CN109603901A - 用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法 - Google Patents

用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法 Download PDF

Info

Publication number
CN109603901A
CN109603901A CN201811395129.1A CN201811395129A CN109603901A CN 109603901 A CN109603901 A CN 109603901A CN 201811395129 A CN201811395129 A CN 201811395129A CN 109603901 A CN109603901 A CN 109603901A
Authority
CN
China
Prior art keywords
catalyst
zsm
hours
shell
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811395129.1A
Other languages
English (en)
Inventor
张健
王以臣
施伟光
陈彦广
宋华
胡云峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Petroleum University
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Priority to CN201811395129.1A priority Critical patent/CN109603901A/zh
Publication of CN109603901A publication Critical patent/CN109603901A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明属于石油化工技术领域,具体涉及一种用于石脑油催化重整的抗硫中毒核‑壳催化剂的制备方法,筛网筛分γ‑Al2O3,清洗后干燥并焙烧;取γ‑Al2O3放入氨水中进行活化,并干燥;将γ‑Al2O3在氯铂酸钾溶液浸泡,并干燥和焙烧;配制ZSM‑5分子筛合成液,采用去离子水为溶质,正硅酸乙酯为硅源,四丙基氢氧化铵为模板剂,异丙醇铝为铝源,配制成均匀稳定的乳浊液型成膜液;将Pt/Al2O3和ZSM‑5制备Pt/Al2O3‑ZSM‑5;将Pt/Al2O3‑ZSM‑5在氢氧化钾水溶液中浸泡;将Pt/Al2O3‑ZSM‑5放入去离子水中浸泡,烘干并焙烧。该催化剂对硫化物实现抗中毒效果。

Description

用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法
技术领域:
本发明属于石油化工技术领域,具体涉及一种用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法。
背景技术:
近年来,复合材料的广泛研究、开发和应用,为功能化催化材料的设计和应用提供了新的研究思路和设计方法[Caruso F, Lichtenfeld H, Giersig M, et. al.Electrostatic self-assembly of silica nanoparticle-polyelectrolytemultilayers on polystyrene latex particles [J]. J. Am. Chem. Soc.,1998, 120:8523-8524.]。具有核-壳结构的复合材料作为催化剂,其独特的结构改善了传统催化材料的物理与化学性能,是现有催化剂改性和新型催化剂设计的一种新方法[Kathryn E.Knowles, Mark D. Peterson, Martin R. McPhail, et. al. Review paper: ExcitonDissociation within Quantum Dot-Organic Complexes: Mechanisms, Use as a Probeof Interfacial Structure, and Applications [J]. J. Phys. Chem. C, 2013, 117:10229-10243.]。例如,石化生产过程中,石油和天然气中微量的硫化物常导致催化剂中毒失活,严重影响工艺的经济效益。由于硫化物与反应物在催化剂活性中心是竞争反应,降低活性中心对硫化物的吸附会导致催化剂自身活性大幅度下降,因此更多的研究者的目光转移到具有核-壳结构的复合型催化剂。其中,分子筛膜包覆的核-壳结构催化剂(以下简称核-壳催化剂),由连续均一的分子筛膜完整包覆催化剂构成,其表面壳层具有分子筛膜的选择渗透作用,核心则具有催化作用。
核-壳催化剂的分子筛壳层能阻止硫化物与催化核心接触,同时不影响反应物和产物与催化核心的作用,从而提高催化剂的抗中毒性能和催化性能。其分子级孔道允许小分子的反应物和产物渗透,在核心催化剂完成催化反应过程;同时对反应物中分子相对较大的毒物进行阻隔,避免毒物与核心催化剂接触,因此提高了催化剂的抗中毒性能。
分子筛膜作为核-壳催化剂壳层,其良好的热稳定性、水热稳定性和强度高等特点,适用于催化反应的苛刻条件。此外,分子筛膜具有均一的分子级孔径和极高的比表面积、种类的多样性、性质的易调变性等特点,可提供高选择吸附性、催化性能和抗中毒,因此其包覆催化剂构成的核-壳催化剂具有广泛的应用前景[徐如人,庞文琴等.分子筛与多孔材料化学[M].北京:科学出版社, 2005.]。目前,很多文献报道了核-壳催化剂的合成和应用,如Noritatsu等[Guohui Y, Jingjiang H, Yoshiharu Y,et al. Preparation,characterization and reaction performance of H-ZSM-5/cobalt/silica capsulecatalysts with different sizes for direct synthesis of isoparaffins [J].Appl. Catal. A-Gen., 2007, 329: 99-105.]等合成的H-ZSM-5/Co/SiO2核-壳型催化剂用于F-T合成反应,SAPO-11分子筛作包覆Cu/ZnO/Al2O3构成的核-壳催化剂用于合成气一步法制二甲醚,使得短直链烷烃选择性大大提高。Nishiyama[Guohui Y, Chuang X, WataruH, et. al. Tandem catalytic synthesis of light isoparaffin from syngas viaFischer-Tropsch synthesis by newly developed core-shell-like zeolite capsulecatalysts [J]. Catal. Today, 2013, 215: 29-35.] 等合成Silicalite-1/ SiO2-Al2O3核-壳型催化剂进行甲苯岐化反应,使对二甲苯的转化率较平衡态提高了近22%。
分子筛壳层用于提高核-壳催化剂的抗中毒性能的报道同样备受关注,如Norikazu等 [Norikazu N, Keita I, Dong-Huy P, et, al. Reactant-SelectiveHydrogenation over Composite Silicalite-1-Coated Pt/TiO2 Particles. Ind.eng.chem. res. 2004, 43:1211- 1215.]合成的Silicalite-1分子筛包覆Pt/TiO2核-壳型催化剂用于择形加氢时,发现催化剂实现择形加氢的同时还具有抗中毒性能;Marina等[Marina K, , Martin S. Holm, Claus H. Christensen, et al. Synthesis andcharacterization of mesoporous ZSM-5 core-shell particles for improvedcatalytic properties [J]. Stud. Surf. Sci. Catal. ,2008,174: 117-122.]在ZSM-5催化剂表面覆盖silicalite 壳层构成核-壳催化剂,用壳层改变催化剂表面极性,在乙二醇二甲醚和甲醇合成汽油的反应中用于催化剂抗积碳失活。大连理工大学张雄福课题组合成专用于抗中毒的的Ni/Al2O3-Sil-1[Jian Z, Xiongfu Z, et al. New synthesisstrategies for Ni/ Al2O3-Sil-1 core-shell catalysts for steam reforming ofmethane [J]. Catal. Today, 2014, 236: 36-40.]和Ni/Al2O3- MSU-1核-壳催化剂[JianZ, Xiongfu Z, et al. A New Alkali-resistant Ni/Al2O3-MSU-1 Core-Shell Catalystfor Methane Steam Reforming in a direct internal reforming molten carbonatefuel cell [J]. J. Power Sources, 2014, 246: 74-83.],在直接内重整熔融碳酸盐燃料电池中用于甲烷水汽重整制氢,并避免了燃料电池产生的气态熔融碱对Ni/Al2O3催化剂的毒害作用,延长了电池寿命。
重石脑油催化重整制备重整汽油反应中,由于原料中存在微量的硫化物对催化剂的催化活性产生严重的影响,因此催化剂的抗硫化物中毒性能是影响反应的工艺及经济性的重要因素之一。目前已经报道的核-壳催化剂用于抗中毒时,其抗中毒性能主要由壳层孔道尺寸和毒物分子大小决定。其局限在于:当毒物分子接近或小于孔道尺寸时,分子筛壳层无法完全阻隔毒物分子的渗透,从而导致核-壳催化剂抗中毒性能失效。此外,壳层孔道对反应物和产物的扩散影响直接影响核-壳催化剂催化性能,即使用于择形催化的核-壳催化剂,较高选择性也伴生着转化率的部分损失。
发明内容:
本发明为了解决上述技术问题提供了一种用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法,在重石脑油催化重整制备重整汽油反应重,对硫化物实现抗中毒效果。
本发明采用的技术方案为:一种用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法,制备方法包括以下步骤:
(1)、将γ-Al2O3小球先后过孔径为1.8mm和 2.2mm的筛网进行筛分,去除大颗粒和残缺的载体小球,筛选后获得粒径为1.8~2.2mm的γ-Al2O3小球,将γ-Al2O3载体小球放置在去离子水中用超声清洗,去除载体小球中的粉末;清洗干净后,在80~120℃ 烘箱中干燥过夜,并在马弗炉中500~600℃下焙烧5~7小时后冷却至室温,并且存放在干燥器中备用;
(2)、配制摩尔分数为6~10%浓度的氨水30ml作为活化剂,去离子水为介质,取1-5克步骤(1)得到的γ-Al2O3小球放入氨水中,在室温下进行活化12~48小时,然后在40~100℃的烘箱内干燥4~12小时;
(3)、根据步骤(2)所使用的γ-Al2O3小球质量,配制10~15ml摩尔分数为0.05-0.1%的氯铂酸钾溶液,然后放入步骤(2)得到的γ-Al2O3小球1~5克,在温度为20~40℃下浸渍12~72小时,得到吸附后的γ-Al2O3小球,使其在40~60℃的烘箱内干燥10~24小时,然后在马弗炉中500~700℃下焙烧6~12小时后冷却至室温,获得Pt/Al2O3催化剂;
(4)、配制ZSM-5分子筛合成液,采用去离子水为溶质,正硅酸乙酯为硅源,四丙基氢氧化铵为模板剂,异丙醇铝为铝源,硅铝比为5~20,pH值为13~14,配制成均匀稳定的乳浊液型成膜液80ml,其中,nH2O: nTPAOH: nSiO2: nAl2O3= 80:15:10: 2;
(5)、将步骤(3)获得的Pt/Al2O3催化剂1~5克放入步骤(4)得到80ml的ZSM-5分子筛合成液中,密封在不锈钢合成釜中,在5~60rpm的转速下,在40~180℃合成6~72小时,获得Pt/Al2O3 -ZSM-5催化剂;
(6)、将步骤(5)得到的Pt/Al2O3 -ZSM-5催化剂用无水乙醇反复冲洗三次,然后用去离子水反复冲洗三次,放入30~50ml,摩尔分数为0.2~1.5%的氢氧化钾水溶液中,并在室温下浸泡12~18小时;
(7)、将步骤(6)中活化后的Pt/Al2O3-ZSM-5催化剂放入100ml的去离子水中,在恒温40℃的条件下浸泡4~8小时,去除多余的钾离子,得到的Pt/Al2O3-K-ZSM-5催化剂,将其在40℃的烘箱内烘干后,然后在500~700℃的马弗炉中焙烧5~7小时后冷却至室温,将Pt/Al2O3-K-ZSM-5催化剂中残余的四丙基氢氧化铵氧化并去除,即可得到可用于抗硫中毒的、具有核-壳结构的Pt/Al2O3-K-ZSM-5催化剂。
本发明的有益效果:提供了一种用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法,并且在重石脑油催化重整制备重整汽油反应重,对硫化物实现抗中毒效果。基于核-壳催化剂的分子孔道特点,采用壳层极性对小分子毒物在壳层孔道中的渗透效果进行控制,利用极性差异减小硫化物在壳层孔道内的运移产生限制效应,实现核-壳催化剂对小分子硫化物的抗中毒效果,同时不影响反应物和产物分子通过核-壳催化剂的壳层。
附图说明:
图1是实施例二中分子筛膜包覆的核-壳催化剂抗硫化物中毒原理示意图;
图2是实施例四中测试核-壳催化剂抗中毒性能测试系统示意图。
具体实施方式:
实施例一
参照图1,一种用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法,制备方法包括以下步骤:
(1)、将γ-Al2O3小球先后过孔径为1.8mm和 2.2mm的筛网进行筛分,去除大颗粒和残缺的载体小球,筛选后获得粒径为1.8~2.2mm的γ-Al2O3小球,将γ-Al2O3载体小球放置在去离子水中用超声清洗,去除载体小球中的粉末;清洗干净后,在80℃ 烘箱中干燥过夜,并在马弗炉中500℃下焙烧5小时后冷却至室温,并且存放在干燥器中备用;
(2)、配制摩尔分数为6%浓度的氨水30ml作为活化剂,去离子水为介质,取1克步骤(1)得到的γ-Al2O3小球放入氨水中,在室温下进行活化12小时,然后在40℃的烘箱内干燥4小时;
(3)、根据步骤(2)所使用的γ-Al2O3小球质量,配制10ml摩尔分数为0.05%的氯铂酸钾溶液,然后放入步骤(2)得到的γ-Al2O3小球1克,在温度为20℃下浸渍12小时,得到吸附后的γ-Al2O3小球,使其在40℃的烘箱内干燥10小时,然后在马弗炉中500℃下焙烧6小时后冷却至室温,获得Pt/Al2O3催化剂;
(4)、配制ZSM-5分子筛合成液,采用去离子水为溶质,正硅酸乙酯为硅源,四丙基氢氧化铵为模板剂,异丙醇铝为铝源,硅铝比为5,pH值为13,配制成均匀稳定的乳浊液型成膜液80ml,其中,nH2O: nTPAOH: nSiO2: nAl2O3= 80:15:10: 2;
(5)、将步骤(3)获得的Pt/Al2O3催化剂1克放入步骤(4)得到80ml的ZSM-5分子筛合成液中,密封在不锈钢合成釜中,在5rpm的转速下,在40℃合成6小时,获得Pt/Al2O3 -ZSM-5催化剂;
(6)、将步骤(5)得到的Pt/Al2O3 -ZSM-5催化剂用无水乙醇反复冲洗三次,然后用去离子水反复冲洗三次,放入30ml,摩尔分数为0.2%的氢氧化钾水溶液中,并在室温下浸泡12小时;
(7)、将步骤(6)中活化后的Pt/Al2O3-ZSM-5催化剂放入100ml的去离子水中,在恒温40℃的条件下浸泡4小时,去除多余的钾离子,得到的Pt/Al2O3-K-ZSM-5催化剂,将其在40℃的烘箱内烘干后,然后在500℃的马弗炉中焙烧5小时h后冷却至室温,将Pt/Al2O3-K-ZSM-5催化剂中残余的四丙基氢氧化铵氧化并去除,即可得到可用于抗硫中毒的、具有核-壳结构的Pt/Al2O3-K-ZSM-5催化剂。
实施例二
参照图1,一种用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法,制备方法包括以下步骤:
(1)、将γ-Al2O3小球先后过孔径为1.8mm和 2.2mm的筛网进行筛分,去除大颗粒和残缺的载体小球,筛选后获得粒径为1.8~2.2mm的γ-Al2O3小球,将γ-Al2O3载体小球放置在去离子水中用超声清洗,去除载体小球中的粉末;清洗干净后,在100℃ 烘箱中干燥过夜,并在马弗炉中550℃下焙烧6小时后冷却至室温,并且存放在干燥器中备用;
(2)、配制摩尔分数为8%浓度的氨水30ml作为活化剂,去离子水为介质,取3克步骤(1)得到的γ-Al2O3小球放入氨水中,在室温下进行活化30小时,然后在70℃的烘箱内干燥8小时;
(3)、根据步骤(2)所使用的γ-Al2O3小球质量,配制12ml摩尔分数为0.075%的氯铂酸钾溶液,然后放入步骤(2)得到的γ-Al2O3小球3克,在温度为30℃下浸渍42小时,得到吸附后的γ-Al2O3小球,使其在50℃的烘箱内干燥17小时,然后在马弗炉中600℃下焙烧9小时后冷却至室温,获得Pt/Al2O3催化剂;
(4)、配制ZSM-5分子筛合成液,采用去离子水为溶质,正硅酸乙酯为硅源,四丙基氢氧化铵为模板剂,异丙醇铝为铝源,硅铝比为12,pH值为13.5,配制成均匀稳定的乳浊液型成膜液80ml,其中,nH2O: nTPAOH: nSiO2: nAl2O3= 80:15:10: 2;
(5)、将步骤(3)获得的Pt/Al2O3催化剂1~5克放入步骤(4)得到80ml的ZSM-5分子筛合成液中,密封在不锈钢合成釜中,在32rpm的转速下,在110℃合成44小时,获得Pt/Al2O3 -ZSM-5催化剂;
(6)、将步骤(5)得到的Pt/Al2O3 -ZSM-5催化剂用无水乙醇反复冲洗三次,然后用去离子水反复冲洗三次,放入40ml,摩尔分数为0.85%的氢氧化钾水溶液中,并在室温下浸泡15小时;
(7)、将步骤(6)中活化后的Pt/Al2O3-ZSM-5催化剂放入100ml的去离子水中,在恒温40℃的条件下浸泡6小时,去除多余的钾离子,得到的Pt/Al2O3-K-ZSM-5催化剂,将其在40℃的烘箱内烘干后,然后在600℃的马弗炉中焙烧6小时后冷却至室温,将Pt/Al2O3-K-ZSM-5催化剂中残余的四丙基氢氧化铵氧化并去除,即可得到可用于抗硫中毒的、具有核-壳结构的Pt/Al2O3-K-ZSM-5催化剂。
实施例三
参照图1,一种用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)、将γ-Al2O3小球先后过孔径为1.8mm和 2.2mm的筛网进行筛分,去除大颗粒和残缺的载体小球,筛选后获得粒径为1.8~2.2mm的γ-Al2O3小球,将γ-Al2O3载体小球放置在去离子水中用超声清洗,去除载体小球中的粉末;清洗干净后,在120℃ 烘箱中干燥过夜,并在马弗炉中600℃下焙烧7小时后冷却至室温,并且存放在干燥器中备用;
(2)、配制摩尔分数为10%浓度的氨水30ml作为活化剂,去离子水为介质,取5克步骤(1)得到的γ-Al2O3小球放入氨水中,在室温下进行活化48小时,然后在100℃的烘箱内干燥12小时;
(3)、根据步骤(2)所使用的γ-Al2O3小球质量,配制15ml摩尔分数为0.1%的氯铂酸钾溶液,然后放入步骤(2)得到的γ-Al2O3小球5克,在温度为40℃下浸渍72小时,得到吸附后的γ-Al2O3小球,使其在60℃的烘箱内干燥24小时,然后在马弗炉中700℃下焙烧12小时后冷却至室温,获得Pt/Al2O3催化剂;
(4)、配制ZSM-5分子筛合成液,采用去离子水为溶质,正硅酸乙酯为硅源,四丙基氢氧化铵为模板剂,异丙醇铝为铝源,硅铝比为20,pH值为14,配制成均匀稳定的乳浊液型成膜液80ml,其中,nH2O: nTPAOH: nSiO2: nAl2O3= 80:15:10: 2;
(5)、将步骤(3)获得的Pt/Al2O3催化剂5克放入步骤(4)得到80ml的ZSM-5分子筛合成液中,密封在不锈钢合成釜中,在60rpm的转速下,在180℃合成72小时,获得Pt/Al2O3 -ZSM-5催化剂;
(6)、将步骤(5)得到的Pt/Al2O3 -ZSM-5催化剂用无水乙醇反复冲洗三次,然后用去离子水反复冲洗三次,放入50ml,摩尔分数为1.5%的氢氧化钾水溶液中,并在室温下浸泡18小时;
(7)、将步骤(6)中活化后的Pt/Al2O3-ZSM-5催化剂放入100ml的去离子水中,在恒温40℃的条件下浸泡8小时,去除多余的钾离子,得到的Pt/Al2O3-K-ZSM-5催化剂,将其在40℃的烘箱内烘干后,然后在700℃的马弗炉中焙烧7小时后冷却至室温,将Pt/Al2O3-K-ZSM-5催化剂中残余的四丙基氢氧化铵氧化并去除,即可得到可用于抗硫中毒的、具有核-壳结构的Pt/Al2O3-K-ZSM-5催化剂。
实施例四
参照图2,Pt/Al2O3-K-ZSM-5核-壳催化剂的催化活性抗硫中毒性能测试
催化反应是一个复杂体系,影响因素较多,在测试核-壳催化剂的催化反应中,将硫化物引入催化反应体系内,既可检验壳层极性对核-壳催化剂的抗中毒性能在催化反应中是否有效,又可综合分析壳层极性对于反应物、产物、硫化物在壳层内扩散的影响规律。目的是Pt/Al2O3-K-ZSM-5核-壳催化剂的催化活性抗硫中毒性能。反应物采用重石脑油为原料,硫化物则可使用有机硫,如硫醇、噻吩、硫醚、硫化氢等,测试不同壳层极性下,Pt/Al2O3-K-ZSM-5核-壳催化剂的催化性能。反应产物用气相色谱仪进行产物含量分析。
首先关闭液相管路,将核-壳催化剂放置于固定床反应器内,首先通入氢气在723K下进行催化剂还原。然后在特定的温度、压力和空速下,将含有硫化物的氮气在图中H2气路通入反应管,用氮气将硫化物携带进反应体系。其中,硫化物的含量由水浴锅的温度控制硫醇的饱和蒸汽压,并控制阀门开闭周期控制硫醇引入浓度。反应产物用气相色谱分析含量,然后通过计算得到催化剂的催化活性和抗硫化物中毒性能。

Claims (1)

1.一种用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)、将γ-Al2O3小球先后过孔径为1.8mm和 2.2mm的筛网进行筛分,去除大颗粒和残缺的载体小球,筛选后获得粒径为1.8~2.2mm的γ-Al2O3小球,将γ-Al2O3载体小球放置在去离子水中用超声清洗,去除载体小球中的粉末;清洗干净后,在80~120℃ 烘箱中干燥过夜,并在马弗炉中500~600℃下焙烧5~7小时后冷却至室温,并且存放在干燥器中备用;
(2)、配制摩尔分数为6~10%浓度的氨水30ml作为活化剂,去离子水为介质,取1-5克步骤(1)得到的γ-Al2O3小球放入氨水中,在室温下进行活化12~48小时,然后在40~100℃的烘箱内干燥4~12小时;
(3)、根据步骤(2)所使用的γ-Al2O3小球质量,配制10~15ml摩尔分数为0.05-0.1%的氯铂酸钾溶液,然后放入步骤(2)得到的γ-Al2O3小球1~5克,在温度为20~40℃下浸渍12~72小时,得到吸附后的γ-Al2O3小球,使其在40~60℃的烘箱内干燥10~24小时,然后在马弗炉中500~700℃下焙烧6~12小时后冷却至室温,获得Pt/Al2O3催化剂;
(4)、配制ZSM-5分子筛合成液,采用去离子水为溶质,正硅酸乙酯为硅源,四丙基氢氧化铵为模板剂,异丙醇铝为铝源,硅铝比为5~20,pH值为13~14,配制成均匀稳定的乳浊液型成膜液80ml,其中,nH2O: nTPAOH: nSiO2: nAl2O3= 80:15:10: 2;
(5)、将步骤(3)获得的Pt/Al2O3催化剂1~5克放入步骤(4)得到80ml的ZSM-5分子筛合成液中,密封在不锈钢合成釜中,在5~60rpm的转速下,在40~180℃合成6~72小时,获得Pt/Al2O3 -ZSM-5催化剂;
(6)、将步骤(5)得到的Pt/Al2O3 -ZSM-5催化剂用无水乙醇反复冲洗三次,然后用去离子水反复冲洗三次,放入30~50ml,摩尔分数为0.2~1.5%的氢氧化钾水溶液中,并在室温下浸泡12~18小时;
(7)、将步骤(6)中活化后的Pt/Al2O3-ZSM-5催化剂放入100ml的去离子水中,在恒温40℃的条件下浸泡4~8小时,去除多余的钾离子,得到的Pt/Al2O3-K-ZSM-5催化剂,将其在40℃的烘箱内烘干后,然后在500~700℃的马弗炉中焙烧5~7小时后冷却至室温,将Pt/Al2O3-K-ZSM-5催化剂中残余的四丙基氢氧化铵氧化并去除,即可得到可用于抗硫中毒的、具有核-壳结构的Pt/Al2O3-K-ZSM-5催化剂。
CN201811395129.1A 2018-11-22 2018-11-22 用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法 Pending CN109603901A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811395129.1A CN109603901A (zh) 2018-11-22 2018-11-22 用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811395129.1A CN109603901A (zh) 2018-11-22 2018-11-22 用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN109603901A true CN109603901A (zh) 2019-04-12

Family

ID=66004279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811395129.1A Pending CN109603901A (zh) 2018-11-22 2018-11-22 用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN109603901A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425341A (zh) * 2020-10-12 2022-05-03 中国石油化工股份有限公司 含硫化物杂质的不饱和化合物的催化加氢方法
CN114426490A (zh) * 2020-10-12 2022-05-03 中国石油化工股份有限公司 不饱和化合物的催化加氢方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498853C1 (ru) * 2012-07-17 2013-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола
CN104923196A (zh) * 2015-05-12 2015-09-23 东北石油大学 一种用于制备加氢脱氧催化剂的核-壳结构载体的制备方法
CN105772069A (zh) * 2016-03-29 2016-07-20 中国石油大学(华东) 一种纳微尺度的核-壳型分子筛包覆抗硫化催化剂
CN106140273A (zh) * 2015-04-21 2016-11-23 中国科学院青岛生物能源与过程研究所 一种用于费-托合成的包覆型钴基催化剂及其制备和应用
CN108295892A (zh) * 2018-01-30 2018-07-20 贵州大学 一种γ-Al2O3@CuO-ZnO@ZSM-5双核壳催化剂的制备方法
CN108339565A (zh) * 2018-01-30 2018-07-31 贵州大学 一种ZnO-Al2O3@ZSM-5核壳结构催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498853C1 (ru) * 2012-07-17 2013-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола
CN106140273A (zh) * 2015-04-21 2016-11-23 中国科学院青岛生物能源与过程研究所 一种用于费-托合成的包覆型钴基催化剂及其制备和应用
CN104923196A (zh) * 2015-05-12 2015-09-23 东北石油大学 一种用于制备加氢脱氧催化剂的核-壳结构载体的制备方法
CN105772069A (zh) * 2016-03-29 2016-07-20 中国石油大学(华东) 一种纳微尺度的核-壳型分子筛包覆抗硫化催化剂
CN108295892A (zh) * 2018-01-30 2018-07-20 贵州大学 一种γ-Al2O3@CuO-ZnO@ZSM-5双核壳催化剂的制备方法
CN108339565A (zh) * 2018-01-30 2018-07-31 贵州大学 一种ZnO-Al2O3@ZSM-5核壳结构催化剂的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425341A (zh) * 2020-10-12 2022-05-03 中国石油化工股份有限公司 含硫化物杂质的不饱和化合物的催化加氢方法
CN114426490A (zh) * 2020-10-12 2022-05-03 中国石油化工股份有限公司 不饱和化合物的催化加氢方法
CN114425341B (zh) * 2020-10-12 2023-07-11 中国石油化工股份有限公司 含硫化物杂质的不饱和化合物的催化加氢方法

Similar Documents

Publication Publication Date Title
Wang et al. Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway
Chen et al. ZnO supported on high-silica HZSM-5 as efficient catalysts for direct dehydrogenation of propane to propylene
Javed et al. Complete encapsulation of zeolite supported Co based core with silicalite-1 shell to achieve high gasoline selectivity in Fischer-Tropsch synthesis
Sadeghpour et al. DEA/TEAOH templated synthesis and characterization of nanostructured NiAPSO-34 particles: Effect of single and mixed templates on catalyst properties and performance in the methanol to olefin reaction
Weissenberger et al. Hierarchical ZSM‐5 catalysts: The effect of different intracrystalline pore dimensions on catalyst deactivation behaviour in the MTO reaction
TW201446724A (zh) 封裝在結構崩塌沸石內且具有金屬簇之催化劑及其用途
Wang et al. In situ synthesis of SAPO-34 grown onto fully calcined kaolin microspheres and its catalytic properties for the MTO reaction
Chen et al. Selective catalytic reduction of NO over Co/beta-zeolite: effects of synthesis condition of beta-zeolites, Co precursor, Co loading method and reductant
CN109603901A (zh) 用于石脑油催化重整的抗硫中毒核-壳催化剂的制备方法
Guan et al. Catalytic combustion of volatile organic compounds (VOCs) over structured Co3O4 nano-flowers on silicalite-1/SiC foam catalysts
Hu et al. GeAPSO-34 molecular sieves: Synthesis, characterization and methanol-to-olefins performance
Bahraminia et al. Hydrogen sulfide removal from biogas using ion-exchanged nanostructured NaA zeolite for fueling solid oxide fuel cells
CN105498757B (zh) 一种乙炔环三聚制备苯的催化剂及制备苯的方法
Xu et al. NH 3-SCR performance and characterization over magnetic iron-magnesium mixed oxide catalysts
CN109433252B (zh) 一种co2氧化c2h6脱氢制c2h4的催化剂及其制备方法
Wang et al. Novel core-shell-like Ni-supported hierarchical beta zeolite catalysts on bioethanol steam reforming
Khanchi et al. Methanol steam reforming over Cu supported on SiO2, amorphous SiO2‐Al2O3, and Al2O3 catalysts: Influence of support nature
Jiang et al. Different morphological ZSM-5 zeolites supported Pt catalysts for toluene catalytic combustion
Föttinger et al. Deactivation and regeneration of Pt containing sulfated zirconia and sulfated zirconia
Ma et al. Constructing macroscopic core@ shell catalyst to boost tandem catalysis of methanol to aromatic
Zhou et al. Synthesis and performance of high efficient diesel oxidation catalyst based on active metal species-modified porous zeolite BEA
Liang et al. Study of RHO zeolite with different cations for CO2/CO separation in pressure swing adsorption
CN101537374B (zh) 一种保护熔融碳酸盐燃料电池重整催化剂的方法及其应用
CN109433257A (zh) 一种二氧化碳氧化乙烷脱氢制乙烯的催化剂及其制备方法
Meng et al. Efficient-selective-catalytic aromatization of methanol over Zn-HZSM-5/SAPO-34: Action mechanism of Zn

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190412