CN109638106A - 一种在太阳能电池衬底表面生长微晶硅的方法及装置 - Google Patents

一种在太阳能电池衬底表面生长微晶硅的方法及装置 Download PDF

Info

Publication number
CN109638106A
CN109638106A CN201811330322.7A CN201811330322A CN109638106A CN 109638106 A CN109638106 A CN 109638106A CN 201811330322 A CN201811330322 A CN 201811330322A CN 109638106 A CN109638106 A CN 109638106A
Authority
CN
China
Prior art keywords
laser
airtight cavity
microcrystal silicon
solar cell
cell substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811330322.7A
Other languages
English (en)
Other versions
CN109638106B (zh
Inventor
段光亮
蒋秀林
卢林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JA Solar Technology Yangzhou Co Ltd
Original Assignee
JA Solar Technology Yangzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JA Solar Technology Yangzhou Co Ltd filed Critical JA Solar Technology Yangzhou Co Ltd
Priority to CN201811330322.7A priority Critical patent/CN109638106B/zh
Publication of CN109638106A publication Critical patent/CN109638106A/zh
Application granted granted Critical
Publication of CN109638106B publication Critical patent/CN109638106B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种在太阳能电池衬底表面生长微晶硅的方法及装置。该方法包括以下步骤:S1:将太阳能电池衬底置入一个密闭腔体内,在所述密闭腔体上设置有透明窗口;S2:使所述密闭腔体成为真空环境;S3:向所述密闭腔体内通入硅烷;S4:利用位于所述密闭腔体外的激光器透过所述透明窗口对所述太阳能电池衬底照射激光,以使得硅烷分解而生成微晶硅。根据该方法,利用激光对太阳能电池衬底表面某个选定目标区域进行照射,在被照射的区域中,因为温度高所以硅烷被分解,因而生成微晶硅,在未被照射的区域中,因为温度低所以基本不生成微晶硅,结果是可生成局部微晶硅。

Description

一种在太阳能电池衬底表面生长微晶硅的方法及装置
技术领域
本发明涉及太阳能电池制造技术,尤其涉及一种在太阳能电池衬底表面生长微晶硅的方法及装置。
背景技术
隧穿氧化钝化接触(Tunnel Oxide Passivated Contact,简称为Topcon)太阳能电池(简称为电池),源于德国弗劳恩霍夫研究所所开发的Topcon技术。在该Topcon技术中,首先在电池背面用化学方法制备一层超薄氧化硅,然后沉积一层掺杂硅薄层,二者共同形成钝化接触结构。因为超薄氧化层的隧穿效应以及微晶硅的钝化效果,该Topcon电池具有很高的开路电压和填充因子,因此具有很高的转换效率,是目前太阳能电池行业的一个研究热点。
微晶硅是一种局部有序排列的多晶硅,微晶硅通常应用于电池结构的背面,为了进一步提高电池效率,对正面亦常采用微晶硅钝化处理,通过降低界面态密度,减少饱和悬挂键数量,以达到降低表面复合以及通过增加接触区的表面浓度,减少金属接触复合。关于现有的在电池衬底表面生长微晶硅的方法,例如可以列举:低压力化学气相沉积法(简称为LPCVD)、等离子体增强的化学气相沉积法(简称为PECVD)、物理气相沉积法(简称为PVD);硅烷分解过程硅氢键断裂需要足够的能量,温度越低,硅氢键断裂的几率越小,硅烷热效率越慢,用以上常规方法生长微晶硅,反应环境温度一般大于400℃,需要外加热源。且LPCVD主要形成的是整面的微晶硅,PECVD形成的产物中非晶硅较多,非晶硅是一种非晶态产物,达不到要求的钝化效果。如果在Topcon电池正面制作整面的微晶硅,因微晶硅层吸光性比强,又会造成整面电流的损失。
发明内容
本发明所要解决的技术问题在于,提供一种在太阳能电池衬底表面生长微晶硅的方法,通过利用激光而生成微晶硅,而且通过激光照射可以实现使微晶硅在目标区域内生长,从而可以降低太阳能电池正面钝化处理后的金属复合程度,提高电池转换效率,减少太阳能电池因正面钝化而带来的电流损失。
为了解决上述技术问题,本发明提供以下的技术方案:
一种在太阳能电池衬底表面生长微晶硅的方法,
包括以下步骤:
S1:将太阳能电池衬底置入一个封闭腔体内,在所述封闭腔体上设置有透明窗口;
S2:使所述封闭腔体成为真空环境;
S3:向所述封闭腔体内通入硅烷;
S4:利用位于所述封闭腔体外的激光器透过所述透明窗口对所述太阳能电池衬底照射激光,以使得硅烷分解而生成微晶硅。
本发明在化学气相沉积微晶硅的过程中,采用激光辅助照射进行加热,激光照射的区域因为温度高硅烷分解速度快,生长的微晶硅厚,非激光照射区域温度比较低,不生长或生长的微晶硅很薄,薄的微晶硅层可以用化学清洗清除。实现在选定目标区域内沉积生成微晶硅的目的。使太阳能电池正面钝化生长的微晶硅数量减少,相对整面微晶硅对光的吸收明显降低,对光的吸收量减少,电流损失小。另外相对传统的化学气相沉积方法,激光辅助生长微晶硅的方法无需其他热源,沉积温度低。
本发明还可作以下改进:
为改善生长的微晶的膜层质量,在步骤S2之后且步骤S4之前,还包括步骤
S3’:向所述密闭腔体内通入氢气。
也可以是在步骤S3向所述密闭腔体内通入硅烷的过程中,同时向所述密闭腔体内通入氢气。
优选地,重复步骤S4,至生成的微晶硅达到目标厚度。激光照射时间控制在10sec~30min,微晶硅生长厚度可以是10~400nm。
本发明根据产品要求可以生长不同形状的局部微晶硅层,作为一种可行的实施方式,所述激光为线激光或点阵激光,通过扫描对所述太阳能电池衬底进行照射。所述线激光可以是单束光源,也可以是将线激光通过光学组件而分束的多束激光。点阵激光可以是单点激光作光源,也可以是单点激光经光学组件而分束的多点激光。
作为另一种可行的实施方式,所述激光可以为面光源,通过在太阳能电池衬底的上方设置掩膜板,掩膜板局部透光,使激光透过掩膜板对所述太阳能电池衬底进行照射。
本发明为进一步提高电池的填充因子,在所述步骤S3之前、步骤S3之中、步骤S3之后向所述密闭腔体通入磷烷或者乙硼烷用于生成掺杂微晶硅以降低接触电阻。
优选地,在步骤S2中所述真空环境的压力为1×10-3Pa~1×10-2Pa,且在步骤S3中,所述密闭腔体内的压力为6.67Pa~133.3Pa。
上述通入硅烷、氢气以及掺杂用气体磷烷或乙硼烷的过程中,硅烷流量宜控制在50sccm~500sccm,氢气流量控制在2sccm~100sccm,磷烷或乙硼烷流量控制在0.02sccm~10sccm。
优选地,上述步骤中所述激光为红外光或者绿光。
更为优选地,所述激光器所发射激光为红外光。
本发明提供的一种用于太阳能电池衬底表面生长微晶硅的装置,包括一个密闭腔体,还包括激光器,所述激光器设置于所述密闭腔体的外侧,所述密闭腔体内部设置有用于放置太阳能电池衬底的载物台,所述密闭腔体的一个外壁上开设有透明窗口,且所述激光器发射的激光能够透过所述透明窗口照射放置在所述载物台上的所述太阳能电池衬底,所述密闭腔体内部连通有进气部件和抽气部件,所述进气部件包括至少一个连通所述密闭腔体内部的硅烷管道,所述抽气部件包括至少一个连通所述密闭腔体内部的抽真空管道。
本装置通过抽气部件将密闭腔体抽真空,使密闭腔体在真空环境下生长微晶硅,激光器所发射激光透过透明窗口照射太阳能电池衬底,通过激光加热在衬底表面的选定目标区域生长微晶硅,生长的微晶硅膜层纯度高,夹杂少。
优选地,所述进气部件还包括至少一个连通所述密闭腔体内部的氢气管道。
优选地,所述进气部件还包括至少一个连通所述密闭腔体内部的磷烷管道或乙硼烷管道。
优选地,所述抽气部件还包括至少一个连通所述密闭腔体内部的用于破真空的氮气管道。
优选地,所述激光器与所述透明窗口之间设置有扫描振镜或光学组件。扫描振镜为现有技术的一种矢量扫描器件,可以实现在选定区域范围进行扫描。光学组件为可实现分光的光学元件,或者是改变光传播路径的如用于反射、折射的光学元件。
优选地,所述透明窗口与所述载物台上放置的太阳能电池衬底之间设置有局部透光的掩膜板。
优选地,所述密闭腔体设置有冷却装置,所述冷却装置设置于所述密闭腔体的内壁以及所述载物台下方。
优选地,所述激光器发射的光源为点光源、点阵光源或者面光源。
优选地,所述激光器发射的激光为红外光或者绿光。
本发明的有益效果:
1.本发明通过激光辅助气相化学积法的方法在太阳能电池衬板上生长微晶硅,当用于太阳能电池正面钝化处理时,可以降低太阳能电池正面的表面复合以及减少金属接触复合,提高电池的转换效率。通过激光照射,易于控制微晶硅在选定目标区域内生长,可以避免制作整面微晶硅造成的电流损失。
2.本发明采用激光辅助的方法,通过激光作用促进源气体硅烷分子的分解,吸附和反应等动力学过程加快,从而提高微晶硅膜的沉积速率,无需外加热源,降低能源成本。
3.本发明还可同时用于生长局部掺杂的微晶硅,进而降低太阳能电池的接触电阻,提高电池的填充因子,进一步提高电池效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单的介绍。
图1为本发明实施例一中的生长微晶硅的装置及方法的示意图;
图2为本发明实施例二中的生长微晶硅的装置及方法的示意图。
图中的附图标记分别表示:
1-密闭腔体;
2-腔体冷却装置;
3-进气部件;
4-激光器组件;
5-透明窗口;
6-掩膜板;
7-载物台;
8-载物台冷却装置;
9-抽气部件。
具体实施方式
实施例一
如图1所示的一种用于太阳能电池衬底表面生长微晶硅的装置,包括一个密闭腔体1,激光器组件4,激光器组件4包括激光器、扫描振镜以及光学组件。密闭腔体1为长方体状,激光器位于密闭腔体1的外侧,具体设置于如图1所示的密闭腔体1顶面的外侧,在密闭腔体1的一个外壁也即顶面的中部开设有一个由石英制成的透明窗口5,透明窗口5为矩形,透明窗口上方对应有扫描振镜和激光器,激光器和扫描振镜集成于一体并固定在一个与密闭腔体1固定连接的护罩内。密闭腔体1内部有用于放置太阳能电池衬底的载物台7,载物台7也为矩形。载物台7可以固定设置,也可以与输送装置连接以实现在流水线上间歇式循环移动。由激光器发射的激光能够透过透明窗口5照射在载物台7,密闭腔体1内部连通有进气部件3和抽气部件9。进气部件3包括一个连通密闭腔体1内部的硅烷管道,硅烷管道用于向密闭腔体1内输送硅烷气体。为生长掺杂微晶硅,进气部件3还可增设一个连通密闭腔体1内部的磷烷管道或乙硼烷管道,用于通入磷烷或乙硼烷气体。抽气部件9包括一个连通密闭腔体1内部的抽真空管道。为便于破真空,抽气部件9还可增设一个用于向密闭腔体1内部通入氮气的氮气管道。硅烷管道和抽真空管道等管道根据需求可设置多个。
进气部件3还包括一个连通密闭腔体1内部的氢气管道。氢气管道用于通入氢气以改善最终生成的微晶硅的膜层质量。激光器组件4的激光器与透明窗口5之间设置扫描振镜或光学组件,激光器的光源为点光源、点阵光源或者线光源,通过扫描振镜或者光学组件控制激光的照射路径,点光源以及线光源所发射出的激光可以是单束激光直接照射,也可以将单束激光经光学组件分束为多束激光。激光最好是红外光,也可以是绿光。
密闭腔体1设有冷却装置,冷却装置包括设置于密闭腔体1的内壁的腔体冷却装置2以及设置于载物台7下方的载物台冷却装置8。
在太阳能电池衬底表面生长微晶硅的方法,其步骤如下:
S1:将太阳能电池衬底置入密闭腔体1内的载物台7上;
其中太阳能电池衬底可选为硅片。
S2:通过抽气部件9抽气使密闭腔体1成为真空环境,真空环境的压力控制在1×10-3Pa~1×10-2Pa;
S3:经硅烷管道向密闭腔体1内通入硅烷,硅烷通入流量控制在50sccm~500sccm。也可在通入硅烷的同时,或者通入硅烷的前后通入氢气以及用于掺杂的乙硼烷或磷烷,氢气流量控制在2sccm~100sccm,磷烷或乙硼烷的通入流量宜控制在0.02sccm~10sccm。通入所有气体后密闭腔体1内的压力需控制在6.67Pa~133.3Pa。
S4:利用位于密闭腔体1外的激光器透过透明窗口5对载物台7上的太阳能电池衬底照射激光,使硅烷气体分解而生成微晶硅;
S5:重复步骤S4,至生成的微晶硅达到目标厚度。激光照射加工时间控制在10sec~30min,微晶硅生长厚度可以是10~400nm。
实施例二
本实施例与实施例一的不同之处在于,如图2所示,本实施例的用于太阳能电池衬底表面生长微晶硅的装置中激光器所发射激光为面光源,并在太阳能电池衬底上方设置掩膜板6,掩膜板位置介于透明窗口5与载物台7上放置的太阳能电池衬底之间。掩膜板为太阳能电池制造专用的部件,其结构与原理参见申请号为201310505063.8的发明专利《离子注入机的新型掩膜及使用》,常见的为石墨掩膜板,整体可以是方形、圆形等,掩膜板部分区域镂空,镂空形状可以为孔形、条纹形或网格形。本实施例的其他实施步骤与实例一相同,其中石墨掩膜板可用具有同等抗高温能力的陶瓷掩膜板或者石英掩膜板代替。
本发明的上述实施例并不是对本发明保护范围的限定,本发明的实施方式不限于此,凡此种种根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,对本发明上述结构及方法做出的其它多种形式的修改、替换或变更,均应落在本发明的保护范围之内。

Claims (10)

1.一种在太阳能电池衬底表面生长微晶硅的方法,其特征在于,包括以下步骤:
S1:将太阳能电池衬底置入一个密闭腔体内,在所述密闭腔体上设置有透明窗口;
S2:使所述密闭腔体成为真空环境;
S3:向所述密闭腔体内通入硅烷;
S4:利用位于所述密闭腔体外的激光器透过所述透明窗口对所述太阳能电池衬底照射激光,以使得硅烷分解而生成微晶硅。
2.根据权利要求1所述的生长微晶硅的方法,其特征在于,在步骤S2之后且步骤S4之前,还包括
S3’:向所述密闭腔体内通入氢气。
3.根据权利要求1所述的生长微晶硅的方法,其特征在于,在步骤S3中,向所述密闭腔体内通入硅烷,而且向所述密闭腔体内通入氢气。
4.根据权利要求1~3的任一项所述的生长微晶硅的方法,其特征在于,还包括
S5:重复步骤S4,至生成的微晶硅达到目标厚度。
5.根据权利要求1~4的任一项所述的生长微晶硅的方法,其特征在于,所述激光为线激光或点阵激光,通过扫描对所述太阳能电池衬底进行照射。
6.根据权利要求5所述的生长微晶硅的方法,其特征在于,所述线激光为单束光源,或者所述线激光为经光学组件而分束的多束激光。
7.根据权利要求1~4的任一项所述的生长微晶硅的方法,其特征在于,所述激光为面光源,通过在所述太阳能电池衬底的上方设置的局部透光的掩膜板对所述太阳能电池衬底进行照射。
8.根据权利要求1~7的任一项所述的生长微晶硅的方法,其特征在于,在步骤S3之前、步骤S3之后、或步骤S3之中向所述密闭腔体内通入磷烷或者乙硼烷。
9.根据权利要求1~8的任一项所述的生长微晶硅的方法,其特征在于,在步骤S2中,所述真空环境的压力为1×10-3Pa~1×10-2Pa,且在步骤S3中,所述密闭腔体内的压力为6.67Pa~133.3Pa;所述激光为红外光或者绿光。
10.一种用于在太阳能电池衬底表面生长微晶硅的装置,其特征在于,包括一个密闭腔体和设置于所述密闭腔体的外侧的激光器,
在所述密闭腔体内部设置有用于放置太阳能电池衬底的载物台,在所述密闭腔体的一个外壁上具有透明窗口,且由所述激光器发射的激光能够透过所述透明窗口照射在所述载物台上,
在所述密闭腔体上设置有与所述密闭腔体的内部连通的进气部件和抽气部件。
CN201811330322.7A 2018-11-09 2018-11-09 一种在太阳能电池衬底表面生长微晶硅的方法及装置 Active CN109638106B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811330322.7A CN109638106B (zh) 2018-11-09 2018-11-09 一种在太阳能电池衬底表面生长微晶硅的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811330322.7A CN109638106B (zh) 2018-11-09 2018-11-09 一种在太阳能电池衬底表面生长微晶硅的方法及装置

Publications (2)

Publication Number Publication Date
CN109638106A true CN109638106A (zh) 2019-04-16
CN109638106B CN109638106B (zh) 2021-07-16

Family

ID=66067625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811330322.7A Active CN109638106B (zh) 2018-11-09 2018-11-09 一种在太阳能电池衬底表面生长微晶硅的方法及装置

Country Status (1)

Country Link
CN (1) CN109638106B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369541A (zh) * 2007-08-17 2009-02-18 株式会社半导体能源研究所 半导体器件的制造方法
US20120040519A1 (en) * 2010-08-13 2012-02-16 Bureau Of Energy, Ministry Of Economic Affairs Method for forming silicon film having microcrystal structure
CN103602958A (zh) * 2013-11-25 2014-02-26 李学耕 一种激光辅助制备薄膜的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369541A (zh) * 2007-08-17 2009-02-18 株式会社半导体能源研究所 半导体器件的制造方法
US20120040519A1 (en) * 2010-08-13 2012-02-16 Bureau Of Energy, Ministry Of Economic Affairs Method for forming silicon film having microcrystal structure
CN103602958A (zh) * 2013-11-25 2014-02-26 李学耕 一种激光辅助制备薄膜的方法和设备

Also Published As

Publication number Publication date
CN109638106B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
CN102534570B (zh) 一种等离子体增强化学气相沉积微晶硅薄膜的方法
WO2019218567A1 (zh) 一种有机铵金属卤化物薄膜的制备装置及制备和表征方法
JPH04280975A (ja) ZnO透明導電膜の製造方法
CN109449257A (zh) 非晶薄膜后氢化处理方法及硅异质结太阳电池制备方法
CN101805891A (zh) 一种低温高速沉积氢化非晶氮化硅薄膜的方法
CN101660131B (zh) 一种磁控溅射制备氢化硅薄膜的方法
CN101834233B (zh) 一种低温高速沉积氢化非晶硅太阳能电池薄膜的方法
KR20100037071A (ko) 발열체 cvd 장치
CN109638106A (zh) 一种在太阳能电池衬底表面生长微晶硅的方法及装置
CN101719464B (zh) 一种以激光制备超浅结于半导体基片表面的方法
CN110886019A (zh) 一种基于碱金属溶液催化的二硫化钼制备方法
JP3351679B2 (ja) 多結晶シリコン薄膜積層体の製造方法及びシリコン薄膜太陽電池
JPS62151572A (ja) 堆積膜形成法
JP5488051B2 (ja) プラズマcvd装置及びシリコン系薄膜の製造方法
CN110364418B (zh) 一种生长在SiO2衬底上的二维InGaS纳米材料及其制备方法
JP2009272428A (ja) 反射防止膜成膜方法および反射防止膜成膜装置
KR20110023620A (ko) 나노와이어가 구비된 기판 및 이의 제조방법
JPS59213176A (ja) 薄膜太陽電池の製造方法
CN204039494U (zh) 形成光电器件薄膜的真空设备
JP4451508B2 (ja) 気相成長方法
CN103866276B (zh) 原子层沉积制备共掺的氧化锌薄膜的方法
JPWO2012128051A1 (ja) 透明導電膜の製造方法および太陽電池の製造方法
CN103866273B (zh) 原子层沉积制备N-Zr共掺的氧化锌薄膜的方法
CN103866267B (zh) 用于N-Zr共掺氧化锌薄膜的制备方法
CN103866272B (zh) 用于提高氧化锌薄膜p型稳定性的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant