CN109634291B - 一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法 - Google Patents
一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法 Download PDFInfo
- Publication number
- CN109634291B CN109634291B CN201811423427.7A CN201811423427A CN109634291B CN 109634291 B CN109634291 B CN 109634291B CN 201811423427 A CN201811423427 A CN 201811423427A CN 109634291 B CN109634291 B CN 109634291B
- Authority
- CN
- China
- Prior art keywords
- rigid aircraft
- omega
- rigid
- aircraft
- attitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000003044 adaptive effect Effects 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 11
- 238000013461 design Methods 0.000 claims description 8
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000009795 derivation Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 230000006798 recombination Effects 0.000 claims description 3
- 238000005215 recombination Methods 0.000 claims description 3
- 238000006467 substitution reaction Methods 0.000 claims description 3
- 230000017105 transposition Effects 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法,针对存在外部干扰和转动惯量不确定的刚性飞行器,构造适用于约束和非约束情况的新型改进型障碍李雅普诺夫函数,再结合反步控制和自适应方法,提出一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法。改进型障碍李雅普诺夫函数的应用实现了飞行器输出的约束,而自适应方法在无需任何先验知识的情况下可以估计总体不确定性。本发明在外界干扰和转动惯量不确定的情况下,保证了飞行器姿态跟踪误差和角速度误差的一致最终有界。
Description
技术领域
本发明涉及一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法,特别是存在外部干扰,转动惯量不确定和输出约束的刚性飞行器姿态跟踪方法。
背景技术
刚性飞行器一种非线性、强耦合、多输入多输出的复杂系统,由于飞行器结构复杂性、任务负载变化和飞行过程中燃料消耗,飞行器本身的转动惯量含有很多不确定性,这些不确定性很难被定量测量,因此会对姿态控制带来负面影响。与此同时,在飞行中有很多外部干扰力矩时刻影响着飞行器,如辐射力矩、重力梯度力矩和地磁力矩等等。而随着执行任务精细化程度的提高,仅仅关注飞行器的稳态精度是不足够的。为保证系统的瞬态性能和稳定性,通常会对系统状态和输出的幅值予以约束。而在系统运行过程中,如果违反约束条件,可能会导致系统性能下降甚至出现安全问题。
障碍李雅普诺夫函数方法是一种约束控制方法,其基本原理是当变量趋近区域边界时,李雅普诺夫函数的值趋于无穷大,从而保证变量的约束。传统的对数障碍李雅普诺夫函数并不适用于非约束的情况,然而改进型障碍李雅普诺夫函数却可以同时适用于约束和非约束情况。使用改进型障碍李雅普诺夫函数不但可以约束变量,也可以有效改善系统的瞬态和稳态性能。
自适应控制是一种可以适应系统参数变化能力的控制方法。不同于一般的鲁棒控制方法通过增大控制量来保证系统的收敛,自适应控制可以在系统变化的同时逼近系统特征来保证控制精度。反步控制方法是一种基于李雅普诺夫定理的递归设计控制方法,反馈控制律和李雅普诺夫函数可以在逐步递归的过程中一同设计。反步法可以在高阶控制器设计时通过逐步递归降低控制器设特性计难度。反步控制的一个主要优点是它可以避免消除一些有用的非线性并实现高精度的控制性能。因此,飞行器姿态控制器设计中,自适应方法可以用来估计飞行器的转动惯量不确定性和外部干扰并结合反步控制和改进型障碍李雅普诺夫函数来实现高精度控制和输出约束。
发明内容
为了克服现有的刚性飞行器姿态控制系统存在的姿态约束问题,本发明提供一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法,在系统存在外部干扰,转动惯量不确定的情况下,实现刚性飞行器系统的姿态跟踪误差和角速度误差的一致最终有界。
为了解决上述技术问题提出的技术方案如下:
一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法,包括以下步骤:
步骤1,建立刚性飞行器的运动学和动力学模型,初始化系统状态以及控制参数,过程如下:
1.1刚性飞行器系统的运动学方程为:
其中qv=[q1,q2,q3]T和q4分别为单位四元数的矢量部分和标量部分且满足分别为映射在空间直角坐标系x,y,z轴上的值;分别是qv和q4的导数;ω∈R3是刚性飞行器的角速度;I3是R3×3单位矩阵;表示为:
1.2刚性飞行器系统的动力学方程为:
1.3刚性飞行器系统期望的运动学方程为:
1.4由四元数描述的刚性飞行器相对姿态运动:
ωe=ω-Cωd (12)
根据式(1)-(12),刚性飞行器姿态跟踪误差动力学和运动学方程为:
1.5转动惯量矩阵J满足J=J0+ΔJ,其中J0和ΔJ分别表示J的标称部分和不确定部分,则式(15)重新写成:
进一步得到:
并且F满足如下不等式:
1.6结合式(13)和(19),刚性飞行器的姿态跟踪系统写为:
步骤2,针对带有外部扰动和转动惯量不确定的刚性飞行器系统,设计控制器,过程如下:
2.1定义虚拟变量:
其中ωc=[ωc1,ωc2,ωc3]T为虚拟控制律,其形式为:
ωc=-κ1G-1z1 (23)
其中κ1是正常数,G-1是矩阵G的逆矩阵;
2.2设计控制器为:
其中κ2>0;||z2||是z2的二范数;向量是向量b的估计,是的转置;kb1和kb2是正常数,需要满足kb1>||z1(0)||、kb2>||z2(0)||,而||z1(0)||是z1初始值的二范数,||z2(0)||是z2初始值的二范数;是z1的转置,是z2的转置;是ωc的导数;
其中η1=2κ1/k1;k1是正常数;
步骤3,刚性飞行器姿态系统稳定性证明,其过程如下:
3.1证明刚性飞行器系统所有信号都是一致最终有界,设计改进型障碍李雅普诺夫函数为如下形式:
对式(26)求导并将式(23)、(24)和(25)代入得:
将式(27)化简得:
根据李雅普诺夫定理,刚性飞行器系统的姿态跟踪误差和角速度误差可以达到一致最终有界;
3.2证明刚性飞行器输出受限:
通过解不等式(29),得z2最终收敛到如下邻域:
从式(30)看出,z2受到kb2的约束,再结合ωe=ωc+z2、||C||=1的性质和ω=ωe-Cωd,最终得到刚性飞行器的输出ω是受到约束的。
本发明在刚性飞行器存在外部干扰和转动惯量不确定的情况下,结合反步控制法,改进型障碍李雅普诺夫函数和自适应方法,设计一种刚性飞行器姿态约束跟踪控制方法,实现了系统的高精度控制和约束要求。
本发明的技术构思为:针对存在外界干扰和转动惯量不确定的刚性飞行器,提出了适用于约束和非约束情况改进型障碍李雅普诺夫函数。同时设计的自适应更新定律可以估计不确定性的界,不需要任何先验知识。再结合反步控制和改进型障碍李雅普诺夫设计的姿态约束跟踪控制器可以保证刚性飞行器系统的姿态跟踪误差和角速度误差达到一致最终有界。
本发明的有益效果为:在系统存在外界干扰和转动惯量不确定的情况下,实现系统的姿态跟踪误差和角速度误差达到一致最终有界,并且可以保证飞行器输出受到约束。
附图说明
图1为本发明的刚性飞行器虚拟变量z2示意图;
图2为本发明的刚性飞行器角速度跟踪误差示意图;
图3为本发明的刚性飞行器控制输入力矩示意图;
图4为本发明的刚性飞行器四元数跟踪误差示意图;
图5为本发明的刚性飞行器参数估计示意图;
图6为本发明的控制流程示意图。
具体实施方式
下面结合附图对本发明做进一步说明。
参照图1至图6,一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法,所述控制方法包括以下步骤:
步骤1,建立刚性飞行器的运动学和动力学模型,初始化系统状态以及控制参数,过程如下:
1.1刚性飞行器系统的运动学方程为:
其中qv=[q1,q2,q3]T和q4分别为单位四元数的矢量部分和标量部分且满足分别为映射在空间直角坐标系x,y,z轴上的值;分别是qv和q4的导数;ω∈R3是刚性飞行器的角速度;I3是R3×3单位矩阵;表示为:
1.2刚性飞行器系统的动力学方程为:
1.3刚性飞行器系统期望的运动学方程为:
1.4由四元数描述的刚性飞行器相对姿态运动:
ωe=ω-Cωd (12)
根据式(1)-(12),刚性飞行器姿态跟踪误差动力学和运动学方程为:
1.5转动惯量矩阵J满足J=J0+ΔJ,其中J0和ΔJ分别表示J的标称部分和不确定部分,则式(15)重新写成:
进一步得到:
并且F满足如下不等式:
1.6结合式(13)和(19),刚性飞行器的姿态跟踪系统写为:
步骤2,针对带有外部扰动和转动惯量不确定的刚性飞行器系统,设计控制器,过程如下:
2.1定义虚拟变量:
其中ωc=[ωc1,ωc2,ωc3]T为虚拟控制律,其形式为:
ωc=-κ1G-1z1 (23)
其中κ1是正常数,G-1是矩阵G的逆矩阵;
2.2设计控制器为:
其中κ2>0;||z2||是z2的二范数;向量是向量b的估计,是的转置;kb1和kb2是正常数,需要满足kb1>||z1(0)||、kb2>||z2(0)||,而||z1(0)||是z1初始值的二范数,||z2(0)||是z2初始值的二范数;是z1的转置,是z2的转置;是ωc的导数;
其中η1=2κ1/k1;k1是正常数;
步骤3,刚性飞行器姿态系统稳定性证明,其过程如下:
3.1证明刚性飞行器系统所有信号都是一致最终有界,设计改进型障碍李雅普诺夫函数为如下形式:
对式(26)求导并将式(23)、(24)和(25)代入得:
将式(27)化简得:
根据李雅普诺夫定理,刚性飞行器系统的姿态跟踪误差和角速度误差可以达到一致最终有界;
3.2证明刚性飞行器输出受限:
通过解不等式(29),得z2最终收敛到如下邻域:
从式(30)看出,z2受到kb2的约束,再结合ωe=ωc+z2、||C||=1的性质和ω=ωe-Cωd,最终得到刚性飞行器的输出ω是受到约束的。
为说明提出方法的有效性,本发明给出了刚性飞行器系统的数值仿真实验。转动惯量矩阵标称部分为J0=diag{45,42,37.5}千克·平方米,而惯量矩阵不确定部分为ΔJ=diag{4,3.5,2}(1+e-0.1t)-2ΔJ1千克·平方米,其中外部干扰为d=0.5||ω||[sin(0.8t),cos(0.5t),sin(0.3t)]T牛·米;系统的初始状态为ω(0)=[0.01,-0.01,0.01]T弧度/秒;期望的姿态为qd=[0,0,0,1]T,ωd=0.1[cos(t/40),-sin(t/50),-cos(t/60)]T弧度/秒。其中的控制参数选择如下κ1=0.2,κ2=0.4,kb1=0.8,k1=0.2,η1=2,r=0.5,的初始值设置为[0.01,0.01,0.01,0.01]T。为了体现本章所提控制方法对变量的约束作用,分别选取参数kb2=0.6,0.9和1.2进行对比仿真。
图1和图2分别显示了虚拟变量z2和角速度跟踪误差ωe在不同kb2取值下响应。从图中可以看出所提控制器实现了令人满意的姿态跟踪性能,并且取kb2=0.6时超调最小,这说明了较小的kb2带来更强的约束。控制输入力矩u如图3所示。图4显示了取kb2=0.6时四元数跟踪误差e的收敛。估计参数的响应如图5所示,从中可以看出各个元素都收敛到一个正常数。
综上所述,在外部扰动和惯性不确定性存在的情况下,所提控制器可以实现精确的姿态跟踪控制,同时实现了系统的约束,表现在较小的kb2可以有效减小角速度误差的超调,提高系统瞬态性能。
以上阐述的是本发明给出的一个实施例表现出的优良优化效果,显然本发明不只是限于上述实施例,在不偏离本发明基本精神及不超出本发明实质内容所涉及范围的前提下对其可作种种变形加以实施。
Claims (1)
1.一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法,其特征在于,所述控制方法包括以下步骤:
步骤1,建立刚性飞行器的运动学和动力学模型,初始化系统状态以及控制参数,过程如下:
1.1刚性飞行器系统的运动学方程为:
其中qv=[q1,q2,q3]T和q4分别为单位四元数的矢量部分和标量部分且满足q1,q2,q3分别为映射在空间直角坐标系x,y,z轴上的值;分别是qv和q4的导数;ω∈R3是刚性飞行器的角速度;I3是R3×3单位矩阵;表示为:
1.2刚性飞行器系统的动力学方程为:
1.3刚性飞行器系统期望的运动学方程为:
1.4由四元数描述的刚性飞行器相对姿态运动:
ωe=ω-Cωd (12)
根据式(1)-(12),刚性飞行器姿态跟踪误差动力学和运动学方程为:
1.5转动惯量矩阵J满足J=J0+ΔJ,其中J0和ΔJ分别表示J的标称部分和不确定部分,则式(15)重新写成:
进一步得到:
并且F满足如下不等式:
1.6结合式(13)和(19),刚性飞行器的姿态跟踪系统写为:
步骤2,针对带有外部扰动和转动惯量不确定的刚性飞行器系统,设计控制器,过程如下:
2.1定义虚拟变量:
其中ωc=[ωc1,ωc2,ωc3]T为虚拟控制律,其形式为:
ωc=-κ1G-1z1 (23)
其中κ1是正常数,G-1是矩阵G的逆矩阵;
2.2设计控制器为:
其中κ2>0;||z2||是z2的二范数;向量是向量b的估计,是的转置;kb1和kb2是正常数,需要满足kb1>||z1(0)||、kb2>||z2(0)||,而||z1(0)||是z1初始值的二范数,||z2(0)||是z2初始值的二范数;是z1的转置,是z2的转置;是ωc的导数;
其中η1=2κ1/k1;k1是正常数;
步骤3,刚性飞行器姿态系统稳定性证明,其过程如下:
3.1证明刚性飞行器系统所有信号都是一致最终有界,设计改进型障碍李雅普诺夫函数为如下形式:
对式(26)求导并将式(23)、(24)和(25)代入得:
将式(27)化简得:
根据李雅普诺夫定理,刚性飞行器系统的姿态跟踪误差和角速度误差可以达到一致最终有界;
3.2证明刚性飞行器输出受限:
通过解不等式(29),得z2最终收敛到如下邻域:
从式(30)看出,z2受到kb2的约束,再结合ωe=ωc+z2、||C||=1的性质和ω=ωe-Cωd,最终得到刚性飞行器的输出ω是受到约束的。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811423427.7A CN109634291B (zh) | 2018-11-27 | 2018-11-27 | 一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811423427.7A CN109634291B (zh) | 2018-11-27 | 2018-11-27 | 一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109634291A CN109634291A (zh) | 2019-04-16 |
CN109634291B true CN109634291B (zh) | 2021-10-26 |
Family
ID=66069364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811423427.7A Active CN109634291B (zh) | 2018-11-27 | 2018-11-27 | 一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109634291B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112034865B (zh) * | 2020-08-12 | 2021-10-08 | 浙江大学 | 基于优化算法的全驱动水下航行器航迹跟踪控制方法 |
CN112465829B (zh) * | 2020-10-26 | 2022-09-27 | 南京理工大学 | 一种基于反馈控制的交互式点云分割方法 |
CN113625702B (zh) * | 2020-10-28 | 2023-09-22 | 北京科技大学 | 基于二次规划的无人车同时路径跟踪与避障方法 |
CN113110527B (zh) * | 2021-04-12 | 2023-12-01 | 大连海事大学 | 一种自主水下航行器有限时间路径跟踪的级联控制方法 |
CN116500908B (zh) * | 2023-02-27 | 2024-04-09 | 扬州大学 | 一种双扰动观测器的机械臂抗干扰约束控制方法 |
CN117472092B (zh) * | 2023-12-06 | 2024-08-06 | 深圳职业技术大学 | 一种飞行器姿态跟踪控制方法、系统及计算机设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3170752A1 (fr) * | 2015-11-20 | 2017-05-24 | Thales | Procede de transfert orbital d'un vaisseau spatial utilisant une poussee continue ou quasi-continue et systeme embarque de pilotage pour la mise en uvre d'un tel procede |
CN107831670A (zh) * | 2017-12-06 | 2018-03-23 | 浙江工业大学 | 一种基于非对称时不变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法 |
CN108873927A (zh) * | 2018-09-25 | 2018-11-23 | 浙江工业大学 | 一种刚性飞行器的非奇异固定时间自适应姿态跟踪控制方法 |
-
2018
- 2018-11-27 CN CN201811423427.7A patent/CN109634291B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3170752A1 (fr) * | 2015-11-20 | 2017-05-24 | Thales | Procede de transfert orbital d'un vaisseau spatial utilisant une poussee continue ou quasi-continue et systeme embarque de pilotage pour la mise en uvre d'un tel procede |
CN107831670A (zh) * | 2017-12-06 | 2018-03-23 | 浙江工业大学 | 一种基于非对称时不变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法 |
CN108873927A (zh) * | 2018-09-25 | 2018-11-23 | 浙江工业大学 | 一种刚性飞行器的非奇异固定时间自适应姿态跟踪控制方法 |
Non-Patent Citations (2)
Title |
---|
一种高超声速飞行器的再入约束非线性控制方法;张军.等;《空间控制技术与应用》;20110630;第37卷(第3期);第35-40页 * |
高超声速再入飞行非线性约束控制方法研究;孙萍;《中国优秀硕士学位论文全文数据库(电子期刊)》;20180315(第3期);C031-593 * |
Also Published As
Publication number | Publication date |
---|---|
CN109634291A (zh) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109634291B (zh) | 一种基于改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法 | |
Zhang et al. | Fault-tolerant adaptive finite-time attitude synchronization and tracking control for multi-spacecraft formation | |
CN105404304B (zh) | 基于归一化神经网络的航天器容错姿态协同跟踪控制方法 | |
CN107703952B (zh) | 一种刚性飞行器的非奇异固定时间自适应姿态控制方法 | |
CN110543184B (zh) | 一种刚性飞行器的固定时间神经网络控制方法 | |
Tripathi et al. | Finite‐time super twisting sliding mode controller based on higher‐order sliding mode observer for real‐time trajectory tracking of a quadrotor | |
CN110543183B (zh) | 一种考虑执行器受限问题的刚体飞行器固定时间姿态跟踪控制方法 | |
CN109062240B (zh) | 一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法 | |
CN105353615A (zh) | 一种基于滑模观测器的四旋翼飞行器的主动容错控制方法 | |
CN110018637B (zh) | 一种考虑完成时间约束的航天器姿态跟踪保性能控制方法 | |
CN109188910B (zh) | 一种刚性飞行器的自适应神经网络容错跟踪控制方法 | |
CN110471438B (zh) | 一种刚性飞行器的固定时间自适应姿态跟踪控制方法 | |
CN106681343B (zh) | 一种航天器姿态跟踪低复杂度预设性能控制方法 | |
CN109375639A (zh) | 一种基于非对称改进型障碍李雅普诺夫函数的刚性飞行器姿态约束跟踪控制方法 | |
CN110501911A (zh) | 一种考虑执行器受限问题的刚性飞行器自适应固定时间姿态跟踪控制方法 | |
CN110488854B (zh) | 一种基于神经网络估计的刚性飞行器固定时间姿态跟踪控制方法 | |
CN106054606B (zh) | 基于级联观测器的无模型控制方法 | |
CN109557933B (zh) | 一种基于龙伯格观测器的刚性飞行器状态约束控制方法 | |
Sun et al. | Adaptive sliding mode control of cooperative spacecraft rendezvous with coupled uncertain dynamics | |
Cao et al. | Robust flight control design using sensor-based backstepping control for unmanned aerial vehicles | |
Nadda et al. | Improved quadrotor altitude control design using second-order sliding mode | |
Wang et al. | Finite-time prescribed performance trajectory tracking control for the autonomous underwater helicopter | |
CN111752157B (zh) | 一种有限时间收敛的二阶滑模控制方法 | |
CN108958043A (zh) | 一种刚性飞行器的固定时间自适应姿态容错控制方法 | |
Kim et al. | Adaptive tracking control of flexible‐joint manipulators without overparametrization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190416 Assignee: Zhejiang puyun Technology Co.,Ltd. Assignor: JIANG University OF TECHNOLOGY Contract record no.: X2023980037549 Denomination of invention: A rigid aircraft attitude constraint tracking control method based on improved obstacle Lyapunov function Granted publication date: 20211026 License type: Common License Record date: 20230705 |
|
EE01 | Entry into force of recordation of patent licensing contract |