CN109592975A - 基于钛酸钡发热材料一体成型电热陶瓷板的制备方法 - Google Patents

基于钛酸钡发热材料一体成型电热陶瓷板的制备方法 Download PDF

Info

Publication number
CN109592975A
CN109592975A CN201811385318.0A CN201811385318A CN109592975A CN 109592975 A CN109592975 A CN 109592975A CN 201811385318 A CN201811385318 A CN 201811385318A CN 109592975 A CN109592975 A CN 109592975A
Authority
CN
China
Prior art keywords
barium titanate
plate
preparation
heat
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811385318.0A
Other languages
English (en)
Inventor
董雄伟
陈悟
朱立成
唐彬
王训该
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Textile University
Original Assignee
Wuhan Textile University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Textile University filed Critical Wuhan Textile University
Priority to CN201811385318.0A priority Critical patent/CN109592975A/zh
Publication of CN109592975A publication Critical patent/CN109592975A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征是首先制备了掺有少量二氧化钛的钛酸钡板,以钛酸钡板为发热元件,采用一体压胚和烧结成型技术,制备了钛酸钡板发热智能电热陶瓷板。该电热陶瓷板由表面层、钛酸钡板发热层、微孔隔热基底层组成,其中,表面层含有碳化硅,其具有很好的导热和绝缘性能;钛酸钡板发热层含有导热性能优异的石墨,有利于热量传递;隔热基底层制得很多微孔和添加隔热性能好的微细二氧化硅气凝胶。本发明的电热陶瓷板制备方法简单,传热性能良好,具有很好的应用前景。

Description

基于钛酸钡发热材料一体成型电热陶瓷板的制备方法
技术领域
本发明涉及电热陶瓷板的制造方法,具体涉及基于钛酸钡发热材料一体成型电热陶瓷板的制备方法。
背景技术
目前,家庭采暖系统主要有:暖气片式水暖、空调或外置电热丝和地暖等。然而,它们存在一些不足的地方:暖气片式水暖影响房屋装修结构,具有安全隐患;空调能耗较高,易导致空调病;电热丝式取暖容易造成烫伤及火灾,安全隐患极为突出;地暖式采暖电热利用率不高,因此,寻求一种新型的供暖设备具有重要意义。
陶瓷地板是一种应用最广泛的地板之一,其具有很多优点,如:耐久、易打扫和易清洗等,陶瓷越来越多地被应用到建筑行业中,随着人们对生活质量需求的提高,陶瓷制品的新功能的开发与设计日益成为研究的焦点,特别是设计出具有保温放热的功能性陶瓷成为当前采暖供热领域的热点。
目前,市场上具有保温放热的陶瓷地板存在一些缺点,主要表现有:(1)电热陶瓷板多采用将发热体置于发热管内,将发热管嵌于瓷砖体内部,如:中国专利申请号201611002581.8公布了碳素纤维发热片瓷砖及其生产方法,该瓷砖包括墙砖本体、碳纤维发热片和发热管、聚氨酯泡沫层。(2)有的发热瓷砖采用将瓷砖板与发热层、保温层等通过粘结的方式结合,将发热体置于发热层内部凹槽,如:中国专利申请号201720123171.X公布了一种碳纤维发热瓷砖,其是将碳纤维发热丝置于发热层的凹槽内。这些将发热体置于发热管或置于发热层凹槽内的方式对于热的传递是不利的,因为这种排布方式导致在发热体的周围存有大量的空气,空气的传热效率非常差,从而,严重影响了传热的速率和质量,有待进一步改进。
在电热陶瓷板的制备中,发热材料(元件)的选择是关键,发热材料的优劣决定着电热陶瓷板的好坏。钛酸钡是一种强介电化合物材料,具有高介电常数和低介电损耗,是电子陶瓷中使用最广泛的材料之一,被誉为“电子陶瓷工业的支柱”。钛酸钡作为发热元件在陶瓷板领域的研究鲜有报道,其开发和应用具有广阔的前景。
发明内容
本发明的目的是克服以往技术的不足,提供基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,所述的陶瓷板由表面层S1、钛酸钡板发热层S2、微孔隔热基底层S3组成,如附图1所示。钛酸钡是一种重要的陶瓷电热材料,本发明在钛酸钡中掺入少量二氧化钛,并制备为钛酸钡板,将其用于作为电热陶瓷板的发热元件,拓宽了钛酸钡的应用领域,具有重要意义。本发明制备的智能电热陶瓷板采用一体压胚和烧结成型技术,将钛酸钡板嵌在陶瓷里面,实现钛酸钡板与陶瓷无缝接触,钛酸钡板作为发热元件制备的电热陶瓷板使用方便,钛酸钡板传热效率高,原材料来源广泛,成本低廉。
本发明所述的基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征在于,所述方法包含如下步骤:
步骤一、微孔隔热基底层S3的制备:通过掺加隔热材料和发泡剂工艺配置的微孔隔热基底层陶泥(粉),然后平铺于胚体模具底层,其厚度为胚体模具总厚度的0.4~0.6,优选的,微孔隔热基底层陶泥(粉)料主要成分及含量为:50~70%的SiO2,5~10%的TiO2,10~15%的微细二氧化硅气凝胶,5~10%的碳化钙,5~10%的氢氧化钙,3~5%的双氧水;
步骤二、钛酸钡板发热层S2的制备:将钛酸钡板直接铺设在石棉微孔隔热基底层陶泥(粉)S3上,并用胚体粉料均匀覆盖,其施料厚度为胚体模具总厚度的0.4~0.6,平整后压胚;优选的,钛酸钡板发热层S2陶泥(粉)料主要成分及含量为:40~50%的SiO2,30~40%的Al2O3,10~15%的石墨,1~2%的Fe2O3,2~5%的TiO2,1~2%的CaO及1~2%的MgO;
步骤三、铺设方式与结构设计:钛酸钡板的铺设方式如附图2所示,把钛酸钡板平铺在微孔隔热基底层S3平面上;钛酸钡板电热层中的温度传感器预留空腔及导线槽规格及设计如图3所示,针孔状温度传感器置于空腔内部,钛酸钡板的两端预埋至电极端子孔位置,并由外接铜丝导线沿导线槽连接至智能数据控制装置;
步骤四、压胚与烧结成型:分层布料完成后,在模具中进行压胚或定型,其中粉料胚体压胚条件为压强不低于30MPa,压胚或定型完成后出模得半成品,干燥后放入窑炉烧结得到成品,其烧结温度为1000~1400℃,烧结时间为1~3h;
步骤五、表面层S1的制备:称取适量陶瓷釉料的原料,其组成为:20~22%的钾长石,3~5%的烧滑石,6~8%的方解石,6~8%的球土,20~22%的烧高岭土,24~26%的熔块,0.8~1.2%的烧氧化锌,0.8~1.2%的烧氧化铝,10~15%的碳化硅,将称量好的陶瓷釉料原料放入到球磨机中进行球磨,球磨时间1~3h,然后加入占釉料总质量2~4%的葡萄糖,再次球磨1~3h,得到的釉浆施加在步骤四制备的陶瓷坯体上,经干燥后在1000~1400℃下烧结获得陶瓷板,优选地,烧成制度为常温~850℃,升温时长为10min,850℃~1100℃,升温时长为7min,1100℃保温10min,最后冷却15min;
上述的基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征在于,步骤二中所述钛酸钡板的制备方法为:
称取适量的钛酸钡和二氧化钛粉体,放入研磨机中研磨1~3h,优选地,钛酸钡和二氧化钛的用量摩尔比为1∶0.1~0.2;然后,在常压下将混合物放入马弗炉中脱碳,脱碳时间为5~7h,脱碳温度为1100~1200℃,脱碳结束后自然冷却;混合料取出,加入粘结剂聚乙烯醇,均匀混合后将其注入模具中,对模具施加200~400MPa的压力进行挤压,得到3mm(厚)*40mm(长)*20mm(宽)的生料板;生料板在1300~1400℃烧结3~4h,自然冷却即制得钛酸钡板。
本发明具有如下显著特点:
(1)本发明通过一体压胚和烧结成型技术,实现电热陶瓷板的发热元件与陶瓷之间无缝衔接,实现升温迅速,效率高,具有优良的电--热转换性能。
(2)本发明制备的钛酸钡板基电热陶瓷板在通电30~45秒之后表面温度可以达到52~53℃,在持续通电80~100秒后,样品的表面温度达到了84~86℃,而2~3分钟后样品的表面温度达到了122~124℃。
(3)本发明在钛酸钡中掺入少量二氧化钛,并制备为钛酸钡板,将其用于作为电热陶瓷板的发热元件,拓宽了钛酸钡的应用领域,具有重要意义。对比实施例表明:采用钛酸钡板作为发热元件,相比较普通的碳纤维,钛酸钡板在电热陶瓷板中的传热效率更高。
(4)本发明制备的电热陶瓷板的隔热基底层含有很多微孔和隔热材料微细二氧化硅气凝胶,隔热效果好;钛酸钡板发热层含有导热性能优异的石墨,有利于热量向上传递;表面层含有碳化硅,其具有很好的导热和绝缘性能。通过在不同层内添加不同的添加剂,实现电热陶瓷板具有优异的传热性能,热损失小;
(5)本发明采用了分层布料,一次压胚、一次性烧结工艺,整个制造流程工艺简单且一体完成,易于产业化生产,而且安装铺设简单,便于市场普及。
附图说明
图1本发明电热陶瓷板纵向剖面结构示意图(1.温度传感器空腔;2.钛酸钡板;S1.表面层;S2.钛酸钡板发热层;S3.微孔隔热基底层);
图2本发明电热陶瓷板内部钛酸钡板的平面排布示意图(1.电极端子;2.钛酸钡板);
图3本发明电热陶瓷板的温度传感器孔腔、导线槽和电极端子规格及结构示意图(1.导线槽;2.电极端子;3.温度传感器孔腔;S1.表面层;S3.微孔隔热基底层);
图4本发明电热陶瓷板内部碳纤维的平面排布示意图(1.电极端子;2.碳纤维)。
具体实施方式
以下所述实施例详细说明了本发明。
实施例1
在本实施例中,基于钛酸钡发热材料一体成型电热陶瓷板采用如下方法制备而成,包括如下步骤:
步骤一、微孔隔热基底层S3的制备:通过掺加隔热材料和发泡剂工艺配置的微孔隔热基底层陶泥(粉),然后平铺于胚体模具底层,其厚度为胚体模具总厚度的0.5,优选的,微孔隔热基底层陶泥(粉)料主要成分及含量为:60%的SiO2,8%的TiO2,12%的微细二氧化硅气凝胶,8%的碳化钙,8%的氢氧化钙,4%的双氧水;
步骤二、钛酸钡板发热层S2的制备:将钛酸钡板直接铺设在石棉微孔隔热基底层陶泥(粉)S3上,并用胚体粉料均匀覆盖,其施料厚度为胚体模具总厚度的0.5,平整后压胚;优选的,钛酸钡板发热层S2陶泥(粉)料主要成分及含量为:45%的SiO2,35%的Al2O3,12%的石墨,1.5%的Fe2O3,3%的TiO2,2%的CaO及1.5%的MgO;
步骤三、铺设方式与结构设计:钛酸钡板的铺设方式如附图2所示,把钛酸钡板平铺在微孔隔热基底层S3平面上;钛酸钡板电热层中的温度传感器预留空腔及导线槽规格及设计如图3所示,针孔状温度传感器置于空腔内部,钛酸钡板的两端预埋至电极端子孔位置,并由外接铜丝导线沿导线槽连接至智能数据控制装置;
步骤四、压胚与烧结成型:分层布料完成后,在模具中进行压胚或定型,其中粉料胚体压胚条件为压强为40MPa,压胚或定型完成后出模得半成品,干燥后放入窑炉烧结得到成品,其烧结温度为1100~1300℃,烧结时间为2h;
步骤五、表面层S1的制备:称取适量陶瓷釉料的原料,其组成为:21%的钾长石,4%的烧滑石,6%的方解石,6%的球土,21%的烧高岭土,25%的熔块,1%的烧氧化锌,1%的烧氧化铝,15%的碳化硅,将称量好的陶瓷釉料原料放入到球磨机中进行球磨,球磨时间2h,然后加入占釉料总质量2%的葡萄糖,再次球磨1h,得到的釉浆施加在步骤四制备的陶瓷坯体上,经干燥后在1000~1400℃下烧结获得陶瓷板,优选地,烧成制度为常温~850℃,升温时长为10min,850℃~1100℃,升温时长为7min,1100℃保温10min,最后冷却15min,制得电热陶瓷板a;
上述的基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征在于,步骤二中所述钛酸钡板的制备方法为:
称取适量的钛酸钡和二氧化钛粉体,放入研磨机中研磨2h,优选地,钛酸钡和二氧化钛的用量摩尔比为1∶0.1;然后,在常压下将混合物放入马弗炉中脱碳,脱碳时间为6h,脱碳温度为1100℃,脱碳结束后自然冷却;混合料取出,加入粘结剂聚乙烯醇,均匀混合后将其注入模具中,对模具施加300MPa的压力进行挤压,得到3mm(厚)*40mm(长)*20mm(宽)的生料板;生料板在1300~1400℃烧结3h,自然冷却即制得钛酸钡板。
实施例2
在本实施例中,基于钛酸钡发热材料一体成型电热陶瓷板采用如下方法制备而成,包括如下步骤:
步骤一、微孔隔热基底层S3的制备:通过掺加隔热材料和发泡剂工艺配置的微孔隔热基底层陶泥(粉),然后平铺于胚体模具底层,其厚度为胚体模具总厚度的0.4,优选的,微孔隔热基底层陶泥(粉)料主要成分及含量为:70%的SiO2,5%的TiO2,10%的微细二氧化硅气凝胶,5%的碳化钙,6%的氢氧化钙,4%的双氧水;
步骤二、钛酸钡板发热层S2的制备:将钛酸钡板直接铺设在石棉微孔隔热基底层陶泥(粉)S3上,并用胚体粉料均匀覆盖,其施料厚度为胚体模具总厚度的0.6,平整后压胚;优选的,钛酸钡板发热层S2陶泥(粉)料主要成分及含量为:45%的SiO2,35%的Al2O3,12%的石墨,2%的Fe2O3,2%的TiO2,2%的CaO及2%的MgO;
步骤三、铺设方式与结构设计:钛酸钡板的铺设方式如附图2所示,把钛酸钡板平铺在微孔隔热基底层S3平面上;钛酸钡板电热层中的温度传感器预留空腔及导线槽规格及设计如图3所示,针孔状温度传感器置于空腔内部,钛酸钡板的两端预埋至电极端子孔位置,并由外接铜丝导线沿导线槽连接至智能数据控制装置;
步骤四、压胚与烧结成型:分层布料完成后,在模具中进行压胚或定型,其中粉料胚体压胚条件为压强为50MPa,压胚或定型完成后出模得半成品,干燥后放入窑炉烧结得到成品,其烧结温度为1200~1300℃,烧结时间为3h;
步骤五、表面层S1的制备:称取适量陶瓷釉料的原料,其组成为:20%的钾长石,3%的烧滑石,8%的方解石,8%的球土,20%的烧高岭土,26%的熔块,1.2%的烧氧化锌,0.8%的烧氧化铝,13%的碳化硅,将称量好的陶瓷釉料原料放入到球磨机中进行球磨,球磨时间1h,然后加入占釉料总质量4%的葡萄糖,再次球磨1h,得到的釉浆施加在步骤四制备的陶瓷坯体上,经干燥后在1000~1400℃下烧结获得陶瓷板,优选地,烧成制度为常温~850℃,升温时长为10min,850℃~1100℃,升温时长为7min,1100℃保温10min,最后冷却15min,制得电热陶瓷板b;
上述的基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征在于,步骤二中所述钛酸钡板的制备方法为:
称取适量的钛酸钡和二氧化钛粉体,放入研磨机中研磨1h,优选地,钛酸钡和二氧化钛的用量摩尔比为1∶0.15;然后,在常压下将混合物放入马弗炉中脱碳,脱碳时间为5h,脱碳温度为1150℃,脱碳结束后自然冷却;混合料取出,加入粘结剂聚乙烯醇,均匀混合后将其注入模具中,对模具施加200MPa的压力进行挤压,得到3mm(厚)*40mm(长)*20mm(宽)的生料板;生料板在1300~1400℃烧结3h,自然冷却即制得钛酸钡板。
实施例3
在本实施例中,基于钛酸钡发热材料一体成型电热陶瓷板采用如下方法制备而成,包括如下步骤:
步骤一、微孔隔热基底层S3的制备:通过掺加隔热材料和发泡剂工艺配置的微孔隔热基底层陶泥(粉),然后平铺于胚体模具底层,其厚度为胚体模具总厚度的0.6,优选的,微孔隔热基底层陶泥(粉)料主要成分及含量为:50%的SiO2,10%的TiO2,15%的微细二氧化硅气凝胶,10%的碳化钙,10%的氢氧化钙,5%的双氧水;
步骤二、钛酸钡板发热层S2的制备:将钛酸钡板直接铺设在石棉微孔隔热基底层陶泥(粉)S3上,并用胚体粉料均匀覆盖,其施料厚度为胚体模具总厚度的0.4,平整后压胚;优选的,钛酸钡板发热层S2陶泥(粉)料主要成分及含量为:40%的SiO2,40%的Al2O3,10%的石墨,1%的Fe2O3,5%的TiO2,2%的CaO及2%的MgO;
步骤三、铺设方式与结构设计:钛酸钡板的铺设方式如附图2所示,把钛酸钡板平铺在微孔隔热基底层S3平面上;钛酸钡板电热层中的温度传感器预留空腔及导线槽规格及设计如图3所示,针孔状温度传感器置于空腔内部,钛酸钡板的两端预埋至电极端子孔位置,并由外接铜丝导线沿导线槽连接至智能数据控制装置;
步骤四、压胚与烧结成型:分层布料完成后,在模具中进行压胚或定型,其中粉料胚体压胚条件为压强为45MPa,压胚或定型完成后出模得半成品,干燥后放入窑炉烧结得到成品,其烧结温度为1000~1300℃,烧结时间为2h;
步骤五、表面层S1的制备:称取适量陶瓷釉料的原料,其组成为:22%的钾长石,3%的烧滑石,6%的方解石,8%的球土,22%的烧高岭土,24%的熔块,1.2%的烧氧化锌,0.8%的烧氧化铝,13%的碳化硅,将称量好的陶瓷釉料原料放入到球磨机中进行球磨,球磨时间2h,然后加入占釉料总质量3%的葡萄糖,再次球磨1h,得到的釉浆施加在步骤四制备的陶瓷坯体上,经干燥后在1000~1400℃下烧结获得陶瓷板,优选地,烧成制度为常温~850℃,升温时长为10min,850℃~1100℃,升温时长为7min,1100℃保温10min,最后冷却15min,制得电热陶瓷板c。
上述的基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征在于,步骤二中所述钛酸钡板的制备方法为:
称取适量的钛酸钡和二氧化钛粉体,放入研磨机中研磨3h,优选地,钛酸钡和二氧化钛的用量摩尔比为1∶0.2;然后,在常压下将混合物放入马弗炉中脱碳,脱碳时间为7h,脱碳温度为1200℃,脱碳结束后自然冷却;混合料取出,加入粘结剂聚乙烯醇,均匀混合后将其注入模具中,对模具施加400MPa的压力进行挤压,得到3mm(厚)*40mm(长)*20mm(宽)的生料板;生料板在1300~1400℃烧结4h,自然冷却即制得钛酸钡板。
实施例4
本实施例为对比实施例,采用市场采购的碳纤维替代钛酸钡板作为发热元件,碳纤维的用量与钛酸钡板相同,采用实施例3的方法制备电热陶瓷板,具体步骤如下:
步骤一、微孔隔热基底层S3的制备:通过掺加隔热材料和发泡剂工艺配置的微孔隔热基底层陶泥(粉),然后平铺于胚体模具底层,其厚度为胚体模具总厚度的0.6,优选的,微孔隔热基底层陶泥(粉)料主要成分及含量为:50%的SiO2,10%的TiO2,15%的微细二氧化硅气凝胶,10%的碳化钙,10%的氢氧化钙,5%的双氧水;
步骤二、钛酸钡板发热层S2的制备:将钛酸钡板直接铺设在石棉微孔隔热基底层陶泥(粉)S3上,并用胚体粉料均匀覆盖,其施料厚度为胚体模具总厚度的0.4,平整后压胚;优选的,钛酸钡板发热层S2陶泥(粉)料主要成分及含量为:40%的SiO2,40%的Al2O3,10%的石墨,1%的Fe2O3,5%的TiO2,2%的CaO及2%的MgO;
步骤三、铺设方式与结构设计:碳纤维的铺设方式如附图4所示,把碳纤维以环状平铺在微孔隔热基底层S3平面上;碳纤维电热层中的温度传感器预留空腔及导线槽规格及设计如图3所示,针孔状温度传感器置于空腔内部,碳丝束电热线的两端预埋至电极端子孔位置,并由外接铜丝导线沿导线槽连接至智能数据控制装置;
步骤四、压胚与烧结成型:分层布料完成后,在模具中进行压胚或定型,其中粉料胚体压胚条件为压强为45MPa,压胚或定型完成后出模得半成品,干燥后放入窑炉烧结得到成品,其烧结温度为1000~1300℃,烧结时间为2h;
步骤五、表面层S1的制备:称取适量陶瓷釉料的原料,其组成为:22%的钾长石,3%的烧滑石,6%的方解石,8%的球土,22%的烧高岭土,24%的熔块,1.2%的烧氧化锌,0.8%的烧氧化铝,13%的碳化硅,将称量好的陶瓷釉料原料放入到球磨机中进行球磨,球磨时间2h,然后加入占釉料总质量3%的葡萄糖,再次球磨1h,得到的釉浆施加在步骤四制备的陶瓷坯体上,经干燥后在1000~1400℃下烧结获得陶瓷板,优选地,烧成制度为常温~850℃,升温时长为10min,850℃~1100℃,升温时长为7min,1100℃保温10min,最后冷却15min,制得电热陶瓷板d。
性能评价实施例:
发热性能参数检测:根据预先设计的胚体模具,实施例1~4制得4种规格的陶瓷板小样品,分别为电热陶瓷板a、b、c和d,其厚度为8~10mm,面积为50mm*40mm。经检测,烧结成陶瓷板后碳丝发热导线的电阻为5.0~40.0Ω之间,复合实验预期。
测试电热陶瓷板a、b、c和d的发热性能。使用FLIR one红外相机与稳压电源对所制得的材料电热转换性能进行了表征。将烧制形成的陶瓷板碳丝束两端接上7.5~12v的恒定电源(电流0.5~1.5A),并使用红外热成像相机对材料表面的温度进行实时测量,测试结果如表1所示:
表1实施例1~4制备的电热陶瓷板a、b、c和d在不同的通电时间的表面温度
通电时间 电热陶瓷板a 电热陶瓷板b 电热陶瓷板c 电热陶瓷板d
30~45秒 52.6℃ 53.5℃ 53.7℃ 42.7℃
80~100秒 86.5℃ 84.5℃ 85.6℃ 71.5℃
2~3分钟 122.5℃ 124.9℃ 124.6℃ 93.7℃
由表1可知,陶瓷板的表面温度随着通电时间的增加而增加,其中,电热陶瓷板a在通电30~45秒之后表面温度可以达到52.6℃,在持续通电80~100秒后,样品的表面温度达到了86.5℃,而2~3分钟后样品的表面温度达到了122.5℃。电热陶瓷板b和电热陶瓷板c在相同的通电时间时,其表面温度与电热陶瓷板a的表面温度十分接近。电热陶瓷板d的表面温度在相同的通电时间时明显低于电热陶瓷板a、b和c,这表明,本发明制备的电热陶瓷板的钛酸钡板的发热与传热效率高于的碳纤维。

Claims (8)

1.基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征在于,所述方法包含如下步骤:
步骤一、微孔隔热基底层的制备:通过掺加隔热材料和发泡剂工艺配置的微孔隔热基底层陶泥(粉),然后平铺于胚体模具底层;
步骤二、发热层的制备:将钛酸钡板直接铺设在石棉微孔隔热基底层陶泥(粉)上,并用胚体粉料均匀覆盖,其施料厚度为胚体模具总厚度的0.4~0.6,平整后压胚;
步骤二所述钛酸钡板的制备方法为:
称取适量的钛酸钡和二氧化钛粉体,放入研磨机中研磨1~3h;然后,在常压下将混合物放入马弗炉中脱碳,脱碳时间为5~7h,脱碳温度为1100~1200℃,脱碳结束后自然冷却;混合料取出,加入粘结剂聚乙烯醇,均匀混合后将其注入模具中,对模具施加200~400MPa的压力进行挤压,得到5mm(厚)*40mm(长)*20mm(宽)的生料板;生料板在1300~1400℃烧结3~4h,自然冷却即制得钛酸钡板;
步骤三、铺设方式与结构设计:把钛酸钡板平铺在微孔隔热基底层平面上;钛酸钡板电热层中的温度传感器预留空腔及导线槽规格及设计,针孔状温度传感器置于空腔内部,钛酸钡板的两端预埋至电极端子孔位置,并由外接铜丝导线沿导线槽连接至智能数据控制装置;
步骤四、压胚与烧结成型:分层布料完成后,在模具中进行压胚或定型,其中粉料胚体压胚条件为压强不低于30MPa,压胚或定型完成后出模得半成品,干燥后放入窑炉烧结得到成品;
步骤五、表面层的制备:称取适量陶瓷釉料的原料,其组成为:20~22%的钾长石,3~5%的烧滑石,6~8%的方解石,6~8%的球土,20~22%的烧高岭土,24~26%的熔块,0.8~1.2%的烧氧化锌,0.8~1.2%的烧氧化铝,10~15%的碳化硅,将称量好的陶瓷釉料原料放入到球磨机中进行球磨,球磨时间1~3h,然后加入占釉料总质量2~4%的葡萄糖,再次球磨1~3h,得到的釉浆施加在步骤四制备的陶瓷坯体上,经干燥后在1000~1400℃下烧结获得陶瓷板,优选地,烧成制度为常温~850℃,升温时长为10min,850℃~1100℃,升温时长为7min,1100℃保温10min,最后冷却15min,即可制得电热陶瓷板。
2.根据权利要求1所述的基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征在于:步骤一中所述微孔隔热基底层厚度为胚体模具总厚度的0.4~0.6倍。
3.根据权利要求1所述的基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征在于:步骤一中所述微孔隔热基底层陶泥(粉)料主要成分及含量为:50~70%的SiO2,5~10%的TiO2,10~15%的微细二氧化硅气凝胶,5~10%的碳化钙,5~10%的氢氧化钙,3~5%的双氧水。
4.根据权利要求1所述的基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征在于:步骤二中所述发热层的发热元件为钛酸钡板。
5.根据权利要求1所述的基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征在于:步骤二中所述钛酸钡板发热层陶泥(粉)料主要成分及含量为:40~50%的SiO2,30~40%的Al2O3,10~15%的石墨,1~2%的Fe2O3,2~5%的TiO2,1~2%的CaO及1~2%的MgO。
6.根据权利要求1所述的基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征在于:步骤二中所述钛酸钡和二氧化钛的用量摩尔比为1∶0.1~0.2。
7.根据权利要求1所述的基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征在于:步骤四中所述窑炉烧结温度为1000~1400℃,窑炉烧结时间为1~3h。
8.根据权利要求1所述的基于钛酸钡发热材料一体成型电热陶瓷板的制备方法,其特征在于:步骤五中所述陶瓷釉料其组成为:20~22%的钾长石,3~5%的烧滑石,6~8%的方解石,6~8%的球土,20~22%的烧高岭土,24~26%的熔块,0.8~1.2%的烧氧化锌,0.8~1.2%的烧氧化铝,10~15%的碳化硅。
CN201811385318.0A 2018-11-20 2018-11-20 基于钛酸钡发热材料一体成型电热陶瓷板的制备方法 Pending CN109592975A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811385318.0A CN109592975A (zh) 2018-11-20 2018-11-20 基于钛酸钡发热材料一体成型电热陶瓷板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811385318.0A CN109592975A (zh) 2018-11-20 2018-11-20 基于钛酸钡发热材料一体成型电热陶瓷板的制备方法

Publications (1)

Publication Number Publication Date
CN109592975A true CN109592975A (zh) 2019-04-09

Family

ID=65960209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811385318.0A Pending CN109592975A (zh) 2018-11-20 2018-11-20 基于钛酸钡发热材料一体成型电热陶瓷板的制备方法

Country Status (1)

Country Link
CN (1) CN109592975A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556835A (zh) * 2021-07-26 2021-10-26 福建久信科技有限公司 一种石墨烯发热陶瓷板制备工艺及石墨烯发热陶瓷板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587402A (en) * 1982-06-24 1986-05-06 Matsushita Electric Industrial Co., Ltd. Planar heating unit
CN1109670A (zh) * 1993-06-08 1995-10-04 株式会社大泉制作所 无变压器发热体
CN1807350A (zh) * 2006-02-16 2006-07-26 郑州大学 一种由煤矸石制备Al2O3/SiC复相粉体的方法及其产物
CN101321416A (zh) * 2007-06-07 2008-12-10 孙立蓉 大规格超薄电热瓷板及其制造方法
CN107857579A (zh) * 2017-11-21 2018-03-30 张瀚石 一种陶瓷及陶瓷制品
CN108164141A (zh) * 2018-01-03 2018-06-15 广东净雨环保科技有限公司 一种类石墨烯增强建筑陶瓷釉面的制备方法
CN108516809A (zh) * 2018-04-16 2018-09-11 广东金意陶陶瓷集团有限公司 一种节能电热瓷砖及制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587402A (en) * 1982-06-24 1986-05-06 Matsushita Electric Industrial Co., Ltd. Planar heating unit
CN1109670A (zh) * 1993-06-08 1995-10-04 株式会社大泉制作所 无变压器发热体
CN1807350A (zh) * 2006-02-16 2006-07-26 郑州大学 一种由煤矸石制备Al2O3/SiC复相粉体的方法及其产物
CN101321416A (zh) * 2007-06-07 2008-12-10 孙立蓉 大规格超薄电热瓷板及其制造方法
CN107857579A (zh) * 2017-11-21 2018-03-30 张瀚石 一种陶瓷及陶瓷制品
CN108164141A (zh) * 2018-01-03 2018-06-15 广东净雨环保科技有限公司 一种类石墨烯增强建筑陶瓷釉面的制备方法
CN108516809A (zh) * 2018-04-16 2018-09-11 广东金意陶陶瓷集团有限公司 一种节能电热瓷砖及制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈福江等: "《电热元件与器具技术应用及实践》", 30 September 2017, 东北大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556835A (zh) * 2021-07-26 2021-10-26 福建久信科技有限公司 一种石墨烯发热陶瓷板制备工艺及石墨烯发热陶瓷板
CN113556835B (zh) * 2021-07-26 2023-11-24 福建久信科技有限公司 一种石墨烯发热陶瓷板制备工艺及石墨烯发热陶瓷板

Similar Documents

Publication Publication Date Title
CN109400135A (zh) 一体压胚与烧结成型高导热碳晶智能电热陶瓷板的制备方法
CN109053136A (zh) 一种电热保温装饰一体化墙地砖及其制备方法
CN101148939B (zh) 一种电热地板
CN109516823A (zh) 一体压胚与烧结成型碳纤维/铜丝复合智能电热陶瓷板的制备方法
CN104341156A (zh) 一种碳化硅基复合材料吸收微波发热体组合物及其制备方法
CN109454751A (zh) 一体压胚、整体烧结成型复合碳丝电热功能陶板及其制造方法
CN109516824A (zh) 一体烧结成型棉纤维基碳丝电热陶瓷的制备方法
CN101188156A (zh) 高居里温度BaTiO3基正温度系数热敏电阻及制备方法
CN109400134A (zh) 高导热电绝缘一体成型镀银碳纤维电热陶瓷板的制备方法
CN206917185U (zh) 具有高效导热功能的地暖砖
CN108033768A (zh) 具有耐高温、防爆釉面的白瓷壶及其制备方法
CN109717738A (zh) 烹饪用非金属加热装置
CN110128123A (zh) 一种高性能低膨胀陶瓷产品及其制备方法
CN112341148A (zh) 一种提高陶瓷砖导热系数的陶瓷配方及制造方法
CN106966733A (zh) 一种微波碳化硅陶瓷发热体及其制备方法
CN105130500A (zh) 一种刚性隔热瓦涂层成型过程中的变形控制方法
CN109592975A (zh) 基于钛酸钡发热材料一体成型电热陶瓷板的制备方法
CN102838369B (zh) 微晶陶瓷复合电热材料及其制备远红外陶瓷电热板的方法
CN105517212A (zh) 一种埋入式加热板及其制备方法
CN101154485A (zh) 正温度系数热敏电阻的微波烧结方法及专用设备
CN109320274A (zh) 一种改进的氧化锆纤维板及其制备方法
CN103716923B (zh) 一种陶瓷电热发热载体及其制备方法
CN103024954B (zh) 一种氮化硅复合陶瓷发热体材料及其制备方法
CN202218430U (zh) 基于ir-led陶瓷基板的稀土厚膜电路电热元件
CN204085178U (zh) 陶瓷纤维模块拼装式热压烧结炉炉体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190409