CN109603758B - 五氟镁铝/凹凸棒石/多孔碳复合材料及其制备方法与应用 - Google Patents

五氟镁铝/凹凸棒石/多孔碳复合材料及其制备方法与应用 Download PDF

Info

Publication number
CN109603758B
CN109603758B CN201910060334.0A CN201910060334A CN109603758B CN 109603758 B CN109603758 B CN 109603758B CN 201910060334 A CN201910060334 A CN 201910060334A CN 109603758 B CN109603758 B CN 109603758B
Authority
CN
China
Prior art keywords
attapulgite
composite material
carbon
coated
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910060334.0A
Other languages
English (en)
Other versions
CN109603758A (zh
Inventor
唐爱东
钟来富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201910060334.0A priority Critical patent/CN109603758B/zh
Publication of CN109603758A publication Critical patent/CN109603758A/zh
Application granted granted Critical
Publication of CN109603758B publication Critical patent/CN109603758B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0248Compounds of B, Al, Ga, In, Tl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0288Halides of compounds other than those provided for in B01J20/046
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28035Membrane, sheet, cloth, pad, lamellar or mat with more than one layer, e.g. laminates, separated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明提供了一种五氟镁铝/凹凸棒石/多孔碳复合材料及其制备方法与应用,所述复合材料为以凹凸棒石为载体的多层结构,包覆在载体表面的为碳纳米管层,所述碳纳米管层的孔隙中和凹凸棒石的孔隙中填充有五氟镁铝纳米颗粒,包覆在所述碳纳米管层表面的为五氟镁铝纳米颗粒层。所述方法为对凹凸棒石进行酸化处理,得到改性凹凸棒石;将改性凹凸棒石进行碳源吸附和焙烧,得到碳包覆凹凸棒石;向碳包覆凹凸棒石中加入氢氟酸和水,加热搅拌后进行抽滤、洗涤和干燥,得到五氟镁铝/凹凸棒石/多孔碳复合材料;其中,所述凹凸棒石、氢氟酸和水的质量比为1:(6~2):(4~8)。所述复合材料应用于吸附阴离子型染料废水,对刚果红染料的最大平衡吸附容量为1500~2100mg/g。

Description

五氟镁铝/凹凸棒石/多孔碳复合材料及其制备方法与应用
技术领域
本发明涉及复合材料技术领域,特别涉及一种五氟镁铝/凹凸棒石/多孔碳复合材料及其制备方法与应用。
背景技术
随着社会经济快速发展,水体污染物排放量逐年增加,水环境中的污染问题日益突出。地表水体所遭受的污染不仅对水生生物构成威胁,也破坏了生态环境,并最终危害人类的健康。传统去除水中污染物的方法包括生物法、絮凝法、高级氧化法、滤膜法和吸附法等。相比而言,吸附法不仅可避免二次污染,且在一定程度上降低了成本。
凹凸棒石是一种链层状结构的含水镁铝硅酸盐矿物,具有独特的纳米孔道结构和较大的比表面积,故常常用它作为吸附剂吸附去除水中的重金属和阳离子型污染物。天然凹凸棒石中,凹凸棒石晶体间和自然孔道内填充有碳酸盐类胶结物,导致晶体颗粒团聚,使其孔道结构、表面形态以及晶体堆积状态都处于无规则状态,这削弱了其整体的物化性能,从而影响到凹凸棒石的吸附性能。
中国专利文献CN 103316633 A公开了一种凹土/多孔炭复合材料的制备方法,以凹凸棒石和稻壳为原料,先与硫酸溶液混合进行热处理,再进行碱活化,高温煅烧制得凹土/多孔炭复合材料,虽然复合材料经碱活化后比表面在一定程度上提高了,因此吸附性能有所提高,但在处理过程中产生的硫酸和碱废液对环境会产生严重污染,无法达到环保而高效的效果。中国专利CN106140095A公开了一种改性凹凸棒土吸附剂的制备及应用,采用含松香基三元菲环结构的氧化叔胺溶液对天然凹凸棒土进行改性制备成目标吸附剂。该吸附剂适用于饮用水中溶解性有机物(腐殖酸)、无机阴离子(氟离子)和印染废水中阴离子染料(刚果红)等环境污染物的去除,具有良好的环保效益。其实施例中刚果红单位吸附量达到80mg刚果红/g改性凹凸棒土,可见该吸附剂的吸附能力有待进一步提高。
因此,有必要提供一种吸附效果良好,且同时具有良好环保效益的凹凸棒石改性复合材料吸附剂及其制备方法。
发明内容
针对现有技术的不足,本发明提供了一种五氟镁铝/凹凸棒石/多孔碳复合材料及其制备方法与应用,其目的是用环保、成本低廉的方法制备出吸附效果良好的凹凸棒石改性复合材料吸附剂,并将其应用于吸附阴离子型染料废水。
为了达到上述目的,本发明实施如下技术方案:
一种五氟镁铝/凹凸棒石/多孔碳复合材料,所述复合材料为以凹凸棒石为载体的多层结构,其中,包覆在载体表面的为碳纳米管层,包覆在所述碳纳米管层表面的为五氟镁铝纳米颗粒层;所述碳纳米管层的孔隙中和凹凸棒石的孔隙中均填充有五氟镁铝纳米颗粒。
纳米管的质量占凹凸棒石质量的10%~40%;所述复合材料中五氟镁铝纳米颗粒占凹凸棒石和碳纳米管总质量的1%~10%。
优选地,所述凹凸棒石的长度为1~2μm,直径为2~30nm。
优选地,所述五氟镁铝纳米颗粒的直径为20~30nm。
本发明还提供一种五氟镁铝/凹凸棒石/多孔碳复合材料的制备方法,包括如下步骤:
1)对凹凸棒石进行酸化处理,得到改性凹凸棒石;
2)将步骤1)所得改性凹凸棒石进行碳源吸附和焙烧,得到碳包覆凹凸棒石;
3)向步骤2)所得碳包覆凹凸棒石中加入氢氟酸和水,加热反应后进行抽滤、洗涤和干燥,得到五氟镁铝/凹凸棒石/多孔碳复合材料;
其中,所述碳包覆凹凸棒石、氢氟酸和水的质量比为1:(2~6):(4~8)。
优选地,步骤1)中所述酸化处理具体为向凹凸棒石中加入盐酸溶液进行反应,再进行抽滤、洗涤和干燥。
优选地,步骤2)中所述碳源吸附具体为将改性凹凸棒石与葡萄糖混合,在水浴中搅拌反应至水分全部挥发。
优选地,步骤2)中所述焙烧具体为在700~900℃的惰性气氛下焙烧2.5~4小时。
优选地,步骤3)中所述加热反应具体为将含有氢氟酸的碳包覆凹凸棒土在70~90℃下搅拌6~10小时。
本发明还提供一种上述五氟镁铝/凹凸棒石/多孔碳复合材料在吸附阴离子型染料废水中的应用。
碳包覆凹凸棒石复合材料中的矿物凹凸棒石是一类镁铝硅酸盐,当加入HF刻蚀剂后,黏土中的部分硅酸盐中的硅被溶解,生成SiF4气体逸出,去除了碳包覆凹凸棒石复合材料中的部分凹凸棒石之后,生成了多孔无定形的碳纳米管与凹凸棒石的复合物,原凹凸棒石晶格中的Mg2+和Al3+游离在水溶液中,与过量的氢氟酸反应,并吸附在无定形碳纳米管的内、外表面上,从而得到五氟镁铝/多孔碳包覆凹凸棒石复合材料。五氟镁铝/多孔碳包覆凹凸棒石复合材料的特点是能快速(在1小时以内)吸附染料废水中的刚果红。氟化物具有很强的吸电子能力,因此对染料具有很强的吸附作用。
本发明的上述方案有如下的有益效果:
(1)本发明使用的凹凸棒石来自天然矿石或者工业废渣、原料来源广、价格低廉,降低了吸附剂的成本。
(2)本发明实施例提供的制备方法工艺简单,得到的五氟镁铝/凹凸棒石/多孔碳复合材料吸附剂无毒害,环保,不会造成二次污染。
(3)本发明实施例提供的五氟镁铝/凹凸棒石/多孔碳复合材料可应用于吸附阴离子型染料,比如用于吸附刚果红染料废水,其最大平衡吸附容量为1500~2100mg/g,具有显著的优越性。
附图说明
图1为本发明实施例1中复合材料的XRD图谱。
图2为本发明实施例1-3中复合材料的电镜图与EDS图:(a)实施例1的碳包凹凸棒石复合材料的TEM图;(a1)实施例1的碳包凹凸棒石复合材料的EDS图;(b)实施例1的五氟镁铝/凹凸棒石/多孔碳复合材料的TEM图谱;(b1)实施例1的五氟镁铝/凹凸棒石/多孔碳复合材料的EDS图;(c)实施例2的五氟镁铝/凹凸棒石/多孔碳复合材料的TEM图,(c1)实施例2的五氟镁铝纳米颗粒的高分辨HRTEM图。(d)实施例3的五氟镁铝/凹凸棒石/多孔碳复合材料的TEM图,(d1)实施例3的五氟镁铝纳米颗粒的高分辨HRTEM图。
图3为本发明实施例1-3所得五氟镁铝/凹凸棒石/多孔碳复合材料的吸附性能图:(a)刚果红浓度与吸附量的关系曲线;(b)吸附时间与吸附量的关系曲线。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述。
实施例1
步骤a:原矿凹凸棒的改性:1)纯化:首先将原矿凹凸棒石用150目筛子过筛,得到凹凸棒石原矿粉末(Pal粉末)备用;称取5.0g过筛后的Pal粉末+2.0g NH4Cl+1.0g NaCl于500mL烧杯中,再加入232.0mL去离子水+11.0mL浓HNO3+7.0mL浓H2SO4大力搅拌4h;搅拌完之后浸渍0.5h,将上层液体倒出,只将下面部分进行抽滤,用无水乙醇和去离子水洗涤至中性为止,最后80℃干燥;2)表面活化和造孔:将上述干燥好的样品用250.0mL浓度为5mol/L的HCl溶液进行酸化处理2h,酸化处理完毕后进行抽滤,用无水乙醇和去离子水洗涤至中性,最后置于烘箱中80℃干燥;
步骤b:葡萄糖改性凹凸棒石前驱体的制备:称取3.0g改性凹凸棒石和2.0g葡萄糖于500mL烧杯中,加入40mL去离子水并持续搅拌24h,然后在80℃水浴直至把水分挥发完,制备得到前驱体;
步骤c:碳包凹凸棒石复合材料的制备:将前驱体置于管式炉中N2气体流量为40mL/min,升温速率10℃/min,800℃焙烧3h得到碳包覆凹凸棒石复合物(Pal@C);
步骤d:将步骤c所得Pal@C加入2毫升40%的HF中,再加8毫升水后于80℃下加热搅拌反应8h;其中,Pal@C、氢氟酸和水的质量比约为1:2:8;然后进行抽滤并用去离子水和无水乙醇洗涤数次直至中性,再将其置于烘箱中80℃下干燥12h,得到五氟镁铝/凹凸棒石/多孔碳复合材料吸附剂。
上述制得的复合材料为以凹凸棒石为载体的多层结构,包覆在凹凸棒石表面的为碳纳米管层,在碳纳米管层的孔隙中和凹凸棒石的孔隙中填充有五氟镁铝纳米颗粒,包覆在碳纳米管层表面的为五氟镁铝纳米颗粒层。
复合材料中碳纳米管的质量占凹凸棒石质量的10%~40%,五氟镁铝纳米颗粒占凹凸棒石和碳纳米管总质量的1%~10%。凸棒石的长度为1~2μm,直径为2~30nm。氟镁铝纳米颗粒的直径为20~30nm。
将制得的五氟镁铝/凹凸棒石/多孔碳复合材料进行电镜、XRD和吸附性能测试,试验结果如图1-3所示(用MAFH/Pal@c-2表示)。
为了准确地测量吸附材料的吸附性能,需精准测量吸附后高浓度经稀释后的染料的吸光度,因此,首先,建立染料刚果红的标准曲线。然后,进行吸附实验测试,典型的吸附实验过程如下:准确称取2.5mg步骤d所得五氟镁铝/凹凸棒石/多孔碳复合材料吸附剂,然后加入5mL不同浓度的刚果红溶液,剧烈震荡,吸附24h后,经离心,取上层清液经稀释后在波长为495nm下测量其吸附后的吸光度。根据公式来计算复合材料对刚果红染料的最大平衡吸附量为1500mg/g。
实施例2
步骤a:与实施例1相同。
步骤b:葡萄糖改性凹凸棒石前驱体的制备:即改性凹凸棒石表面吸附碳源,称取3.0g改性凹凸棒石和0.75g葡萄糖于500mL烧杯中,加入40.0mL去离子水并持续搅拌24h,然后在80℃水浴直至把水分挥发完,制备得到前驱体。
步骤c:将前驱体置于管式炉中氦气体流量为40mL/min,升温速率10℃/min,700℃焙烧4h得到Pal@C。
步骤d:将步骤c所得Pal@C加入4毫升40%的HF中,再加6毫升水后于80℃下加热搅拌反应8h;其中,Pal@C、氢氟酸和水的质量比约为1:4:6;然后进行抽滤并用去离子水和无水乙醇洗涤数次直至中性,再将其置于烘箱中90℃下干燥10h,得到五氟镁铝/凹凸棒石/多孔碳复合材料吸附剂。
将制得的五氟镁铝/凹凸棒石/多孔碳复合材料进行电镜、XRD和吸附性能测试,试验结果如图1-3所示(用MAFH/Pal@c-4表示)。
准确称取2.5mg步骤d所得五氟镁铝/凹凸棒石/多孔碳复合材料吸附剂,然后加入5mL不同浓度的刚果红溶液,剧烈震荡,吸附24h后,经离心,取上层清液经稀释后在波长为495nm下测量其吸附后的吸光度。根据公式来计算复合材料对刚果红染料的最大平衡吸附量为2000mg/g。
实施例3
步骤a:与实施例1相同。
步骤b:葡萄糖改性凹凸棒石前驱体的制备:即改性凹凸棒石表面吸附碳源,称取3.0g改性凹凸棒石和3.0g葡萄糖于500mL烧杯中,加入40.0mL去离子水并持续搅拌24h,然后在80℃水浴直至把水分挥发完,制备得到前驱体。
步骤c:将前驱体置于管式炉中氮气体流量为40mL/min,升温速率8℃/min,900℃焙烧2.5h得到Pal@C。
步骤d:将步骤c所得Pal@C加入6毫升40%的HF中,再加水4毫升后于80℃下加热搅拌反应8h;其中,Pal@C、氢氟酸和水的质量比约为1:6:4;然后进行抽滤并用去离子水和无水乙醇洗涤数次直至中性,再将其置于烘箱中70℃干燥6h,得到五氟镁铝/凹凸棒石/多孔碳复合材料吸附剂。
将制得的五氟镁铝/凹凸棒石/多孔碳复合材料进行电镜、XRD和吸附性能测试,试验结果如图1-3所示(用MAFH/Pal@c-6表示)。
准确称取2.5mg步骤d所得吸附剂,然后加入5mL不同浓度的刚果红溶液,剧烈震荡,吸附24h后,经离心,取上层清液经稀释后在波长为495nm下测量其吸附后的吸光度。根据公式来计算复合材料对刚果红染料的最大平衡吸附量为2100mg/g。
Pal@C复合物的吸附性能不好,最大吸附量小于40mg/g,然而当加入氢氟酸加热刻蚀之后,发现复合材料的吸附性能得到大幅度的提升,由图3(a)可知,吸附刚果红染料废水最大平衡吸附容量为1500~2000mg/g。图3(b)中刚果红浓度600mg/L,吸附剂用量2.5mg,溶液pH为7,在前1小时内有一个快速吸附过程,吸附容量可快速达到200~300mg/g,然后经历一个较为缓慢的吸附过程,在吸附10小时后,最大平衡吸附容量可达到1100mg/g,显示出良好的吸附性能。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种五氟镁铝/凹凸棒石/多孔碳复合材料,其特征在于,所述复合材料为以凹凸棒石为载体的多层结构,其中,包覆在载体表面的为碳纳米管层,包覆在所述碳纳米管层表面的为五氟镁铝纳米颗粒层;所述碳纳米管层的孔隙中和凹凸棒石的孔隙中均填充有五氟镁铝纳米颗粒;
所述复合材料中碳纳米管的质量占凹凸棒石质量的10%~40%;所述复合材料中五氟镁铝纳米颗粒占凹凸棒石和碳纳米管总质量的1%~10%。
2.根据权利要求1所述复合材料,其特征在于,所述凹凸棒石的长度为1~2μm,直径为2~30nm。
3.根据权利要求1所述复合材料,其特征在于,所述五氟镁铝纳米颗粒的直径为20~30nm。
4.一种如权利要求1所述的五氟镁铝/凹凸棒石/多孔碳复合材料的制备方法,其特征在于,包括如下步骤:
1)对凹凸棒石进行酸化处理,得到改性凹凸棒石;
2)将步骤1)所得改性凹凸棒石进行碳源吸附和焙烧,得到碳包覆凹凸棒石;
所述碳源吸附具体为将改性凹凸棒石与葡萄糖混合,在水浴中搅拌反应至水分全部挥发;
所述焙烧具体为在700~900℃的惰性气氛下焙烧2.5~4小时;
3)向步骤2)所得碳包覆凹凸棒石中加入氢氟酸和水,加热反应后进行抽滤、洗涤和干燥,得到五氟镁铝/凹凸棒石/多孔碳复合材料;
其中,所述碳包覆凹凸棒石、氢氟酸和水的质量比为1:(2~6):(4~8);加热反应具体为将含有氢氟酸的碳包覆凹凸棒土在70~90℃下搅拌6~10小时。
5.根据权利要求4所述的制备方法,其特征在于,步骤1)中所述酸化处理具体为向凹凸棒石中加入盐酸溶液进行反应,再进行抽滤、洗涤和干燥。
6.根据权利要求1~3任意一项所述的五氟镁铝/凹凸棒石/多孔碳复合材料在吸附阴离子型染料废水中的应用。
CN201910060334.0A 2019-01-22 2019-01-22 五氟镁铝/凹凸棒石/多孔碳复合材料及其制备方法与应用 Active CN109603758B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910060334.0A CN109603758B (zh) 2019-01-22 2019-01-22 五氟镁铝/凹凸棒石/多孔碳复合材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910060334.0A CN109603758B (zh) 2019-01-22 2019-01-22 五氟镁铝/凹凸棒石/多孔碳复合材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN109603758A CN109603758A (zh) 2019-04-12
CN109603758B true CN109603758B (zh) 2020-04-21

Family

ID=66017104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910060334.0A Active CN109603758B (zh) 2019-01-22 2019-01-22 五氟镁铝/凹凸棒石/多孔碳复合材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN109603758B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112058223A (zh) * 2020-08-25 2020-12-11 深圳务本材料科技有限公司 碳积纳米晶石

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099824A2 (en) * 2001-04-16 2002-12-12 Zornes David A Nanotube deposition on adsorbents in water maker heat pump
CN102583324A (zh) * 2012-03-20 2012-07-18 中国地质大学(武汉) 一种非晶态碳纳米管的制备方法
CN103055806A (zh) * 2011-10-18 2013-04-24 中国科学技术大学 碳包覆凹凸棒黏土复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129737A (ja) * 2014-01-08 2015-07-16 古田 元信 放射性物質汚染水の除染処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099824A2 (en) * 2001-04-16 2002-12-12 Zornes David A Nanotube deposition on adsorbents in water maker heat pump
CN103055806A (zh) * 2011-10-18 2013-04-24 中国科学技术大学 碳包覆凹凸棒黏土复合材料及其制备方法
CN102583324A (zh) * 2012-03-20 2012-07-18 中国地质大学(武汉) 一种非晶态碳纳米管的制备方法

Also Published As

Publication number Publication date
CN109603758A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN109603757B (zh) 五氟镁铝/多孔碳复合材料及其制备方法与应用
Tabatabaeinejad et al. Magnetic Lu 2 Cu 2 O 5-based ceramic nanostructured materials fabricated by a simple and green approach for an effective photocatalytic degradation of organic contamination
Ibrahim et al. Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M= Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: High catalytic performances for nitroarenes reduction
Beura et al. Structural, optical and photocatalytic properties of graphene-ZnO nanocomposites for varied compositions
Ahmed et al. Mesoporous MgO nanoparticles as a potential sorbent for removal of fast orange and bromophenol blue dyes
Afkhami et al. Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution
Lan et al. Facile preparation of hierarchical hollow structure gamma alumina and a study of its adsorption capacity
Ali et al. Synthesis of controlled release calcium peroxide nanoparticles (CR-nCPs): Characterizations, H2O2 liberate performances and pollutant degradation efficiency
Gao et al. A novel approach to extract SiO2 from fly ash and its considerable adsorption properties
Cheng et al. A novel preparation method for ZnO/γ-Al 2 O 3 nanofibers with enhanced absorbability and improved photocatalytic water-treatment performance by Ag nanoparticles
Hu et al. Characteristics of manganese-coated sand using SEM and EDAX analysis
Li et al. Eggshell membrane-derived MgFe2O4 for pharmaceutical antibiotics removal and recovery from water
CN108786893B (zh) 一种铜掺杂碳氮聚合体多相芬顿催化剂及其合成与应用
CN108856278B (zh) 一种含铁/锰纳米二氧化硅重金属钝化剂、其制备方法及应用
Yu et al. Synthesis of silica–titania composite aerogel beads for the removal of Rhodamine B in water
CN109395763B (zh) 一种硫掺杂g-C3N4/C-dot多孔复合光催化剂及其制备方法与应用
CN110813241A (zh) 一种氮氧共掺杂多孔碳材料及其制备方法和应用
CN103599749A (zh) 磁性载钴有序介孔碳及其制备方法和应用
Yu et al. Hydrothermal synthesis and photocatalytic activity of mesoporous titania hollow microspheres
CN104623973B (zh) 一种改性石英砂及其改性方法
Chen et al. Constructing the frustrated Lewis pairs within N, S-codoped carbon to reveal the role of adjacent heteroatom sites for highly effective removal of heavy metal ions
CN104549146A (zh) 氧化铝修饰的多壁碳纳米管纳米复合材料及其制备方法和应用
Yano et al. A novel route to highly monodispersed mesoporous silica spheres consisting of nano-sized particles
Molkenova et al. Hierarchically-structured hollow CuO microparticles for efficient photo-degradation of a model pollutant dye under the solar light illumination
Aboelenin et al. Preparation, characterization and catalytic performance of mesoporous silicates derived from natural diatomite: comparative studies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant