CN109599485A - 霍尔电流传感器的引线框架及传感器 - Google Patents

霍尔电流传感器的引线框架及传感器 Download PDF

Info

Publication number
CN109599485A
CN109599485A CN201910079122.7A CN201910079122A CN109599485A CN 109599485 A CN109599485 A CN 109599485A CN 201910079122 A CN201910079122 A CN 201910079122A CN 109599485 A CN109599485 A CN 109599485A
Authority
CN
China
Prior art keywords
connecting pin
lead
lead frame
conducting wire
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910079122.7A
Other languages
English (en)
Inventor
李强
王建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Italy Semiconductor (shanghai) Co Ltd
Original Assignee
Italy Semiconductor (shanghai) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Italy Semiconductor (shanghai) Co Ltd filed Critical Italy Semiconductor (shanghai) Co Ltd
Priority to CN201910079122.7A priority Critical patent/CN109599485A/zh
Publication of CN109599485A publication Critical patent/CN109599485A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

本发明提供了一种霍尔电流传感器的引线框架及传感器,所述引线框架的第一侧边设置有至少一个原边电流输入引线连接端,引线框架的第二侧边设置有至少一个副边信号引线连接端;引线框架上设置有一导线,导线与原边电流输入引线连接端相连接;引线框架上还设置有与副边信号引线连接端一一对应的信号处理引线,信号处理引线的第一端连接至所对应的副边信号引线连接端,信号处理引线的第二端向引线框架的第一侧边方向延伸,且信号处理引线的第二端设置有芯片连接部。本发明将原边电流输入引线连接端和副边信号引线连接端的爬电距离增大到引线框架的最大宽度,最大化霍尔电流传感器的爬电距离,提高隔离效果。

Description

霍尔电流传感器的引线框架及传感器
技术领域
本发明涉及霍尔电流传感器技术领域,具体涉及一种霍尔电流传感器的引线框架及传感器。
背景技术
霍尔电流传感器既可以检测直流电流值和交流电流值,也可以检测到瞬态电流峰值,因此不仅在传统电力电子、计算机、汽车等行业领域得到了广泛应用,在航空航天、船舶等国防工业领域也有大量应用。单片集成的霍尔元件通常基于硅材料。这样可以将放大器和信号处理电路集成在一起,兼具体积小,精度高,线性度好,可靠性高等优势,在电流检测应用中得到了快速发展。
霍尔电流传感器的原理为:当一根长导线通过电流时,导线的周围将会产生与导线中电流成正比关系的磁场。此时将霍尔元件安置在该磁场中,霍尔元件将产生与磁场大小成正比关系的输出电压,也就是说将产生与导线中电流成正比的输出电压,长导线一般采用如铜导线等金属导线。采用霍尔电流传感器相比于其他类型的电流传感器具有很明显的优势:由于霍尔电流传感器采用非接触式工作方式,因此可靠性更高、寿命更长;测量范围更大,可以测量从几A到几十KA的电流值范围;检测类型广,可以检测直流电流值、交流电流值和电流瞬态峰值等;动态性能好,响应时间快;工作频带更宽;过载能力更强;相位特性好;使用温度范围宽,可以在-40°到150℃的环境中正常使用。
集成的铜导线通常与霍尔元件及处理电路用绝缘材料分开,达到更好的隔离效果,使其能够应用在高压场合。安规中通常用爬电距离来衡量隔离效果的好坏。爬电距离是指沿绝缘表面测得的两个导电零部件或导电零部件与设备防护界面之间的最短路径。即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。爬的意思,可以看作一个蚂蚁从一个带电体走到另一个带电体的必须经过最短的路程,就是爬电距离。UL(Underwriter Laboratories Inc.,美国保险商试验所)、CSA(CanadianStandards Association,加拿大标准协会)和VDE(德国电子协会)安全标准强调了爬电距离的安全要求,这是为了防止器件间或器件和地之间打火从而威胁到人身安全。
在电气上,对最小爬电距离的要求,和两导电部件间的电压有关,且和绝缘材料的耐泄漏指数有关,并和电器所处环境的污染等级有关。对最小爬电距离做出限制,是为了防止在两导电体之间,通过绝缘材料表面可能出现的污染物出现爬电现象。具体来说就是在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象,此带电区(导体为圆形时,带电区为环形)的半径即爬电距离。爬电距离的大小和工作电压、绝缘材料等直接相关,同时注意不同的使用环境也会有所影响,如气压、污染等。爬电距离取决于工作电压的有效值,绝缘材料的CTI(Comparative Tracking Index,相对漏电指数)值对其影响较大。
增大爬电距离可以提高工作电压的有效值,对于单片霍尔电流传感器来说可以增强隔离性能。
发明内容
针对现有技术中的问题,本发明的目的在于提供一种霍尔电流传感器的引线框架及传感器,将原边电流输入引线连接端和副边信号引线连接端的爬电距离增大到引线框架的最大宽度,最大化霍尔电流传感器的爬电距离,提高隔离效果。
本发明实施例提供一种霍尔电流传感器的引线框架,所述引线框架包括相对设置的第一侧边和第二侧边,所述引线框架的第一侧边设置有至少一个原边电流输入引线连接端,所述引线框架的第二侧边设置有至少一个副边信号引线连接端;
所述引线框架上设置有一导线,所述导线与所述原边电流输入引线连接端相连接;所述引线框架上还设置有与所述副边信号引线连接端一一对应的信号处理引线,所述信号处理引线的第一端连接至所对应的副边信号引线连接端,所述信号处理引线的第二端向所述引线框架的第一侧边方向延伸,且所述信号处理引线的第二端设置有芯片连接部。
可选地,所述导线为U型导线,所述原边电流输入引线连接端包括电流正向输入端和电流负向输出端,所述导线的两端分别与所述电流正向输入端和所述电流负向输出端相连接。
可选地,所述导线的中部具有朝向第二侧边方向突出的突起部,所述突起部与所述导线的第一端之间具有第一拐角,所述突起部与所述导线的第二端之间具有第二拐角。
可选地,所述信号处理引线的芯片连接部分布于所述导线的突起部的两侧。
可选地,所述电流正向输入端包括第一连接端和第二连接端,所述电流负向输出端包括第三连接端和第四连接端,所述第一连接端、第二连接端、第三连接端和第四连接端依次均匀分布于所述第一侧边。
可选地,所述副边信号引线连接端包括第五连接端、第六连接端、第七连接端和第八连接端,所述第五连接端、第六连接端、第七连接端和第八连接端依次均匀分布于所述第二侧边。
可选地,所述第六连接端和第七连接端对应的信号处理引线从所述第二侧边向第一侧边方向延伸,所述第五连接端和第八连接端对应的信号处理引线从所述第二侧边向第一侧边方向延伸,且所述第五连接端和第八连接端对应的信号处理引线具有朝向所述导线的中部的拐角。
可选地,所述副边信号引线连接端包括参考地电压端、滤波端、输出电压端和芯片电源输入端。
可选地,所述引线框架还包括相对设置的第三侧边和第四侧边,所述第三侧边和所述第四侧边中至少有一侧边设置有相邻框架连接端,所述引线框架在与相邻的引线框架分离前,各个所述引线框架通过所述相邻框架连接端与相邻的引线框架相连接,将所述引线框架与相邻的引线框架分离后,所述相邻框架连接端悬空。
本发明实施例还提供一种霍尔电流传感器,所述传感器包括所述的引线框架,所述传感器还包括霍尔电流传感器芯片,所述霍尔电流传感器芯片与所述信号处理引线的芯片连接部电连接。
本发明所提供的霍尔电流传感器的引线框架及传感器具有如下优点:
本发明将原边电流输入引线连接端和副边信号引线连接端的爬电距离增大到引线框架的最大宽度,最大化霍尔电流传感器的爬电距离,提高隔离效果;通过引线框架的合理排布,加宽原边导线的宽度,降低导线的导通电阻,从而降低芯片的热损耗,拓宽电流测量范围;通过采用U型的导线,可以在导线的拐角处产生更大的磁场,提高传感器的集成度,减小传感器的整体体积。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显。
图1是本发明一实施例的霍尔电流传感器的引线框架的结构示意图;
图2是本发明一实施例中多个霍尔电流传感器的引线框架之间的连接方式的示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。
为了解决现有技术中的技术问题,本发明提供一种霍尔电流传感器的引线框架,所述引线框架包括相对设置的第一侧边和第二侧边。所述引线框架的第一侧边设置有至少一个原边电流输入引线连接端,所述引线框架的第二侧边设置有至少一个副边信号引线连接端。
所述引线框架上设置有一导线,所述导线作为原边导线,与所述原边电流输入引线连接端相连接;所述引线框架上还设置有与所述副边信号引线连接端一一对应的信号处理引线,所述信号处理引线的第一端连接至所对应的副边信号引线连接端,所述信号处理引线的第二端向所述引线框架的第一侧边方向延伸,且所述信号处理引线的第二端设置有芯片连接部。
本发明还提供一种霍尔电流传感器,包括所述引线框架,还包括霍尔电流传感器芯片,霍尔电流传感器芯片与所述信号处理引线的芯片连接部相连接。具体地,霍尔电流传感器芯片的倒装凸点通过所述芯片连接部和所述信号处理引线与所述副边信号引线连接端电连接。将霍尔电流传感器芯片与引线框架封装,即形成霍尔电流传感器。
引线框架一方面给霍尔电流传感器芯片提供机械支持,另一方面提供传感器芯片与外部电路之间的信号传递通路。引线框架中的导线还将参与形成闭环电流路径,为需要检测的外部电流提供闭环型的电流通路。传感器芯片上的霍尔传感器位于该电流路径的内部,形成特定的位置关系,以便于计算被检测电流值。引线框架可以采用单片的金属通过刻蚀等现有的方法形成。
该霍尔电流传感器在使用时,被测的电流与所述原边电流输入引线连接端相连接,在所述导线中输入电流,霍尔电流传感器芯片靠近导线设置,即设置于导线周围产生与导线中电流成正比关系的磁场中,芯片将产生与磁场大小成正比关系的输出电压,也就是说将产生与导线中电流成正比的输出电压,输出电压从所述副边信号引线连接端输出。输出电压准确反映了原边导线的电流值变化。
本发明通过将原边电流输入引线连接端和副边信号引线连接端分别设置在引线框架两个相对的侧边上,将原边电流输入引线连接端和副边信号引线连接端的爬电距离增大到引线框架的最大宽度,最大化霍尔电流传感器的爬电距离,提高隔离效果。
如图1所示,为本发明一实施例中的霍尔电流传感器的引线框架的结构示意图。在图1中的视角中,第一侧边即引线框架的下侧边,第二侧边即引线框架的上侧边。
所述原边电流输入引线连接端包括电流正向输入端和电流负向输出端,所述导线4的两端分别与所述电流正向输入端和电流负向输出端相连接。导线的宽度将影响导线的导通电阻,增大导线的宽度可以降低导线的导通电阻,在同等的热损耗情况下可以提高可检测电流的绝对值,即增大了电流的检测范围。从图1中可以看出,本发明通过引线框架的合理排布,加宽了原边导线的宽度,降低了导线的导通电阻,从而降低芯片的热损耗,拓宽电流测量范围。
在该实施例中,所述电流正向输入端包括第一连接端11和第二连接端12,所述电流负向输出端包括第三连接端13和第四连接端14,所述第一连接端11、第二连接端12、第三连接端13和第四连接端14依次均匀分布于所述引线框架的第一侧边。电流正向输入端和电流负向输出端与待测电路相连接,从而使得导线4参与外部待测电路形成闭环电流路径,为需要检测的外部电流提供闭环型的电流通路。
在该实施例中,所述导线为U型导线4,所述U型导线4的两端分别与所述电流正向输入端和所述电流负向输出端相连接。所述导线4的中部具有朝向第二侧边方向突出的突起部43,所述突起部43与所述导线4的第一端之间具有第一拐角41,所述突起部43与所述导线4的第二端之间具有第二拐角42。与直线型的铜导线相比,U型导线能够在拐角处产生大很多的磁场。该实施例通过将U型的导线集成在单片集成芯片中,将进一步提高集成度,减小体积,增强一致性和可靠性,从而降低应用难度,缩短用户的开发周期。
在该实施例中,所述副边信号引线连接端包括第五连接端15、第六连接端16、第七连接端17和第八连接端18,所述第五连接端15、第六连接端16、第七连接端17和第八连接端18依次均匀分布于所述第二侧边。且所述第五连接端15、第六连接端16、第七连接端17和第八连接端18分别连接至信号处理引线25、26、27、28的第一端。各个信号处理引线25、26、27、28的第二端设置有芯片连接部3,芯片连接部3分布于所述导线4的突起部43的两侧。在该实施例中,信号处理引线25、26的芯片连接部3设置于导线4的突起部43第一侧,信号处理引线27、28的芯片连接部3设置于导线4的突起部43的第二侧。各个芯片连接部3对应的位置即为对应放置霍尔电流传感器芯片的霍尔元件的区域5。
在该实施例中,所述第六连接端16和第七连接端17对应的信号处理引线26、27从所述第二侧边向第一侧边方向延伸。所述第五连接端15和第八连接端18由于分布在引线框架的第二侧边的两端,第五连接端15和第八连接端18对应的信号处理引线25、28从所述第二侧边向第一侧边方向延伸,且所述第五连接端15和第八连接端18对应的信号处理引线25、28具有朝向所述导线4的中部的拐角,以更靠近于导线4,即在图1的视角中,信号处理引线25有一个朝向右侧的拐角,信号处理引线28有一个朝向左侧的拐角。
在该实施例中,所述副边信号引线连接端包括参考地电压端、滤波端、输出电压端和芯片电源输入端。例如,第五连接端15为参考地电压端,第六连接端16为滤波端,外接滤波器,第七连接端17为输出电压端VOUT,输出霍尔电流传感器芯片的输出信号,第八连接端18为芯片电源输入端VCC,为霍尔电流传感器芯片提供电源支持。但本发明中各个连接端的功能不限于此,也可以为其他组合或其他功能。
在该实施例中,所述引线框架还包括相对设置的第三侧边和第四侧边,所述第三侧边和所述第四侧边中至少有一侧边设置有相邻框架连接端,所述引线框架在与相邻的引线框架分离前,各个所述引线框架通过所述相邻框架连接端与相邻的引线框架相连接。将所述引线框架与相邻的引线框架分离后,所述相邻框架连接端悬空。
如图2所示,为该实施例的多个引线框架之间的连接方式的示意图。在该实施例中,所述引线框架的第三侧边设置有第一相邻框架连接端191,第四侧边设置有第二相邻框架连接端192。相邻框架连接端也可以为引线框架提供在裁切前的支撑作用。按照裁切框6对引线框架进行裁切,即可以得到独立的单个引线框架。在霍尔电流传感器芯片倒装在引线框架时采用绝缘材料将U型导线4和另一侧的信号处理引线隔离。从最终裁切得到的引线框架可以看出,第一相邻框架连接端191和第二相邻框架连接端192悬空,不会影响霍尔电流传感器的爬电距离,U型导线和信号处理引线之间的爬电距离只取决于封装体的宽度(从第四连接端到第五连接端的距离),最大化绝缘隔离效果。
本发明所提供的霍尔电流传感器的引线框架及传感器具有如下优点:
本发明将原边电流输入引线连接端和副边信号引线连接端的爬电距离增大到引线框架的最大宽度,最大化霍尔电流传感器的爬电距离,提高隔离效果;通过引线框架的合理排布,加宽原边导线的宽度,降低导线的导通电阻,从而降低芯片的热损耗,拓宽电流测量范围;通过采用U型的导线,可以在导线的拐角处产生更大的磁场,提高传感器的集成度,减小传感器的整体体积。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种霍尔电流传感器的引线框架,其特征在于,所述引线框架包括相对设置的第一侧边和第二侧边,所述引线框架的第一侧边设置有至少一个原边电流输入引线连接端,所述引线框架的第二侧边设置有至少一个副边信号引线连接端;
所述引线框架上设置有一导线,所述导线与所述原边电流输入引线连接端相连接;所述引线框架上还设置有与所述副边信号引线连接端一一对应的信号处理引线,所述信号处理引线的第一端连接至所对应的副边信号引线连接端,所述信号处理引线的第二端向所述引线框架的第一侧边方向延伸,且所述信号处理引线的第二端设置有芯片连接部。
2.根据权利要求1所述的霍尔电流传感器的引线框架,其特征在于,所述导线为U型导线,所述原边电流输入引线连接端包括电流正向输入端和电流负向输出端,所述导线的两端分别与所述电流正向输入端和所述电流负向输出端相连接。
3.根据权利要求2所述的霍尔电流传感器的引线框架,其特征在于,所述导线的中部具有朝向第二侧边方向突出的突起部,所述突起部与所述导线的第一端之间具有第一拐角,所述突起部与所述导线的第二端之间具有第二拐角。
4.根据权利要求3所述的霍尔电流传感器的引线框架,其特征在于,所述信号处理引线的芯片连接部分布于所述导线的突起部的两侧。
5.根据权利要求2所述的霍尔电流传感器的引线框架,其特征在于,所述电流正向输入端包括第一连接端和第二连接端,所述电流负向输出端包括第三连接端和第四连接端,所述第一连接端、第二连接端、第三连接端和第四连接端依次均匀分布于所述第一侧边。
6.根据权利要求2所述的霍尔电流传感器的引线框架,其特征在于,所述副边信号引线连接端包括第五连接端、第六连接端、第七连接端和第八连接端,所述第五连接端、第六连接端、第七连接端和第八连接端依次均匀分布于所述第二侧边。
7.根据权利要求6所述的霍尔电流传感器的引线框架,其特征在于,所述第六连接端和第七连接端对应的信号处理引线从所述第二侧边向第一侧边方向延伸,所述第五连接端和第八连接端对应的信号处理引线从所述第二侧边向第一侧边方向延伸,且所述第五连接端和第八连接端对应的信号处理引线具有朝向所述导线的中部的拐角。
8.根据权利要求2所述的霍尔电流传感器的引线框架,其特征在于,所述副边信号引线连接端包括参考地电压端、滤波端、输出电压端和芯片电源输入端。
9.根据权利要求1所述的霍尔电流传感器的引线框架,其特征在于,所述引线框架还包括相对设置的第三侧边和第四侧边,所述第三侧边和所述第四侧边中至少有一侧边设置有相邻框架连接端,所述引线框架在与相邻的引线框架分离前,各个所述引线框架通过所述相邻框架连接端与相邻的引线框架相连接,将所述引线框架与相邻的引线框架分离后,所述相邻框架连接端悬空。
10.一种霍尔电流传感器,其特征在于,所述传感器包括权利要求1至9中任一项所述的引线框架,所述传感器还包括霍尔电流传感器芯片,所述霍尔电流传感器芯片与所述信号处理引线的芯片连接部电连接。
CN201910079122.7A 2019-01-28 2019-01-28 霍尔电流传感器的引线框架及传感器 Pending CN109599485A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910079122.7A CN109599485A (zh) 2019-01-28 2019-01-28 霍尔电流传感器的引线框架及传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910079122.7A CN109599485A (zh) 2019-01-28 2019-01-28 霍尔电流传感器的引线框架及传感器

Publications (1)

Publication Number Publication Date
CN109599485A true CN109599485A (zh) 2019-04-09

Family

ID=65966815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910079122.7A Pending CN109599485A (zh) 2019-01-28 2019-01-28 霍尔电流传感器的引线框架及传感器

Country Status (1)

Country Link
CN (1) CN109599485A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370572A (zh) * 2020-02-28 2020-07-03 浙江长兴电子厂有限公司 一种气密性电流传感器倒扣焊封装结构
CN113410202A (zh) * 2021-06-15 2021-09-17 江苏兴宙微电子有限公司 引线框架及半导体芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130020660A1 (en) * 2011-07-22 2013-01-24 Allegro Microsystems, Inc. Reinforced Isolation for Current Sensor with Magnetic Field Transducer
CN206312942U (zh) * 2016-12-22 2017-07-07 上海南麟电子股份有限公司 一种单芯片霍尔电流传感器
CN209119167U (zh) * 2019-01-28 2019-07-16 意瑞半导体(上海)有限公司 霍尔电流传感器的引线框架及传感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130020660A1 (en) * 2011-07-22 2013-01-24 Allegro Microsystems, Inc. Reinforced Isolation for Current Sensor with Magnetic Field Transducer
CN206312942U (zh) * 2016-12-22 2017-07-07 上海南麟电子股份有限公司 一种单芯片霍尔电流传感器
CN209119167U (zh) * 2019-01-28 2019-07-16 意瑞半导体(上海)有限公司 霍尔电流传感器的引线框架及传感器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370572A (zh) * 2020-02-28 2020-07-03 浙江长兴电子厂有限公司 一种气密性电流传感器倒扣焊封装结构
CN111370572B (zh) * 2020-02-28 2023-11-10 浙江东瓷科技有限公司 一种气密性电流传感器倒扣焊封装结构
CN113410202A (zh) * 2021-06-15 2021-09-17 江苏兴宙微电子有限公司 引线框架及半导体芯片

Similar Documents

Publication Publication Date Title
US8461824B2 (en) Current sensor
CN107579508B (zh) 一种电源保护装置以及使用所述装置的终端
CN109599485A (zh) 霍尔电流传感器的引线框架及传感器
US20160131682A1 (en) Current sensor arrangement
CN108063428B (zh) 一种电源保护装置以及使用所述装置的终端
CN105264389B (zh) 电流测量装置以及电流计算方法
US8228649B2 (en) Impedance-based current sensor
US9000761B2 (en) Hall-effect sensor isolator
CN106706999A (zh) 一种晶闸管接触器电流检测装置
CN105358992B (zh) 具有测量线圈的电流传感器布置
CN209119167U (zh) 霍尔电流传感器的引线框架及传感器
CN103592498B (zh) 电流检测电路
CN113917215A (zh) 一种电流传感器
CN1460182A (zh) 用于高电压的绝缘连接并具有电压和电流检测器的模块化系统
US20180275172A1 (en) Device for high/medium/low voltage current measurement
CN105359365B (zh) 用于高中压电力系统中的复杂、通用接地故障保护的方法和装置
KR101981640B1 (ko) 교류 전자파를 측정하는 전류센서와 이를 이용한 차단기
CN103901252B (zh) 10kv输电线路零序电流检测系统
CN106802386A (zh) 一种具有叠层母排的低感测试设备
WO2017213003A1 (ja) マグネトインピーダンスセンサ
CN114200262B (zh) 高压电缆肘形终端局部放电和暂稳态电压在线测量装置
CN209167415U (zh) 高精度大电流检测的分流器装置
US11092623B2 (en) Current sensor for measuring alternating electromagnetic wave and a current breaker using the same
CN210401499U (zh) 用于变压器的套管监测装置和变压器套管装置
CN112415251A (zh) 一种测量仪表用高动态范围交/直流电流的隔离测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination