CN109604616B - 提高钕铁硼磁体耐腐性的制备方法 - Google Patents

提高钕铁硼磁体耐腐性的制备方法 Download PDF

Info

Publication number
CN109604616B
CN109604616B CN201811474442.4A CN201811474442A CN109604616B CN 109604616 B CN109604616 B CN 109604616B CN 201811474442 A CN201811474442 A CN 201811474442A CN 109604616 B CN109604616 B CN 109604616B
Authority
CN
China
Prior art keywords
neodymium
iron
boron magnet
boron
iron boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811474442.4A
Other languages
English (en)
Other versions
CN109604616A (zh
Inventor
薛岳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou silver nano magnetoelectric Technology Co.,Ltd.
Original Assignee
Hangzhou Silver Nano Magnetoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Silver Nano Magnetoelectric Technology Co ltd filed Critical Hangzhou Silver Nano Magnetoelectric Technology Co ltd
Priority to CN201811474442.4A priority Critical patent/CN109604616B/zh
Publication of CN109604616A publication Critical patent/CN109604616A/zh
Application granted granted Critical
Publication of CN109604616B publication Critical patent/CN109604616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种提高钕铁硼磁体耐腐性的制备方法,包括以下步骤:步骤一、将钕铁硼磁体原料真空熔炼得到钕铁硼磁体合金,钕铁硼磁体原料按质量百分比组成包括:Nd 30%、B 2.0%、Cu 5%、Si 3%、Au 0.02%、余量为Fe;步骤二、将钕铁硼磁体合金用铁锤进行锤打;步骤三、将钕铁硼磁体合金进行氢爆处理,然后加入润滑剂和防氧化剂与钕铁硼磁体合金混合,采用气流磨用氩气保护磨制成钕铁硼粉末,再压制成型得到钕铁硼生坯;步骤四、将步骤三处理后的钕铁硼生坯进行真空烧结得到烧结钕铁硼磁体,在真空烧结过程中,向烧结炉内持续通入氩气,排出废气。本发明具有提高钕铁硼磁体耐腐性和耐高温性的有益效果。

Description

提高钕铁硼磁体耐腐性的制备方法
技术领域
本发明涉及钕铁硼磁体领域。更具体地说,本发明涉及一种提高钕铁硼磁体耐腐性的制备方法。
背景技术
钕铁硼永磁材料在现代工业和电子技术中获得了广泛的应用,并且随着混合电动汽车的发展,在未来有很大的发展契机。因此对钕铁硼的需求也越来越高,对其性能比如热稳定性和耐磨性的要求显著提高。而影响磁体耐腐蚀性的一个重要因素是碳,钕铁硼磁体中的碳主要是在磁体成型前添加的润滑剂和防氧化剂引入的,而在烧结过程中又未脱出的。碳过高也极大的影响了其使用寿命,因此,如何降低烧结钕铁硼磁体中的碳含量提高耐磨性是值得思考的。
发明内容
本发明的一个目的是解决至少上述问题,并提供至少后面将说明的优点。
本发明还有一个目的是提供一种提高钕铁硼磁体耐腐性的制备方法,可以提高钕铁硼磁体耐腐性和耐高温性。
为了实现根据本发明的这些目的和其它优点,提供了一种提高钕铁硼磁体耐腐性的制备方法,其特征在于,包括以下步骤:
步骤一、将钕铁硼磁体原料进行真空熔炼得到钕铁硼磁体合金,其中,所述钕铁硼磁体原料按质量百分比组成包括:Nd 30%、B 2.0%、Cu 5%、Si 3%、Au 0.02%、余量为Fe;
步骤二、将钕铁硼磁体合金用铁锤进行锤打;
步骤三、将步骤二处理后的钕铁硼磁体合金进行氢爆处理,然后加入润滑剂和防氧化剂与钕铁硼磁体合金混合,采用气流磨用氩气保护磨制成钕铁硼粉末,再压制成型得到钕铁硼生坯;
步骤四、将步骤三处理后的钕铁硼生坯进行真空烧结得到烧结钕铁硼磁体,在真空烧结过程中,向烧结炉内持续通入氩气,排出废气。
优选的是,步骤四中真空烧结过程中分为三个阶段,第一阶段,400℃以下时,真空度保持0.3Pa,保持1.5h,第二阶段,400℃以上,1000℃以下时,真空度保持0.5Pa,保持3h,第三阶段,500℃以下时,真空度保持0.3Pa,保持2h。
优选的是,所述钕铁硼粉末压制成型的条件为取向压制磁场为3T,等静压压力为250Mpa,压制时间120s。
优选的是,步骤二中锤打的时间为30min,锤打速度为10次/min,锤打力度为50N。
优选的是,步骤二中的钕铁硼粉末的粒径小于2.8μm。
优选的是,步骤一中将钕铁硼磁体原料进行真空熔炼得到钕铁硼磁体合金的具体方法为:先将Si和Au真空熔炼成金属合金薄片,然后加入B真空熔炼成金属合金薄片,然后加入Nd和Cu真空熔炼成金属合金薄片,最后加入Fe熔炼得到所述钕铁硼磁体合金。
本发明至少包括以下有益效果:
第一、对钕铁硼磁体合金进行锤打有助于后期的碳的清除,在后期烧结过程中,通入氩气并排出废气,并在在第二阶段,400℃以上,1000℃以下时,真空度保持0.5Pa更有利于碳的清除。
第二、添加微量的Au也可以显著提升钕铁硼磁体的耐腐蚀性,及显著提升钕铁硼磁体的耐高温性能。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
具体实施方式
下面结合实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
需要说明的是,下述实施方案中所述实验方法,如无特殊说明,均为常规方法,所述试剂和材料,如无特殊说明,均可从商业途径获得。
<实施例1>
提高钕铁硼磁体耐腐性的制备方法,包括以下步骤:
步骤一、将钕铁硼磁体原料进行真空熔炼得到钕铁硼磁体合金,其中,所述钕铁硼磁体原料按质量百分比组成包括:Nd 30%、B 2.0%、Cu 5%、Si 3%、Au 0.02%、余量为Fe;
步骤二、将钕铁硼磁体合金用铁锤进行锤打;
步骤三、将步骤二处理后的钕铁硼磁体合金进行氢爆处理,然后加入润滑剂和防氧化剂与钕铁硼磁体合金混合,采用气流磨用氩气保护磨制成钕铁硼粉末,再压制成型得到钕铁硼生坯;
步骤四、将步骤三处理后的钕铁硼生坯进行真空烧结得到烧结钕铁硼磁体,在烧结过程中,向烧结炉内持续通入氩气,排出废气。
其中,步骤四中烧结过程中分为三个阶段,第一阶段,400℃以下时,真空度保持0.3Pa,保持1.5h,第二阶段,400℃以上,1000℃以下时,真空度保持0.5Pa,保持3h,第三阶段,500℃以下时,真空度保持0.3Pa,保持2h。
所述钕铁硼粉末压制成型的条件为取向压制磁场为3T,等静压压力为250Mpa,压制时间120s。
步骤二中锤打的时间为30min,锤打速度为10次/min,锤打力度为50N。
步骤二中的钕铁硼粉末的粒径小于2.8μm。
步骤一中将钕铁硼磁体原料进行真空熔炼得到钕铁硼磁体合金的具体方法为:先将Si和Au真空熔炼成金属合金薄片,然后加入B真空熔炼成金属合金薄片,然后加入Nd和Cu真空熔炼成金属合金薄片,最后加入Fe熔炼得到所述钕铁硼磁体合金。
<对比例1>
制备方法同实施例1,其中,不同的是,未对钕铁硼磁体合金进行锤打。
<对比例2>
制备方法同实施例1,其中,不同的是,步骤四中真空烧结过程中未通入氩气。
<对比例3>
制备方法同实施例1,其中,不同的是,步骤四中真空烧结过程中通入氩气,但在第二阶段,400℃以上,1000℃以下时,真空度保持0.3Pa,保持3h。
<对比例4>
制备方法同实施例1,其中,不同的是,步骤一中钕铁硼磁体原料按质量百分比组成包括:Nd 30%、B 2.0%、Cu 5%、Si 3%、余量为Fe。
<钕铁硼磁体性能测试>
1、碳含量测试
检测实施例1、对比例1、对比例2、对比例3制备的钕铁硼磁体的碳含量,结果如表1所示:
表1碳含量
组别 碳含量ppm
实施例1 0.385
对比例1 0.788
对比例2 0.736
对比例3 0.609
由表1可以看出,实施例1制备的钕铁硼磁体的碳含量显著低于对比例1、对比例2、及对比例3制备的钕铁硼磁体,说明对钕铁硼磁体合金进行锤打有助于后期的碳的清除,在后期烧结过程中,通入氩气并排出废气,并在在第二阶段,400℃以上,1000℃以下时,真空度保持0.5Pa更有利于碳的清除。
2、耐腐性测试
将实施例1、对比例1、对比例2、对比例3制备的钕铁硼磁体置于65℃,1×10-2mol/L浓度乙醇蒸汽环境下,检测耐受时间,结果如表2所示:
表2耐腐蚀时间
组别 耐腐蚀时间h
实施例1 458
对比例1 325
对比例2 312
对比例3 367
对比例4 354
由表2可以看出,实施例1制备的钕铁硼磁体的耐腐蚀时间显著高于对比例1、对比例2、对比例3、及对比例4制备的钕铁硼磁体,说明对钕铁硼磁体合金进行锤打,和在后期烧结过程中,通入氩气并排出废气,并在在第二阶段,400℃以上,1000℃以下时,真空度保持0.5Pa,都有利于提高更有利于钕铁硼磁体的耐腐蚀性,添加微量的Au也可以显著提升钕铁硼磁体的耐腐蚀性。
3、耐高温测试
表3可耐温度
组别 可耐温度℃
实施例1 210
对比例4 165
由表3可以看出,实施例1制备的钕铁硼磁体的可耐温度显著高于对比例4制备的钕铁硼磁体,说明添加微量的Au可以显著提升钕铁硼磁体的耐高温性能。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的实施例。

Claims (4)

1.提高钕铁硼磁体耐腐性的制备方法,其特征在于,包括以下步骤:
步骤一、将钕铁硼磁体原料进行真空熔炼得到钕铁硼磁体合金,其中,所述钕铁硼磁体原料按质量百分比组成包括:Nd 30 %、B 2.0 %、Cu 5 %、Si 3 %、Au 0.02 %、余量为Fe;
步骤二、将钕铁硼磁体合金用铁锤进行锤打;
步骤三、将步骤二处理后的钕铁硼磁体合金进行氢爆处理,然后加入润滑剂和防氧化剂与钕铁硼磁体合金混合,采用气流磨用氩气保护磨制成钕铁硼粉末,再压制成型得到钕铁硼生坯;
步骤四、将步骤三处理后的钕铁硼生坯进行真空烧结得到烧结钕铁硼磁体,在真空烧结过程中,向烧结炉内持续通入氩气,排出废气;
步骤四中真空烧结过程中分为三个阶段,第一阶段,400℃以下时,真空度保持0.3 Pa,保持1.5 h,第二阶段,400℃以上,1000℃以下时,真空度保持0.5 Pa,保持3 h,第三阶段,500℃以下时,真空度保持0.3 Pa,保持2 h;
步骤二中锤打的时间为30 min,锤打速度为10次/min,锤打力度为50 N。
2.如权利要求1所述的提高钕铁硼磁体耐腐性的制备方法,其特征在于,所述钕铁硼粉末压制成型的条件为取向压制磁场为3 T,等静压压力为250 Mpa,压制时间120 s。
3.如权利要求1所述的提高钕铁硼磁体耐腐性的制备方法,其特征在于,步骤三中的钕铁硼粉末的粒径小于2.8 μm。
4.如权利要求1所述的提高钕铁硼磁体耐腐性的制备方法,其特征在于,步骤一中将钕铁硼磁体原料进行真空熔炼得到钕铁硼磁体合金的具体方法为:先将Si和Au真空熔炼成金属合金薄片,然后加入B真空熔炼成金属合金薄片,然后加入Nd和Cu真空熔炼成金属合金薄片,最后加入Fe熔炼得到所述钕铁硼磁体合金。
CN201811474442.4A 2018-12-04 2018-12-04 提高钕铁硼磁体耐腐性的制备方法 Active CN109604616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811474442.4A CN109604616B (zh) 2018-12-04 2018-12-04 提高钕铁硼磁体耐腐性的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811474442.4A CN109604616B (zh) 2018-12-04 2018-12-04 提高钕铁硼磁体耐腐性的制备方法

Publications (2)

Publication Number Publication Date
CN109604616A CN109604616A (zh) 2019-04-12
CN109604616B true CN109604616B (zh) 2021-09-03

Family

ID=66005319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811474442.4A Active CN109604616B (zh) 2018-12-04 2018-12-04 提高钕铁硼磁体耐腐性的制备方法

Country Status (1)

Country Link
CN (1) CN109604616B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768169B (zh) * 2020-12-30 2023-01-10 包头天和磁材科技股份有限公司 预制品及其制备方法和耐腐蚀磁体的生产方法及用途

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RO116933B1 (ro) * 1998-02-27 2001-07-30 Sc Icpe Sa PROCEDEU DE REALIZARE A MAGNETILOR NdFeB DIN PULBERI HIDROGENATE SI MAGNET
CN103934450B (zh) * 2014-03-26 2015-08-12 辽宁五寰科技发展有限公司 烧结钕铁硼回收料的再利用方法
WO2016086397A1 (zh) * 2014-12-04 2016-06-09 浙江大学 镝氢化合物添加提高烧结钕铁硼磁体矫顽力的方法及产品
TWI628016B (zh) * 2016-08-22 2018-07-01 中國鋼鐵股份有限公司 釹鐵硼合金的氫碎製程
CN106601402B (zh) * 2016-12-21 2018-08-10 宁波科田磁业有限公司 提高烧结钕铁硼的退磁曲线方形度和耐腐蚀性的方法及其装置
CN106910615B (zh) * 2017-02-28 2018-08-21 京磁材料科技股份有限公司 耐腐蚀钕铁硼磁体的制备方法
CN108257755B (zh) * 2018-01-25 2020-03-31 廊坊京磁精密材料有限公司 钕铁硼粉体的制备方法
CN208098237U (zh) * 2018-02-11 2018-11-16 江西金力永磁科技股份有限公司 一种铸片破碎装置

Also Published As

Publication number Publication date
CN109604616A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN111223625B (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
CN111223627B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN101877265A (zh) 一种高性能钕铁硼永磁材料的制造方法
CN111599562B (zh) 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用
CN110136946B (zh) 一种耐腐蚀的钕铁硼磁体的制备方法
CN111326306B (zh) 一种r-t-b系永磁材料及其制备方法和应用
KR20210151940A (ko) R-t-b계 희토류 영구자석 재료, 제조방법 및 응용
CN111599565B (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN1687470A (zh) 一种利用废料制备钕铁硼合金的方法
CN111261355B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN104036897A (zh) 一种永磁材料及其制造方法
CN111223626B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111540557B (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
CN111613403B (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN111524674A (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
CN109604616B (zh) 提高钕铁硼磁体耐腐性的制备方法
CN110767401A (zh) 提高烧结钕铁硼磁体性能的方法
CN111223628B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN108242335B (zh) 利用钕铁硼气流磨尾粉制备钕铁硼磁体的方法
CN111524672B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111524673A (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN114724832A (zh) 一种烧结钕铁硼氧含量的调控制备方法
CN112802650A (zh) 钐钴磁体及其制备方法和钛的用途
CN111482612A (zh) 一种3d打印用铁硅铝金属粉末及其制备方法
CN113441717B (zh) 一种钕铁硼永磁材料的烧结方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Xue Yue

Inventor before: Hong Zuojuan

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
TA01 Transfer of patent application right

Effective date of registration: 20210820

Address after: 311700 No.151 Gushan Avenue, Qiandaohu Town, Chun'an County, Hangzhou City, Zhejiang Province

Applicant after: Hangzhou silver nano magnetoelectric Technology Co.,Ltd.

Address before: 536000 200 meters northwest of the intersection of Qiaoxing West Road and Gangkou Road, Yaping village, Qiaogang Town, Yinhai District, Beihai City, Guangxi Zhuang Autonomous Region

Applicant before: Hong Zuojuan

TA01 Transfer of patent application right