CN109626519A - 一种采用复合双面电极回收处理化学镍废液的方法 - Google Patents
一种采用复合双面电极回收处理化学镍废液的方法 Download PDFInfo
- Publication number
- CN109626519A CN109626519A CN201910062963.7A CN201910062963A CN109626519A CN 109626519 A CN109626519 A CN 109626519A CN 201910062963 A CN201910062963 A CN 201910062963A CN 109626519 A CN109626519 A CN 109626519A
- Authority
- CN
- China
- Prior art keywords
- waste liquid
- electrode
- chemical nickel
- duplex spread
- nickel waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1617—Purification and regeneration of coating baths
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/24—Alloys obtained by cathodic reduction of all their ions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46128—Bipolar electrodes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4612—Controlling or monitoring
- C02F2201/46125—Electrical variables
- C02F2201/4614—Current
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Processing Of Solid Wastes (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
本发明公开了一种采用复合双面电极回收处理化学镍废液的方法,所述复合双面电极的两面分别作为阳极面和阴极面,阴极面与外部的破络阳极形成一电解回路,阳极面与外部的另一阴极形成另一电解回路,两个电解回路利用脉冲电解法同时对化学镍废液进行处理,同步降解化学镍废液中的络合剂并回收镍磷合金。本发明利用金属氧化物复合电极破除废液中镍离子的络合状态,利用复合双面电极的两极分别主要形成电吸附和电还原反应,吸附反应包含阳极电容将化学镍废液中离子富集在碳基多孔阳极‑溶液界面。
Description
技术领域
本发明涉及一种采用复合双面电极回收处理化学镍废液的方法,属于污水处理领域。
背景技术
络合重金属电镀废水中含有大量的重金属离子和络合剂,重金属离子与络合剂会形成稳定的鳌合物,不易形成沉淀,因此采用传统的化学沉淀法不能有效去除废水中的重金属离子,使得含络合重金属废水成为电镀废水中典型的处理难题。化学镀镍,是络合重金属电镀废水的典型代表,但随着化学镀镍技术应用范围和生产规模的不断扩大,由此产生的环境问题也越来越严重。化学镀镍溶液使用一段时间后,溶液老化,继续使用将会影响镀层质量,因此化学镀液报废,成为化学镀镍废液。化学镍废液酸性强、含有次磷酸盐、亚磷酸盐、镍离子、络合稳定,传统处理工艺运行费用高、处理效果不佳、难以综合利用。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种采用复合双面电极回收处理化学镍废液的方法,实现高效的镍磷合金的回收。
为了解决上述技术问题,本发明采取的技术方案如下:
一种采用复合双面电极回收处理化学镍废液的方法,所述复合双面电极的两面分别作为阳极面和阴极面,阴极面与外部的破络阳极形成一电解回路,阳极面与外部的另一阴极形成另一电解回路,两个电解回路利用脉冲电解法同时对化学镍废液进行处理,同步降解化学镍废液中的络合剂并回收镍磷合金。
其中,所述复合双面电极采用绝缘粘结剂将碳基多孔电极与金属电极压制粘结成的一面是多孔碳基阳极面、另一面是金属阴极面的双面两极电极。
优选地,所述多孔碳基阳极面采用活性炭纤维、石墨、石墨毡、石墨烯中的任意一种或两种以上组合形成;所述金属阴极面采用钛、镍、不锈钢中的任意一种;所述绝缘粘结剂用量为0.1~0.8kg/m2。
优选地,所述破络阳极为复合电极,采用具有催化氧化活性的二氧化钌、二氧化铱、二氧化锡、二氧化铅、氧化钛、掺硼金刚石中的任意一种或者至少两种组成。
优选地,所述的另一阴极为镍电极、钛电极或不锈钢电极。
优选地,所述的脉冲电解法电解电流密度为5~50mA/cm2,占空比0.2~0.9,频率100~3000Hz。
有益效果:
本发明利用金属氧化物复合电极破除废液中镍离子的络合状态,利用复合双面电极的两极分别主要形成电吸附和电还原反应,吸附反应包含阳极电容将化学镍废液中离子富集在碳基多孔阳极-溶液界面,脉冲电解断电时段,离子能释放到复合双面电极周围,提高金属阴极界面含磷离子的浓度,同时补充阴极面离子,降低浓差极化,在脉冲电解通电时段,含磷离子和镍离子在金属阴极界面还原形成镍磷合金,双面两极电极比使用单独电极的功能更佳,能高效处理化学镍废液,实现镍磷合金的回收。本发明方法工艺简单,易于操作控制,同步降解化学镍废液中的络合剂并回收镍磷合金。
附图说明
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。
图1为本发明方法电解装置的示意图;
图2为本方法回收的镍磷合金层的电镜图;
图3为本方法回收的镍磷合金层的能谱分析图。
具体实施方式
根据下述实施例,可以更好地理解本发明。
说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容所能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“前”、“后”、“中间”等用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
实施例1
电解装置示意图如图1所示,利用绝缘粘结剂将石墨毡多孔电极与钛电极压制粘结成复合双面两极电极,绝缘粘结剂用量为0.5kg/m2,采用复合双面两极电极的石墨毡面和钛面分别作为阳极面和阴极面,采用钛基二氧化锡/二氧化铅复合电极作为破络阳极,钛电极作为阴极,利用脉冲电解法处理化学镍废液,采用正脉冲方波,调节电解的电流密度为30mA/cm2,占空比0.5,频率1000Hz,反应时间4h,降解化学镍废液中的络合剂,破除废液中镍离子的络合状态,同时在钛阴极面上还原形成镍磷合金层进行回收,镍磷合金层的电镜图和能谱分析图如图2、3所示,能谱分析显示镍磷合金层中Ni:P:C质量比为84.3:13.1:2.6,化学镍废液中的镍离子去除率达到99.1%。
实施例2
电解装置结构与实施例1相同,利用绝缘粘结剂将碳纤维/石墨烯多孔电极与不锈钢电极压制粘结成复合双面两极电极,绝缘粘结剂用量为0.8kg/m2,采用复合双面两极电极的碳纤维/石墨烯面和不锈钢面分别作为阳极面和阴极面,采用二氧化锡/掺硼金刚石复合电极作为破络阳极,不锈钢电极作为阴极,利用脉冲电解法处理化学镍废液,采用正脉冲方波,调节电解的电流密度为50mA/cm2,占空比0.9,频率100Hz,反应时间2h,降解化学镍废液中的络合剂,破除废液中镍离子的络合状态,同时在钛阴极面上还原形成镍磷合金层进行回收,能谱分析显示镍磷合金层中Ni:P:C质量比为84.0:14.3:1.7,化学镍废液中的镍离子去除率达96.7%。
实施例3
电解装置结构与实施例1相同,利用绝缘粘结剂将石墨多孔电极与镍电极压制粘结成复合双面两极电极,绝缘粘结剂用量为0.1kg/m2,采用复合双面两极电极的石墨面和镍面分别作为阳极面和阴极面,采用二氧化钌/二氧化铱复合电极作为破络阳极,镍电极作为阴极,利用脉冲电解法处理化学镍废液,采用正脉冲方波,调节电解的电流密度为5mA/cm2,占空比0.2,频率3000Hz,反应时间12h,降解化学镍废液中的络合剂,破除废液中镍离子的络合状态,同时在钛阴极面上还原形成镍磷合金层进行回收,能谱分析显示镍磷合金层中Ni:P:C质量比为85.9:10.2:3.9,化学镍废液中的镍离子去除率为95.5%。
对比例1
不采用复合双面两极电极,仅采用钛基二氧化锡/二氧化铅复合电极作为破络阳极,钛电极作为阴极,利用直流电解法处理化学镍废液,调节电解的电流密度为30mA/cm2,反应时间4h,降解化学镍废液中的络合剂,破除废液中镍离子的络合状态,同时在钛电极上还原形成镍合金层进行回收,能谱分析显示镍合金层中Ni:P:C:O质量比为75.1:3.8:12.9:8.2,化学镍废液中镍离子的去除率仅为79.5%。
本发明提供了一种采用复合双面电极回收处理化学镍废液的方法的思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。
Claims (6)
1.一种采用复合双面电极回收处理化学镍废液的方法,其特征在于,所述复合双面电极的两面分别作为阳极面和阴极面,阴极面与外部的破络阳极形成一电解回路,阳极面与外部的另一阴极形成另一电解回路,两个电解回路利用脉冲电解法同时对化学镍废液进行处理,同步降解化学镍废液中的络合剂并回收镍磷合金。
2.根据权利要求1所述的采用复合双面电极回收处理化学镍废液的方法,其特征在于,所述复合双面电极采用绝缘粘结剂将碳基多孔电极与金属电极压制粘结成的一面是多孔碳基阳极面、另一面是金属阴极面的双面两极电极。
3.根据权利要求2所述的采用复合双面电极回收处理化学镍废液的方法,其特征在于,所述多孔碳基阳极面采用活性炭纤维、石墨、石墨毡、石墨烯中的任意一种或两种以上组合形成;所述金属阴极面采用钛、镍、不锈钢中的任意一种;所述绝缘粘结剂用量为0.1~0.8kg/m2。
4.根据权利要求1所述的采用复合双面电极回收处理化学镍废液的方法,其特征在于,所述破络阳极为复合电极,采用具有催化氧化活性的二氧化钌、二氧化铱、二氧化锡、二氧化铅、氧化钛、掺硼金刚石中的任意一种或者至少两种组成。
5.根据权利要求1所述的采用复合双面电极回收处理化学镍废液的方法,其特征在于,所述的另一阴极为镍电极、钛电极或不锈钢电极。
6.根据权利要求1所述的采用复合双面电极回收处理化学镍废液的方法,所述的脉冲电解法电解电流密度为5~50mA/cm2,占空比0.2~0.9,频率100~3000Hz。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910062963.7A CN109626519B (zh) | 2019-01-23 | 2019-01-23 | 一种采用复合双面电极回收处理化学镍废液的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910062963.7A CN109626519B (zh) | 2019-01-23 | 2019-01-23 | 一种采用复合双面电极回收处理化学镍废液的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109626519A true CN109626519A (zh) | 2019-04-16 |
CN109626519B CN109626519B (zh) | 2019-09-03 |
Family
ID=66063182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910062963.7A Active CN109626519B (zh) | 2019-01-23 | 2019-01-23 | 一种采用复合双面电极回收处理化学镍废液的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109626519B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111977751A (zh) * | 2020-08-31 | 2020-11-24 | 温州大学 | 一种阴极电场强化臭氧氧化破络与金属同步回收装置及方法 |
CN113463133A (zh) * | 2021-06-23 | 2021-10-01 | 华中师范大学 | 电化学装置及其应用、以及回收工业废水中金属的方法 |
CN114032558A (zh) * | 2021-12-14 | 2022-02-11 | 北京科技大学 | 一种从化学镀镍废液中电解制取NiP微米颗粒的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102329030A (zh) * | 2011-09-06 | 2012-01-25 | 冯云香 | 化学镀镍废水处理方法 |
CN103046072A (zh) * | 2012-12-31 | 2013-04-17 | 黑龙江大学 | Mn/Nano-G | foam-Ni/Pd复合电极及其制备方法 |
CN104724795A (zh) * | 2015-03-23 | 2015-06-24 | 轻工业环境保护研究所 | 一种处理含镍废水的电化学处理系统和电化学方法 |
CN107098441A (zh) * | 2017-05-12 | 2017-08-29 | 浙江工业大学 | 电化学去除废水中总氮的方法 |
CN207244012U (zh) * | 2017-08-03 | 2018-04-17 | 苏州中晟环境修复股份有限公司 | 化学镍废液回收纯镍设备 |
-
2019
- 2019-01-23 CN CN201910062963.7A patent/CN109626519B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102329030A (zh) * | 2011-09-06 | 2012-01-25 | 冯云香 | 化学镀镍废水处理方法 |
CN103046072A (zh) * | 2012-12-31 | 2013-04-17 | 黑龙江大学 | Mn/Nano-G | foam-Ni/Pd复合电极及其制备方法 |
CN104724795A (zh) * | 2015-03-23 | 2015-06-24 | 轻工业环境保护研究所 | 一种处理含镍废水的电化学处理系统和电化学方法 |
CN107098441A (zh) * | 2017-05-12 | 2017-08-29 | 浙江工业大学 | 电化学去除废水中总氮的方法 |
CN207244012U (zh) * | 2017-08-03 | 2018-04-17 | 苏州中晟环境修复股份有限公司 | 化学镍废液回收纯镍设备 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111977751A (zh) * | 2020-08-31 | 2020-11-24 | 温州大学 | 一种阴极电场强化臭氧氧化破络与金属同步回收装置及方法 |
CN113463133A (zh) * | 2021-06-23 | 2021-10-01 | 华中师范大学 | 电化学装置及其应用、以及回收工业废水中金属的方法 |
CN114032558A (zh) * | 2021-12-14 | 2022-02-11 | 北京科技大学 | 一种从化学镀镍废液中电解制取NiP微米颗粒的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109626519B (zh) | 2019-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jin et al. | Sustainable electrochemical extraction of metal resources from waste streams: from removal to recovery | |
CN109626519B (zh) | 一种采用复合双面电极回收处理化学镍废液的方法 | |
Guo et al. | Inhibition of zinc dendrites in zinc-based flow batteries | |
Xu et al. | Preparation and characterization of Ti/SnO2-Sb electrode with copper nanorods for AR 73 removal | |
KR101199004B1 (ko) | 슈퍼커패시터용 나노다공성 전극 및 이의 제조방법 | |
Li et al. | Co3O4 thin film prepared by a chemical bath deposition for electrochemical capacitors | |
CN104037468B (zh) | 一种从废旧锂离子电池中回收锰和铜资源的方法 | |
CN102127776A (zh) | 一种高析氢催化活性非晶镀层及其制备方法 | |
JP2010138487A (ja) | 固体高分子型燃料電池のセパレータ用ステンレス鋼板およびそれを用いた固体高分子型燃料電池 | |
Leong et al. | Electrochemistry of tin in the 1-ethyl-3-methylimidazolium dicyanamide room temperature ionic liquid | |
Lan et al. | Electrochemical oxidation of lamivudine using graphene oxide and Yb co-modified PbO2 electrodes: characterization, influencing factors and degradation mechanisms | |
US20140283650A1 (en) | Method of manufacturing powder having high surface area | |
CN107740143B (zh) | 一种具有铁酸锂保护膜的铁基惰性阳极及其制备方法、应用 | |
KR20130071838A (ko) | 전기화학법을 이용한 리튬의 회수방법 | |
Zhang et al. | Efficient dissolution of tungsten carbide using an oxygen-containing molten salt | |
CN103143369A (zh) | 一种石墨烯-铂/铜纳米粒子多级纳米结构材料的制备及其应用 | |
Kong et al. | Investigations on the discharge/charge process of a novel AgCl/Ag/carbon felt composite electrode used for seawater batteries | |
CN109881229A (zh) | 一种在电磁屏蔽领域应用的柔性碳纳米管/金属复合膜的制备方法 | |
CN113892158B (zh) | 用于通过电激活生产高活性电极的工艺 | |
Ito et al. | Novel molten salt electrochemical processes for industrial applications | |
CN103320799B (zh) | 一种抑制微波部件镀银层表面二次电子发射系数的方法 | |
Ye et al. | Pulse electrodeposition of Ti/Sn-SbOX/β-PbO2 anodes with high oxygen evolution activity in zinc electrowinning | |
CN107265573A (zh) | 一种多孔电极材料制备及其用于电化学高效除藻 | |
Zhang et al. | CO2-to-formate conversion by pulse electrodeposited Sn on Cu electrode | |
Xie et al. | An innovative process for the direct recovery of lead from waste lead paste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |