CN109592673B - 一种氧化石墨烯负载银钯复合材料的制备方法 - Google Patents

一种氧化石墨烯负载银钯复合材料的制备方法 Download PDF

Info

Publication number
CN109592673B
CN109592673B CN201811315746.6A CN201811315746A CN109592673B CN 109592673 B CN109592673 B CN 109592673B CN 201811315746 A CN201811315746 A CN 201811315746A CN 109592673 B CN109592673 B CN 109592673B
Authority
CN
China
Prior art keywords
graphene oxide
composite material
preparation
palladium
water bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811315746.6A
Other languages
English (en)
Other versions
CN109592673A (zh
Inventor
张超
王匀
绕鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhenjiang Suhai Electric Power Technology Co ltd
Original Assignee
Jiangsu Urban and Rural Construction College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Urban and Rural Construction College filed Critical Jiangsu Urban and Rural Construction College
Priority to CN201811315746.6A priority Critical patent/CN109592673B/zh
Publication of CN109592673A publication Critical patent/CN109592673A/zh
Application granted granted Critical
Publication of CN109592673B publication Critical patent/CN109592673B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及石墨烯复合材料技术领域,尤其是一种氧化石墨烯负载银钯复合材料的制备方法,具体包括:氧化石墨烯(GO),四氯合金酸(HAuCl4)和硝酸钯(PbNO3)按一定顺序和比例溶于溶剂中(氧化石墨烯与四氯合金酸、硝酸钯的质量比为1:1:1‑8:4:1),将混合溶液置于水浴箱中进行水浴处理,再将水浴处理后的反应产物进行离心、清洗、烘干。本发明的有益效果是采用了一种环保、制备工艺简单、成本低且容易进行商业化生产的方法制备了一种氧化石墨烯负载银钯复合材料。

Description

一种氧化石墨烯负载银钯复合材料的制备方法
技术领域
本发明涉及石墨烯复合材料技术领域,具体领域为一种氧化石墨烯负载银钯复合材料的制备方法。
背景技术
石墨烯是一种由碳原子组成的二维碳纳米材料,具有优异的物理学特性,在材料科学、信息科学、能源、生物医药等方面具有广泛的应用前景,被认为是一种未来革命性的材料。石墨烯也是已知强度最高的材料之一,而且还具有很好的韧性,因此是制备高强新材料的首选。常见的石墨烯复合材料有:石墨烯-纳米粒子复合材料、石墨烯聚合物复合材料、石墨烯-碳基材料复合材料和石墨烯-金属基复合材料等。石墨烯具有超高的导热率,添加在金属基体中,在能够提高复合材料力学性能同时,提高了金属基复合材料的导热率。
氧化石墨烯是石墨烯的衍生物,它具有制备简单、易得,且具有良好的亲水特性,在水溶液中不容易发生团聚。
但目前对于氧化石墨烯负载金属材料的制备方法比较复杂,且能耗较高,这和绿色能源的发展理念背道而驰。基于此,开发一种制备方法简单、绿色环保的氧化石墨烯负载银钯复合材料的制备方法具有较大意义。
发明内容
本发明的目的在于提供一种氧化石墨烯负载银钯复合材料的制备方法,以解决现有技术的制备方法复杂、能耗较高等问题。
为实现上述目的,本发明提供如下技术方案:
一种氧化石墨烯负载银钯复合材料的制备方法,包括以下步骤:
(1)按比例称取氧化石墨烯rGO、四氯合金酸HAuCl4与硝酸钯PbNO3,按一定顺序溶于溶剂中,再将混合溶液转移至专用烧杯中,置于超声仪器中进行超声处理,超声功率为50Hz,超声时间为15min-25min,即制得混合溶液;
(2)将步骤(1)所得混合溶液转移至密封烧杯中,再将烧杯置于水浴箱中,进行水浴处理,在处理过程中一直保持搅拌;
(3)将步骤(2)所得的水热反应产物在离心机中进行离心清洗;然后将产物置于干燥箱中烘干;
(4)将步骤(3)所的样品置于管式炉中升温煅烧,保温后即可得到目标复合材料。
其中,所述步骤(1)中,氧化石墨烯、四氯合金酸和硝酸钯的质量比为1:1:1-8:4:1。
其中,所述步骤(1)中,加入的顺序为四氯合金酸、硝酸钯、氧化石墨烯或硝酸钯、四氯合金酸、氧化石墨烯。
其中,所述步骤(1)中,溶剂为无水乙醇或N,N-二甲基甲酰胺。
其中,所述步骤(1)中,超声功率为50Hz,超声时间为15min-25min。
其中,所述步骤(2)中,水浴处理温度为60℃-80℃,反应时间为3h-14h;搅拌方式为磁力搅拌,速度为250rpm-400rpm。
其中,所述步骤(3)中,离心速度为6000rpm-8000rpm,离心次数为8-10次,离心溶剂为超纯水或乙醇。
其中,所述步骤(3)中,干燥温度为40℃-50℃,干燥时间为12h-24h。
其中,所述步骤(4)中,管式炉升温速率为0.5℃/min-2℃/min,终止温度为400℃-600℃,在氮气为保护气体下烧结。
其中,所述步骤(4)中,保温时间为30min-50min。
将所制备复合材料的形貌及晶体结构利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)对步骤(4)所得产物进行表征,证实所制备材料为氧化石墨烯负载银钯。
与现有技术相比,本发明的有益效果是:
(1)本发明制备的复合材料形貌均一,分散均匀;
(2)本发明制备的复合材料物相纯度高,没有掺杂其他杂原子;
(3)本发明制备的复合材料工艺简单、成本低、环保,且容易实现商业化生产;
附图说明
图1为实施例1制备的氧化石墨烯负载银钯复合材料的SEM图;
图2为实施例1制备的氧化石墨烯负载银钯复合材料的TEM图。
图3为实施例1、实施例2、实施例3制备的氧化石墨烯负载银钯复合材料的XRD图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施方式中氧化石墨烯负载银钯复合材料是按以下步骤实现:
(1)称取1g四氯合金酸、1g硝酸钯和1g氧化石墨烯,按四氯合金酸、硝酸钯、氧化石墨烯的顺序溶于50ml乙二醇中,再将混合溶液转移至专用烧杯中,置于超声仪器中进行超声处理,超声功率为50Hz,超声时间为15min,即制得混合溶液;
(2)将步骤(1)所得混合溶液转移至密封烧杯中,再将烧杯置于水浴箱中,进行水浴处理,水浴处理温度为60℃,反应时间为3h,在处理过程中一直保持磁力搅拌,磁力搅拌速度为250rpm;
(3)将步骤(2)所得的水热反应产物在离心机中进行离心清洗,离心速度为6000rpm,离心次数为8次,离心溶剂为乙醇;然后将产物置于干燥箱中烘干,干燥温度为40℃,干燥时间为12h;
(4)将步骤(3)所的样品置于管式炉中在氮气为保护气体下进行煅烧,升温速率为0.5℃/min,终止温度为400℃,保温时间为30min,即可得到目标复合材料。
实施例2
本实施方式中氧化石墨烯负载银钯复合材料采用以下步骤实现:
(1)称取1g硝酸钯、1.1g四氯合金酸和1.2g氧化石墨烯,按硝酸钯、四氯合金酸、氧化石墨烯的顺序溶于45ml乙醇中,再将混合溶液转移至专用烧杯中,置于超声仪器中进行超声处理,超声功率为50Hz,超声时间为15min,即制得混合溶液溶于溶剂中;
(2)将步骤(1)所得混合溶液转移至密封烧杯中,再将烧杯置于水浴箱中,进行水浴处理,水浴处理温度为70℃,反应时间为10h,在处理过程中一直保持磁力搅拌,磁力搅拌速度为300rpm;
(3)将步骤(2)所得的水热反应产物在离心机中进行离心清洗,离心速度为7000rpm,离心次数为9次,离心溶剂为超纯水或乙醇;然后将产物置于干燥箱中烘干,干燥温度为45℃,干燥时间为14h;
(4)将步骤(3)所的样品置于管式炉中在氮气为保护气体下进行煅烧,升温速率为1℃/min,终止温度为500℃,保温时间为40min。即可得到目标复合材料。
实施例3
本实施方式中氧化石墨烯负载银钯复合材料采用以下步骤实现:
(1)称取1g硝酸钯、4g四氯合金酸和8g氧化石墨烯,按硝酸钯、四氯合金酸、氧化石墨烯的顺序溶于100ml乙醇中,再将混合溶液转移至专用烧杯中,置于超声仪器中进行超声处理,超声功率为50Hz,超声时间为15min-25min,即制得混合溶液;
(2)将步骤(1)所得混合溶液转移至密封烧杯中,再将烧杯置于水浴箱中,进行水浴处理,水浴处理温度为80℃,反应时间为14h,在处理过程中一直保持磁力搅拌,磁力搅拌速度为400rpm;
(3)将步骤(2)所得的水热反应产物在离心机中进行离心清洗,离心速度为8000rpm,离心次数为10次,离心溶剂为乙醇;然后将产物置于干燥箱中烘干,干燥温度为50℃,干燥时间为24h,即可得到目标复合材料;
(4)将步骤(3)所的样品置于管式炉中在氮气为保护气体下进行煅烧,升温速率为2℃/min,终止温度为600℃,保温时间为50min。即可得到目标复合材料。
对比例1
《分析化学》,2012年,刘敏敏等,《石墨烯负载的空心银钯纳米粒子的制备及其在过氧化氢检测中的应用》报道了一种石墨烯负载的空心银钯纳米粒子的制备方法,其方法如下:
Ag/GO的制备:2mLGO(2g/L)分散于23mL水中,搅拌10min,使其混合均匀;加入0.275g柠檬酸钠,升温到100℃,再加入0.0255gAgNO3,回流2.5h。反应期间溶液中出现絮状物,颜色从棕黄色变为黑色,标志着氧化石墨烯已经被还原。溶液冷却至室温,得到絮状沉淀物,以10000r/min离心10min,沉淀用水分散。重复3次,得到黑色沉淀溶于纯水中,溶液呈现棕黑色,为均一分散溶液,标记为Ag/GO。
(2)AgPd/GO纳米复合材料的制备将得到的Ag/GO溶液取1/2置于圆底烧瓶中,加热至100℃。加入2mgPd(NO3)2后,混合溶液回流并搅拌30min,以10000r/min离心10min,分离出沉淀,用超纯水洗涤3遍,产物标记为AgPd/GO。
上述制备方法繁琐复杂,且工艺要求高,难以实现产业化生产。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (4)

1.一种氧化石墨烯负载银钯复合材料的制备方法,其特征在于,包括以下步骤:
(1)按比例称取氧化石墨烯rGO、四氯合金酸HAuCl4与硝酸钯PbNO3,按一定顺序溶于溶剂中,再将混合溶液转移至专用烧杯中,置于超声仪器中进行超声处理,超声功率为50Hz,超声时间为15min-25min,即制得混合溶液;氧化石墨烯、四氯合金酸和硝酸钯的质量比为1:1:1-8:4:1;溶剂为无水乙醇或N,N-二甲基甲酰胺;
(2)将步骤(1)所得混合溶液转移至密封烧杯中,再将烧杯置于水浴箱中,进行水浴处理,在处理过程中一直保持搅拌;水浴处理温度为60℃-80℃,反应时间为3h-14h;搅拌方式为磁力搅拌,速度为250rpm-400rpm;
(3)将步骤(2)所得的水热反应产物在离心机中进行离心清洗;然后将产物置于干燥箱中烘干;
(4)将步骤(3)所的样品置于管式炉中进行升温煅烧,保温后即可得到目标复合材料;管式炉升温速率为0.5℃/min-2℃/min,终止温度为400℃-600℃,在氮气为保护气体下烧结。
2.根据权利要求1所述的氧化石墨烯负载银钯复合材料的制备方法,其特征在于:所述步骤(3)中,离心速度为6000rpm-8000rpm,离心次数为8-10次,离心溶剂为超纯水或乙醇。
3.根据权利要求1所述的氧化石墨烯负载银钯复合材料的制备方法,其特征在于:所述步骤(3)中,干燥温度为40℃-50℃,干燥时间为12h-24h。
4.根据权利要求1所述的氧化石墨烯负载银钯复合材料的制备方法,其特征在于:所述步骤(4)中,保温时间为30min-50min。
CN201811315746.6A 2018-11-07 2018-11-07 一种氧化石墨烯负载银钯复合材料的制备方法 Active CN109592673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811315746.6A CN109592673B (zh) 2018-11-07 2018-11-07 一种氧化石墨烯负载银钯复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811315746.6A CN109592673B (zh) 2018-11-07 2018-11-07 一种氧化石墨烯负载银钯复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN109592673A CN109592673A (zh) 2019-04-09
CN109592673B true CN109592673B (zh) 2022-01-28

Family

ID=65957610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811315746.6A Active CN109592673B (zh) 2018-11-07 2018-11-07 一种氧化石墨烯负载银钯复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN109592673B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072018A (zh) * 2020-01-13 2020-04-28 江苏理工学院 一种负载金属的氮掺杂褶皱石墨烯的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021573A (zh) * 2010-12-27 2011-04-20 湖南大学 贵金属-石墨烯双层复合导电膜的自组装制备方法
CN103043654A (zh) * 2011-10-12 2013-04-17 国家纳米科学中心 一种含有石墨烯和/或氧化石墨烯的薄膜及其制备方法
CN103668141A (zh) * 2012-08-30 2014-03-26 中国科学院上海微系统与信息技术研究所 在氧化石墨烯表面生长贵金属纳米晶的方法
CN105293483A (zh) * 2015-12-08 2016-02-03 武汉理工大学 一种原位制备过渡金属掺杂多孔石墨烯的方法
CN107185524A (zh) * 2017-05-11 2017-09-22 常州大学 一种三维石墨烯‑贵金属纳米催化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140137574A (ko) * 2013-05-23 2014-12-03 한국전자통신연구원 그래핀 복합물질의 제조 방법 및 이에 의해 제조된 그래핀 복합물질

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021573A (zh) * 2010-12-27 2011-04-20 湖南大学 贵金属-石墨烯双层复合导电膜的自组装制备方法
CN103043654A (zh) * 2011-10-12 2013-04-17 国家纳米科学中心 一种含有石墨烯和/或氧化石墨烯的薄膜及其制备方法
CN103668141A (zh) * 2012-08-30 2014-03-26 中国科学院上海微系统与信息技术研究所 在氧化石墨烯表面生长贵金属纳米晶的方法
CN105293483A (zh) * 2015-12-08 2016-02-03 武汉理工大学 一种原位制备过渡金属掺杂多孔石墨烯的方法
CN107185524A (zh) * 2017-05-11 2017-09-22 常州大学 一种三维石墨烯‑贵金属纳米催化剂的制备方法

Also Published As

Publication number Publication date
CN109592673A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN104289722B (zh) 一种纳米银的制备方法
CN105798320B (zh) 一种低温制备纳米铜粉的方法
CN104934109B (zh) 玻璃基底石墨烯/银纳米线透明导电薄膜的制备方法
CN110170331B (zh) 一种铁氮双掺杂的中空多孔碳球纳米材料及其制备方法
CN102259851B (zh) 一种低温化学还原法制备石墨烯的方法
CN108636407B (zh) 基于石墨烯负载铜纳米粒子的制备方法
CN111924820B (zh) 一种空心结构金属单原子位点碳复合材料的制备方法
CN108383530B (zh) 一种ZrB2-SiC陶瓷复合粉体的前驱体转化法制备工艺
CN109830549A (zh) 一种硫化铟/石墨烯复合薄膜及其制备方法和应用
CN108997971A (zh) ZIF-67还原氧化石墨烯基吸波复合材料(CoC-rGo)的制备方法
CN111822696B (zh) 一种用于导电油墨的单分散纳米铜颗粒及其制备方法和用途
CN109592673B (zh) 一种氧化石墨烯负载银钯复合材料的制备方法
CN109573997A (zh) 一种氧化石墨烯负载硫化铜复合材料的制备方法
CN108480655B (zh) 一种碳载金属钨纳米颗粒
CN108500282B (zh) 一种碳载金属钨纳米颗粒的制备方法
CN108298522B (zh) 铁基合金纳米颗粒修饰三维多孔氮掺杂石墨烯的制备方法
CN109732099B (zh) 一种抗氧化微米铜的制备方法
CN111848178A (zh) 络合溶胶-凝胶技术微波合成二硼化铪纳米粉体的方法
CN113210623B (zh) 一种微波辅助合成可控长径比纯净银纳米线的制备方法
CN115092914A (zh) 一种氧化石墨烯还原制备石墨烯的方法
CN114988716A (zh) 一种碳化钨/石墨烯复合材料及其制备方法
CN111618315A (zh) 一种铜纳米线的制备方法
CN112893858A (zh) 一种镍-碳基材料的制备方法
CN110620242A (zh) 负载钌纳米粒子的铁/氮二元掺杂碳催化剂及其制备方法
CN115386810B (zh) 一种铁镍合金-氮掺杂碳吸波材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221213

Address after: No. 68, Guangshan Road, Baqiao Town, Yangzhong City, Zhenjiang City, Jiangsu Province, 212000

Patentee after: ZHENJIANG SUHAI ELECTRIC POWER TECHNOLOGY Co.,Ltd.

Address before: 213147 No.1 Heyu Road, Yincun Vocational Education Park, Zhonglou District, Changzhou City, Jiangsu Province

Patentee before: JIANGSU URBAN AND RURAL CONSTRUCTION College

TR01 Transfer of patent right