述计算机程序以实现:
获取所述室外气象参数对应的历史回水温度,并将所述历史回水温度作为所述基准回水温度;
所述目标出水温度等于所述基准回水温温度与所述出水温度时间补偿值之和减去当前冷冻水进出水温差值。
11.根据权利要求7所述的空调器的控制装置,其特征在于,所述处理器还用于执行所述计算机程序以实现:
根据当前冷冻水进水温度和当前冷冻水出水温度及冷冻水流量,确定实时制冷量;
当所述实时制冷量与所述当前制冷量预测值的差值超出预设范围时,更新所述负荷时间补偿系数,以重新确定所述当前制冷量预测值和所述出水温度时间补偿值。
12.根据权利要求7至11中任一项所述的空调器的控制装置,其特征在于,所述处理器还用于执行所述计算机程序以实现:
按照预设频率,发送温控指令以调节所述温控目标值。
13.一种空调器,其特征在于,包括如权利要求7至12中任一项所述的空调器的控制装置。
CN201811533624.4A 2018-12-14 2018-12-14 空调器的控制方法及装置和空调器 Active CN109654665B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201811533624.4A CN109654665B (zh) 2018-12-14 2018-12-14 空调器的控制方法及装置和空调器
EP19897374.5A EP3839364A4 (en) 2018-12-14 2019-05-30 AIR CONDITIONER AND AIR CONDITIONER CONTROL PROCESS AND DEVICE
PCT/CN2019/089189 WO2020119038A1 (zh) 2018-12-14 2019-05-30 空调器的控制方法及装置和空调器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811533624.4A CN109654665B (zh) 2018-12-14 2018-12-14 空调器的控制方法及装置和空调器

Publications (2)

Publication Number Publication Date
CN109654665A true CN109654665A (zh) 2019-04-19
CN109654665B CN109654665B (zh) 2021-01-29

Family

ID=66114033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811533624.4A Active CN109654665B (zh) 2018-12-14 2018-12-14 空调器的控制方法及装置和空调器

Country Status (3)

Country Link
EP (1) EP3839364A4 (zh)
CN (1) CN109654665B (zh)
WO (1) WO2020119038A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186156A (zh) * 2019-06-03 2019-08-30 西安锦威电子科技有限公司 制冷站模糊控制系统
CN110410964A (zh) * 2019-06-27 2019-11-05 青岛海尔空调器有限总公司 空调器的控制方法及控制系统
CN110486913A (zh) * 2019-08-26 2019-11-22 珠海格力电器股份有限公司 空调的控制方法、装置、设备、空调和存储介质
CN110562005A (zh) * 2019-08-22 2019-12-13 卓尔智联(武汉)研究院有限公司 车载空调控制装置、方法及计算机可读存储介质
CN110701732A (zh) * 2019-12-10 2020-01-17 南昌掘策数据服务有限公司 能耗数据分析方法、系统及中央空调的节能方法和系统
CN111059718A (zh) * 2019-11-13 2020-04-24 珠海格力电器股份有限公司 一种空调控制方法、终端及计算机可读介质
WO2020119038A1 (zh) * 2018-12-14 2020-06-18 广东美的暖通设备有限公司 空调器的控制方法及装置和空调器
CN111664560A (zh) * 2020-06-16 2020-09-15 上海总恒电力信息科技有限公司 中央空调主机智慧节能控制方法
CN112001813A (zh) * 2020-08-15 2020-11-27 湖南钜达程水务有限公司 一种直饮水供水方法、系统、以及存储介质
CN112393433A (zh) * 2020-10-09 2021-02-23 华帝股份有限公司 一种零冷水燃气热水器的预热保温控制方法
CN114234370A (zh) * 2021-12-14 2022-03-25 珠海格力电器股份有限公司 一种多联机空调控制方法、装置及多联机空调
CN114279006A (zh) * 2020-09-27 2022-04-05 中兴通讯股份有限公司 制冷控制方法及其装置、间接蒸发冷却空调器、存储介质
CN114543278A (zh) * 2022-03-09 2022-05-27 朱建 空调室温控制方法及装置
CN114704932A (zh) * 2021-12-14 2022-07-05 珠海格力电器股份有限公司 热泵冷热水系统的水温控制方法及热泵冷热水系统
CN115119473A (zh) * 2022-05-30 2022-09-27 科华数据股份有限公司 机房空调的控制方法、电子设备、数据中心及存储介质
CN115854497A (zh) * 2022-12-05 2023-03-28 珠海格力电器股份有限公司 空调器及其控制方法和装置、存储介质
CN116105392A (zh) * 2023-04-12 2023-05-12 广东美的暖通设备有限公司 一种离心冷水机组的控制方法和装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112815494B (zh) * 2021-01-11 2022-02-11 珠海格力电器股份有限公司 空调的运行控制方法、装置、空调、存储介质及处理器
CN112819251B (zh) * 2021-02-26 2024-01-02 北京西门子西伯乐斯电子有限公司 供热阀门开度控制方法、装置和计算机可读介质
CN114963288B (zh) * 2021-04-30 2024-01-05 青岛经济技术开发区海尔热水器有限公司 采暖炉控制方法、装置、设备及存储介质
CN113787878B (zh) * 2021-08-23 2024-01-05 武汉格罗夫氢能汽车有限公司 基于气象数据演算整车热负荷的氢能汽车空调控制方法
CN114322382B (zh) * 2021-12-24 2024-03-19 中国电信股份有限公司 机房制冷控制方法、系统、设备及存储介质
CN114440410B (zh) * 2022-02-14 2023-09-08 深圳嘉力达节能科技有限公司 基于换热效率对冷冻、冷却水泵进行变流量控制的方法
CN114623563B (zh) * 2022-02-16 2023-04-28 珠海格力电器股份有限公司 一种空调的控制方法、装置、空调和存储介质
CN114608187B (zh) * 2022-03-01 2023-09-26 博锐尚格科技股份有限公司 一种冷机调节方式确定方法、装置、设备及存储介质
CN114690820B (zh) * 2022-03-30 2023-08-08 广东万和电气有限公司 厨用家电以及温度补偿方法、装置
CN115031365B (zh) * 2022-06-17 2023-11-28 广东欧科空调制冷有限公司 基于天气预测的新风机智能控制方法及系统
CN115143602B (zh) * 2022-06-29 2023-09-05 香港理工大学深圳研究院 一种基于迭代学习机制的有限冷量条件下的分配控制方法
CN116066970B (zh) * 2023-04-04 2023-07-28 重庆跃达新能源有限公司 一种中央空调节能控制方法及系统
CN117287796A (zh) * 2023-10-26 2023-12-26 深圳中正信息科技有限公司 中央空调节能优化方法、设备和可读存储介质
CN117258138B (zh) * 2023-11-21 2024-03-12 安徽通灵仿生科技有限公司 一种心室辅助系统的冲洗设备的控制方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201003835Y (zh) * 2006-12-12 2008-01-09 重庆爱尔建筑节能技术有限公司 一种中央空调系统节能控制装置
CN102607138A (zh) * 2012-04-13 2012-07-25 北京海林节能设备股份有限公司 综合节能建筑的空调控制方法及系统
CN106338127A (zh) * 2016-09-20 2017-01-18 珠海格力电器股份有限公司 用于地铁暖通空调系统的负荷预测和控制系统及其方法
CN106969507A (zh) * 2017-05-25 2017-07-21 美的智慧家居科技有限公司 电热水器洗浴温度智能控制方法及装置
CN107781948A (zh) * 2017-10-30 2018-03-09 四川长虹电器股份有限公司 基于时间、温度与空调参数的空调负荷预测方法
WO2018177745A1 (de) * 2017-03-30 2018-10-04 Techem Energy Services Gmbh Verfahren und vorrichtung zur ermittlung der wahrscheinlichkeit für einen schimmelpilz- und/oder feuchteschaden in einem gebäude
CN207990901U (zh) * 2018-03-29 2018-10-19 智刚 一种基于仿生学的分布式中央空调节能控制装置
CN108731189A (zh) * 2017-04-13 2018-11-02 易微电(天津)科技发展有限公司 一种中央空调连续调优系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534617B (zh) * 2014-12-08 2017-04-26 北京方胜有成科技股份有限公司 一种基于能耗监测的冷源集中数字控制方法
CN104791903B (zh) * 2015-04-30 2018-04-06 北京上庄燃气热电有限公司 一种热网智能调度系统
CN105571063B (zh) * 2015-12-31 2018-08-24 深圳市同鑫热力技术有限公司 一种浅层地温能能源管理系统及其实现方法
US10295214B2 (en) * 2016-07-27 2019-05-21 Johnson Controls Technology Company Environmental setpoint for HVAC system control
CN108224632A (zh) * 2017-12-27 2018-06-29 广东中新节能环保有限公司 酒店建筑中央空调机房冷冻水系统综合能效提升控制方法
CN109654665B (zh) * 2018-12-14 2021-01-29 广东美的暖通设备有限公司 空调器的控制方法及装置和空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201003835Y (zh) * 2006-12-12 2008-01-09 重庆爱尔建筑节能技术有限公司 一种中央空调系统节能控制装置
CN102607138A (zh) * 2012-04-13 2012-07-25 北京海林节能设备股份有限公司 综合节能建筑的空调控制方法及系统
CN106338127A (zh) * 2016-09-20 2017-01-18 珠海格力电器股份有限公司 用于地铁暖通空调系统的负荷预测和控制系统及其方法
WO2018177745A1 (de) * 2017-03-30 2018-10-04 Techem Energy Services Gmbh Verfahren und vorrichtung zur ermittlung der wahrscheinlichkeit für einen schimmelpilz- und/oder feuchteschaden in einem gebäude
CN108731189A (zh) * 2017-04-13 2018-11-02 易微电(天津)科技发展有限公司 一种中央空调连续调优系统及方法
CN106969507A (zh) * 2017-05-25 2017-07-21 美的智慧家居科技有限公司 电热水器洗浴温度智能控制方法及装置
CN107781948A (zh) * 2017-10-30 2018-03-09 四川长虹电器股份有限公司 基于时间、温度与空调参数的空调负荷预测方法
CN207990901U (zh) * 2018-03-29 2018-10-19 智刚 一种基于仿生学的分布式中央空调节能控制装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020119038A1 (zh) * 2018-12-14 2020-06-18 广东美的暖通设备有限公司 空调器的控制方法及装置和空调器
CN110186156A (zh) * 2019-06-03 2019-08-30 西安锦威电子科技有限公司 制冷站模糊控制系统
CN110410964A (zh) * 2019-06-27 2019-11-05 青岛海尔空调器有限总公司 空调器的控制方法及控制系统
CN110410964B (zh) * 2019-06-27 2021-07-23 青岛海尔空调器有限总公司 空调器的控制方法及控制系统
CN110562005A (zh) * 2019-08-22 2019-12-13 卓尔智联(武汉)研究院有限公司 车载空调控制装置、方法及计算机可读存储介质
CN110486913A (zh) * 2019-08-26 2019-11-22 珠海格力电器股份有限公司 空调的控制方法、装置、设备、空调和存储介质
CN111059718A (zh) * 2019-11-13 2020-04-24 珠海格力电器股份有限公司 一种空调控制方法、终端及计算机可读介质
CN110701732A (zh) * 2019-12-10 2020-01-17 南昌掘策数据服务有限公司 能耗数据分析方法、系统及中央空调的节能方法和系统
CN111664560A (zh) * 2020-06-16 2020-09-15 上海总恒电力信息科技有限公司 中央空调主机智慧节能控制方法
CN111664560B (zh) * 2020-06-16 2021-12-07 上海总恒电力信息科技有限公司 中央空调主机智慧节能控制方法
CN112001813B (zh) * 2020-08-15 2022-07-15 中国建筑第五工程局有限公司 一种直饮水供水方法、系统、以及存储介质
CN112001813A (zh) * 2020-08-15 2020-11-27 湖南钜达程水务有限公司 一种直饮水供水方法、系统、以及存储介质
CN114279006A (zh) * 2020-09-27 2022-04-05 中兴通讯股份有限公司 制冷控制方法及其装置、间接蒸发冷却空调器、存储介质
CN112393433A (zh) * 2020-10-09 2021-02-23 华帝股份有限公司 一种零冷水燃气热水器的预热保温控制方法
CN114234370A (zh) * 2021-12-14 2022-03-25 珠海格力电器股份有限公司 一种多联机空调控制方法、装置及多联机空调
CN114704932A (zh) * 2021-12-14 2022-07-05 珠海格力电器股份有限公司 热泵冷热水系统的水温控制方法及热泵冷热水系统
CN114543278A (zh) * 2022-03-09 2022-05-27 朱建 空调室温控制方法及装置
CN114543278B (zh) * 2022-03-09 2024-01-09 朱建 空调室温控制方法及装置
CN115119473A (zh) * 2022-05-30 2022-09-27 科华数据股份有限公司 机房空调的控制方法、电子设备、数据中心及存储介质
CN115854497A (zh) * 2022-12-05 2023-03-28 珠海格力电器股份有限公司 空调器及其控制方法和装置、存储介质
CN116105392A (zh) * 2023-04-12 2023-05-12 广东美的暖通设备有限公司 一种离心冷水机组的控制方法和装置

Also Published As

Publication number Publication date
EP3839364A1 (en) 2021-06-23
EP3839364A4 (en) 2021-10-13
CN109654665B (zh) 2021-01-29
WO2020119038A1 (zh) 2020-06-18

Similar Documents

Publication Publication Date Title
CN109654665A (zh) 空调器的控制方法及装置和空调器
CN102778006B (zh) 获取多联机空调系统压力参数的方法及装置
CN104110768B (zh) 空调器电子膨胀阀控制方法及控制电路
CN109341013A (zh) 空调器及其控制方法、装置
CN106352484B (zh) 一拖多空调及其制冷控制方法
US8670871B2 (en) Load processing balance setting apparatus
CN111023435B (zh) 一种空调器的膨胀阀的控制方法及其系统、空调器
CN105864983A (zh) 一种空调控制方法
CN110107989A (zh) 基于冷冻水回水温度最佳设定点的小型定频冷水机组变水温控制方法
CN104110799A (zh) 空调器电子膨胀阀的综合控制方法及电路
KR102122592B1 (ko) 공기조화시스템의 제어방법
CN106369757A (zh) 一种多联机的压缩机频率控制方法、装置及多联机
CN113366266A (zh) 空调管理装置、空调管理系统、空调管理方法以及程序
CN108613343A (zh) 一种空调器的控制方法及控制系统
CN109631254A (zh) 空调器、空调器制热控制方法及计算机可读存储介质
CN106052031A (zh) 恒温恒湿设备的室外机组的变频控制系统及其方法
CN111306718B (zh) 空调运行控制方法、装置、可读存储介质和空调器
CN105571079B (zh) 一种多联外机应对内机容量变化时的控制方法及控制系统
CN110388731A (zh) 空调系统的控制方法及系统、空调系统和计算机装置
CN202902539U (zh) 获取多联机空调系统压力参数的装置
CN107339834B (zh) 自然冷却机组的控制方法和装置
JP6733704B2 (ja) 空調管理システム及び通信制御装置
CN112856748B (zh) 冷量输出控制方法、装置、机房空调和存储介质
TW201512607A (zh) 運轉控制裝置及運轉控制方法
CN115435385A (zh) 多联机的空调系统及其控制方法、存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant