CN109627499A - 一种具有剪切增稠效应的生物质复合凝胶的制备方法 - Google Patents

一种具有剪切增稠效应的生物质复合凝胶的制备方法 Download PDF

Info

Publication number
CN109627499A
CN109627499A CN201811448923.8A CN201811448923A CN109627499A CN 109627499 A CN109627499 A CN 109627499A CN 201811448923 A CN201811448923 A CN 201811448923A CN 109627499 A CN109627499 A CN 109627499A
Authority
CN
China
Prior art keywords
chitosan
gelatin
preparation
gel
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811448923.8A
Other languages
English (en)
Other versions
CN109627499B (zh
Inventor
陈一
胡嘉炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Technology
Original Assignee
Hunan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Technology filed Critical Hunan University of Technology
Priority to CN201811448923.8A priority Critical patent/CN109627499B/zh
Publication of CN109627499A publication Critical patent/CN109627499A/zh
Application granted granted Critical
Publication of CN109627499B publication Critical patent/CN109627499B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/26Cellulose ethers
    • C08J2401/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及一种具有可实现剪切增稠行为的生物质凝胶,该凝胶以壳聚糖基温敏凝胶为基体,其中植入壳聚糖‑明胶复合微球,并在凝胶中填充一定的淀粉大分子。该凝胶具有显著的冲击抵抗性,且由生物质可降解组分构成,可应用于生物医药领域。

Description

一种具有剪切增稠效应的生物质复合凝胶的制备方法
技术领域
本发明属智能水凝胶的制备方法,特别是涉及一种由生物质构成的,可产生剪切增稠特性的智能水凝胶。
背景技术
高分子凝胶是指三维网络结构的高分子化合物与溶剂组成的体系,其中的高分子以范德华力,化学键力,物理缠绕力,氢键力等连接。由于它是一种三维网络立体结构,因此它不能被溶剂溶解,同时分散在溶剂中并能保持一定的形状。溶剂虽然不能将三维网状结构的高分子溶解,但高分子化合物中亲溶剂的基团部分却可以被溶剂作用而使高分子溶胀,这也是形成高分子凝胶的原因。
剪切增稠是指当材料所受到的剪切应力(应变)增大时候发生的粘度增大,材料由软变硬的“固化”行为。剪切剪切变稠现象最早发现于粒子悬浮体系中,如泥浆,淀粉分散液等,体系中包括分散介质如粘性液体及分散物如微-纳米颗粒,现在固体复合材料和凝胶材料中均已发现剪切增稠现象。近20年来,剪切增稠现象已被广泛关注,已有多种分散粒子及其分散介质搭配组成了具有剪切增稠现象的悬浮液,典型的粒子包括无机粒子如SiO2、CaCO3、Fe2O3、玻璃纤维等,有机粒子如淀粉、合成粒子包括聚甲基丙烯酸甲酯(PMMA)微球、聚苯乙烯(PS)微球、聚苯乙烯接枝丙烯酸(PS-g-AA)微球,聚二甲基丙酰胺-丙烯酸(P(DMAA-AA))微球等,分散介质包括水、聚乙二醇、甘油、不同链长脂肪烃等。当悬浮体系中微粒达到一定体积分数时,随即发生剪切增稠现象。
目前的剪切增稠凝胶一般由无机物和聚合物构成,虽然其拥有了较好的剪切增稠特性和稳定性,但也由于其组成物本身的特性,导致其无法降解,从而限制了此类材料在生物医药领域的应用。而生物质材料本身质地偏软,对于制备具有良好剪切增稠特性材料时存在困难,如可制备具有剪切增稠的生物质凝胶,无疑将极大的开拓此材料在生物医药领域上的应用。
发明内容
本发明的目的是为了提供一种可剪切增稠水凝胶的制备方法,尤其是提供一种由生物质材料构成的可实现剪切增稠特性的水凝胶的制备方法。
本发明的目的是通过以下技术方案实现的:
(1)壳聚糖-明胶复合微球的制备:
称取一定量壳聚糖干粉和明胶粉末溶于醋酸水溶液,室温搅拌至壳聚糖和明胶完全溶解形成壳聚糖/明胶溶液,配置一定量的甲苯/Span80/Tween-60混合溶液以800-1200 rpm速度持续搅匀,边搅拌边缓慢滴加壳聚糖/明胶溶液,在室温下 60分钟内搅拌形成稳定的乳化体系后,再加入一定量的甲醛继续搅拌固定反应 60 分钟,反应完全后,分别用石油醚、乙醇、蒸馏水洗涤产物,离心分离,即得壳聚糖-明胶复合微球;
在以上反应中,醋酸水溶液中醋酸的质量分数为2%;壳聚糖/明胶溶液中壳聚糖的质量分数为2%-4%,明胶粉末的质量分数为1%-2%;甲苯/Span80/Tween-60混合溶液的体积为壳聚糖-明胶溶液的4-6倍,其中Span80和Tween-60的体积分数分别介于5%-9%和1.5%-3.5%之间;加入甲醛的体积介于壳聚糖-明胶溶液的6%-14%之间。
(2)微球复合凝胶的制备:
配置含有一定浓度氯化壳聚糖、β-甘油磷酸钠和羟乙基纤维素的水溶液预聚液,在其中加入一定体积的壳聚糖-明胶复合微球,搅拌均匀后超声振荡30分钟,后加温至30oC后继续搅拌30分钟,过程中采用注射器注入一定浓度淀粉水溶液,后继续加温至40oC静置2小时后成胶;
预聚液中氯化壳聚糖的浓度介于14-20g/L之间,β-甘油磷酸钠的浓度介于20-35g/L,羟乙基纤维素的浓度介于5-8g/L之间;加入的壳聚糖-明胶复合微球的体积介于预聚液体积的16%-25%之间,淀粉水溶液的加入体积介于预聚液体积的12%-18%之间,其中淀粉的质量浓度为5%。
进一步,所述Span80和Tween-60分别失水山梨糖醇脂肪酸酯和聚山梨酸酯60,在体系中作为复合乳化剂。
进一步,所述壳聚糖-明胶复合微球的粒径介于40-160um之间。
进一步,所述淀粉为可溶性淀粉。
进一步,所述氯化壳聚糖、β-甘油磷酸钠在30oC开始逐渐粘稠产生相互作用,但并未凝胶化,温度超过37oC时可发生凝胶化反应。
进一步,所述羟乙基纤维素的羟乙基取代度介于2-3之间,羟乙基纤维素在其中主要起到强化凝胶基本力学性能的作用。
本发明的技术特点是通过以下机理实现的:制备具有一定粘弹性的壳聚糖-明胶微球,通过明胶的引入提高微球的硬度和弹性,同时保有壳聚糖的结构和特性,选择与微球同源的氯化壳聚糖作为主要基体,该基体体系可在升温达到37oC后相互作用形成凝胶进而与微球复合,在凝胶形成中体系的氯化壳聚糖和羟乙基纤维素由于相似的分子结构也将和壳聚糖-明胶微球发生一定相互作用,从而让一部分微球与凝胶基体发生连接,一部分微球可在一定范围内活动,这种相互作用在受到剪切后形成网络结构并通过摩擦实现增稠的效果,注入淀粉水溶液有利于凝胶内部溶液粘度的提高,由于溶液中的水进一步被微球吸收导致凝胶内溶液粘度进一步提高,从而有利于剪切增稠的发生。
附图说明
图1为实施例1中制备的水凝胶在20oC时剪切速率与粘度之间的关系示意图。
具体实施方式
下面结合具体实施例形式的具体实施方式,对本发明的上述内容再作进一步详细阐述,但不应理解为下述各实施例是对本发明上述主题所涉及范围的限制,凡基于本发明上述内容所实现的技术均属于本发明范围。
实施例1
本发明的目的是通过以下技术方案实现的:
(1)壳聚糖-明胶复合微球的制备:
称取一定量12.4g壳聚糖干粉和4.6g明胶粉末溶于400g浓度为2%的醋酸水溶液中,室温搅拌至壳聚糖和明胶完全溶解形成壳聚糖/明胶溶液,配置2L的甲苯/Span80/Tween-60混合溶液以1000 rpm速度持续搅匀,其中Span80的体积为146ml,Tween-60的体积为56ml边搅拌边缓慢滴加壳聚糖/明胶溶液,在室温下 60分钟内搅拌形成稳定的乳化体系后,再加入45ml甲醛继续搅拌固定反应 60 分钟,反应完全后,分别用石油醚、乙醇、蒸馏水洗涤产物,离心分离,即得壳聚糖-明胶复合微球。
(2)微球复合凝胶的制备:
配置含有一定浓度氯化壳聚糖、β-甘油磷酸钠和羟乙基纤维素的水溶液预聚液,其中氯化壳聚糖的浓度为16.3g/L,β-甘油磷酸钠的浓度为28.4g/L,羟乙基纤维素的浓度为6.7g/L,在其中加入体积为预聚液21%的壳聚糖-明胶复合微球,搅拌均匀后超声振荡30分钟,后加温至30oC后继续搅拌30分钟,过程中采用注射器注入预聚液体积14%,浓度为5%的淀粉水溶液,后继续加温至40oC静置2小时后成胶,该凝胶的剪切增稠特性见图1。

Claims (3)

1.一种具有剪切增稠效应的生物质复合凝胶的制备方法,其过程为:
(1)壳聚糖-明胶复合微球的制备
称取一定量壳聚糖干粉和明胶粉末溶于醋酸水溶液,室温搅拌至壳聚糖和明胶完全溶解形成壳聚糖/明胶溶液,配置一定量的甲苯/Span80/Tween-60混合溶液以800-1200 rpm速度持续搅匀,边搅拌边缓慢滴加壳聚糖/明胶溶液,在室温下 60分钟内搅拌形成稳定的乳化体系后,再加入一定量的甲醛继续搅拌固定反应 60 分钟,反应完全后,分别用石油醚、乙醇、蒸馏水洗涤产物,离心分离,即得壳聚糖-明胶复合微球;
在以上反应中,醋酸水溶液中醋酸的质量分数为2%;壳聚糖/明胶溶液中壳聚糖的质量分数为2%-4%,明胶粉末的质量分数为1%-2%;甲苯/Span80/Tween-60混合溶液的体积为壳聚糖-明胶溶液的4-6倍,其中Span80和Tween-60的体积分数分别介于5%-9%和1.5%-3.5%之间;加入甲醛的体积介于壳聚糖-明胶溶液的6%-14%之间;
(2)微球复合凝胶的制备
配置含有一定浓度氯化壳聚糖、β-甘油磷酸钠和羟乙基纤维素的水溶液预聚液,在其中加入一定体积的壳聚糖-明胶复合微球,搅拌均匀后超声振荡30分钟,后加温至30oC后继续搅拌30分钟,过程中采用注射器注入一定浓度淀粉水溶液,后继续加温至40oC静置2小时后成胶;
预聚液中氯化壳聚糖的浓度介于14-20g/L之间,β-甘油磷酸钠的浓度介于20-35g/L,羟乙基纤维素的浓度介于5-8g/L之间;加入的壳聚糖-明胶复合微球的体积介于预聚液体积的16%-25%之间,淀粉水溶液的加入体积介于预聚液体积的12%-18%之间,其中淀粉的质量浓度为5%。
2.根据权利要求1所述的一种具有剪切增稠效应的生物质复合凝胶的制备方法,其特征在于:所述壳聚糖-明胶复合微球的粒径介于40-160um之间。
3.根据权利要求1所述的一种具有剪切增稠效应的生物质复合凝胶的制备方法,其特征在于:所述淀粉为可溶性淀粉。
CN201811448923.8A 2018-11-30 2018-11-30 一种具有剪切增稠效应的生物质复合凝胶的制备方法 Active CN109627499B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811448923.8A CN109627499B (zh) 2018-11-30 2018-11-30 一种具有剪切增稠效应的生物质复合凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811448923.8A CN109627499B (zh) 2018-11-30 2018-11-30 一种具有剪切增稠效应的生物质复合凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN109627499A true CN109627499A (zh) 2019-04-16
CN109627499B CN109627499B (zh) 2020-11-27

Family

ID=66070076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811448923.8A Active CN109627499B (zh) 2018-11-30 2018-11-30 一种具有剪切增稠效应的生物质复合凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN109627499B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110754651A (zh) * 2019-10-30 2020-02-07 武汉轻工大学 淀粉凝胶食品添加剂的制备方法
CN113072810A (zh) * 2021-03-30 2021-07-06 江南大学 一种交联淀粉增强复合剪切增稠弹性体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805451B (zh) * 2010-02-09 2012-01-25 陕西科技大学 基于壳聚糖/明胶复合材料的活性染料净洗剂制备方法
CN102416200A (zh) * 2011-12-02 2012-04-18 四川大学 一种构建胶原基生物大分子/羟基磷灰石微球复合支架材料的制备方法
WO2013158510A1 (en) * 2012-04-21 2013-10-24 Oobieq Ltd Starch based dilatant composition
CN102399378B (zh) * 2010-09-07 2013-11-13 中国人民解放军总医院 一种温度敏感的壳聚糖水凝胶及其制备方法
CN105461939A (zh) * 2015-03-27 2016-04-06 湖南工业大学 一种具有剪切增稠特性的温敏水凝胶的制备方法
CN105601953A (zh) * 2016-01-19 2016-05-25 湖南工业大学 一种具有pH敏感性的剪切增稠凝胶的制备方法
CN104072722B (zh) * 2014-07-08 2016-11-02 华东理工大学 剪切增稠流体微胶囊、增韧高分子材料及其制备方法和应用
CN106750382A (zh) * 2016-12-19 2017-05-31 武汉理工大学 一种壳聚糖凝胶珠的制备方法
CN107137756A (zh) * 2017-04-10 2017-09-08 暨南大学 一种剪切增稠的止血材料的制备方法
CN107141818A (zh) * 2017-06-15 2017-09-08 铜陵安博电路板有限公司 一种壳聚糖改性的缓释微球掺杂的湿凝胶及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805451B (zh) * 2010-02-09 2012-01-25 陕西科技大学 基于壳聚糖/明胶复合材料的活性染料净洗剂制备方法
CN102399378B (zh) * 2010-09-07 2013-11-13 中国人民解放军总医院 一种温度敏感的壳聚糖水凝胶及其制备方法
CN102416200A (zh) * 2011-12-02 2012-04-18 四川大学 一种构建胶原基生物大分子/羟基磷灰石微球复合支架材料的制备方法
WO2013158510A1 (en) * 2012-04-21 2013-10-24 Oobieq Ltd Starch based dilatant composition
CN104072722B (zh) * 2014-07-08 2016-11-02 华东理工大学 剪切增稠流体微胶囊、增韧高分子材料及其制备方法和应用
CN105461939A (zh) * 2015-03-27 2016-04-06 湖南工业大学 一种具有剪切增稠特性的温敏水凝胶的制备方法
CN105601953A (zh) * 2016-01-19 2016-05-25 湖南工业大学 一种具有pH敏感性的剪切增稠凝胶的制备方法
CN106750382A (zh) * 2016-12-19 2017-05-31 武汉理工大学 一种壳聚糖凝胶珠的制备方法
CN107137756A (zh) * 2017-04-10 2017-09-08 暨南大学 一种剪切增稠的止血材料的制备方法
CN107141818A (zh) * 2017-06-15 2017-09-08 铜陵安博电路板有限公司 一种壳聚糖改性的缓释微球掺杂的湿凝胶及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LEI JIN等: ""Shear induced self-thickening in chitosan-grafted polyacrylamide aqueous solution"", 《SOFT MATTER》 *
YI CHEN等: ""The effect of surface grafting polymer chains on the shear thickening of hard microsphere suspensions"", 《COLLOIDS AND SURFACES A》 *
应宗荣主编: "《材料成形原理与工艺(第1版)》", 31 January 2005, 哈尔滨工业大学出版社 *
蒋伟峰: ""剪切增稠材料的力学性能表征及机理研究"", 《中国博士学位论文全文数据库 基础科学辑》 *
陈一: ""无机/有机纳米复合刺激响应水凝胶的制备与表征"", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110754651A (zh) * 2019-10-30 2020-02-07 武汉轻工大学 淀粉凝胶食品添加剂的制备方法
CN113072810A (zh) * 2021-03-30 2021-07-06 江南大学 一种交联淀粉增强复合剪切增稠弹性体
CN113072810B (zh) * 2021-03-30 2022-01-11 江南大学 一种交联淀粉增强复合剪切增稠弹性体

Also Published As

Publication number Publication date
CN109627499B (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
CN109627499A (zh) 一种具有剪切增稠效应的生物质复合凝胶的制备方法
CN101317831B (zh) 一种纤维素和植物多糖胶囊
CN103601905B (zh) 一种复合多糖可食膜的制备方法
EP2659883A1 (en) Microcapsule preparation of alginate-chitosan acyl derivatives, preparation and application thereof
CN105601953B (zh) 一种具有pH敏感性的剪切增稠凝胶的制备方法
CN104364317A (zh) 由生物组分制成的可生物降解的材料
CN104245114A (zh) 用于制备硬化的胶囊的方法
CN109265887A (zh) 一种超轻粘土及其制备方法
CN102807681A (zh) 大豆分离蛋白/透明质酸/羧甲基纤维素钠复合膜及其制备方法
Lou et al. Alginate-based microcapsules with galactosylated chitosan internal for primary hepatocyte applications
CN104338142A (zh) 一种海藻多糖及亚麻胶为囊材的滴丸及其生产工艺
CN114796617A (zh) 一种复合3d打印墨水及其应用
Lou et al. Fabrication of stable galactosylated alginate microcapsules via covalent coupling onto hydroxyl groups for hepatocytes applications
CN100334036C (zh) 含有羟基磷灰石的复合微球及其制备方法
CN106879587B (zh) 一种负载除草剂的纳米载药缓释薄膜及其制备方法
CN112679894A (zh) 一种无硼无毒的玩具超轻粘土及其制备方法
CN110283426A (zh) 一种生物基来源可降解淀粉填充环氧树脂复合材料及其制备方法
Rezaei et al. Improving the growth rate of human adipose-derived mesenchymal stem cells in alginate/gelatin versus alginate hydrogels
CN105504302A (zh) 一种基于P(MVE-alt-MA)pH敏感可注射自愈合水凝胶及其制备方法
CN104893649A (zh) 一种耐热固体复合胶
CN101671495A (zh) 一种碳酸钙改性剂及其制备方法
CN106928456A (zh) 自固性不含苯酚的腰果壳油树脂及其制备方法
CN104012528B (zh) 一种含有机硅农药微胶囊的制备方法
Mendes et al. Degradation studies of hydrophilic, partially degradable and bioactive cements (HDBCs) incorporating chemically modified starch
CN112970744A (zh) 一种农药缓释凝胶材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190416

Assignee: ZHUZHOU SHILIN POLYMER Co.,Ltd.

Assignor: HUNAN University OF TECHNOLOGY

Contract record no.: X2023980038007

Denomination of invention: A preparation method of biomass composite gel with shear thickening effect

Granted publication date: 20201127

License type: Common License

Record date: 20230717

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190416

Assignee: Zhuzhou ruidel Intelligent Equipment Co.,Ltd.

Assignor: HUNAN University OF TECHNOLOGY

Contract record no.: X2023980048585

Denomination of invention: A preparation method of biomass composite gel with shear thickening effect

Granted publication date: 20201127

License type: Common License

Record date: 20231129

Application publication date: 20190416

Assignee: ZHUZHOU HONGDA POLYMER MATERIALS Co.,Ltd.

Assignor: HUNAN University OF TECHNOLOGY

Contract record no.: X2023980048584

Denomination of invention: A preparation method of biomass composite gel with shear thickening effect

Granted publication date: 20201127

License type: Common License

Record date: 20231129

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190416

Assignee: ZHUZHOU AMALLOY MATERIAL Co.,Ltd.

Assignor: HUNAN University OF TECHNOLOGY

Contract record no.: X2023980048989

Denomination of invention: A preparation method of biomass composite gel with shear thickening effect

Granted publication date: 20201127

License type: Common License

Record date: 20231204

EE01 Entry into force of recordation of patent licensing contract