CN109581347A - 一种雷达精细化测距方法 - Google Patents

一种雷达精细化测距方法 Download PDF

Info

Publication number
CN109581347A
CN109581347A CN201811504938.1A CN201811504938A CN109581347A CN 109581347 A CN109581347 A CN 109581347A CN 201811504938 A CN201811504938 A CN 201811504938A CN 109581347 A CN109581347 A CN 109581347A
Authority
CN
China
Prior art keywords
signal
radar
frequency
target
indicate
Prior art date
Application number
CN201811504938.1A
Other languages
English (en)
Other versions
CN109581347B (zh
Inventor
张龙涛
沈佳波
杜昌友
管晓玲
Original Assignee
航天南湖电子信息技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 航天南湖电子信息技术股份有限公司 filed Critical 航天南湖电子信息技术股份有限公司
Priority to CN201811504938.1A priority Critical patent/CN109581347B/zh
Publication of CN109581347A publication Critical patent/CN109581347A/zh
Application granted granted Critical
Publication of CN109581347B publication Critical patent/CN109581347B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/282Systems for measuring distance only using transmission of interrupted pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using a frequency modulated carrier wave

Abstract

本发明涉及一种雷达精细化测距方法,属雷达信号处理技术领域。其特点是,它的测距信号处理流程包括射频采样、混频与滤波、低采样频率重采样、测速与距离补偿、脉压与插值、滤波和距离补偿。在不提高波形设计难度及更高硬件设计要求的前提下,数据传输速率高,提高距离测量精度,提升雷达整机工作性能,降低雷达制作成本。解决了现有测距方式只作一次采样,使得采样数据量大,增大信号带宽时波形设计难度增大,数据量提高,数据传输速率难以达到要求;且信号处理过程粗糙,若要增大信号带宽、提高数据传输速率和测距精度,必须有更高标准波形设计和硬件设计支撑,对相应采样和数据处理芯片的要求也更高,设计和制作困难,增加设备成本的问题。

Description

一种雷达精细化测距方法

技术领域

本发明涉及一种雷达精细化测距方法,属雷达信号处理技术领域。

背景技术

信号处理是现代雷达系统的核心技术之一,测距又是信号处理的重要一环,测距的优劣,直接影响到雷达探测目标距离的精准度。衡量和反映雷达探测距离精度的一个重要参数是距离分辨率,

距离分辨率公式如下:

式中,B表示带宽;T e 表示发射脉冲宽度或脉冲压缩后的等效脉冲宽度;c为电磁波传播速度;可见,脉冲宽度T e 越窄,即发射信号调频带宽B越宽,距离分辨率DR也就越高。然而在T e 同样脉宽条件下,调频带宽B越大,波形设计就越困难,对系统硬件设计的要求也就越高;再则,调频带宽B越大,采样频率f s 就越高,数据量就越大,就需要更高的数据传输速率和信号处理速率,为此需要配置更好的数据传输硬件和信号处理芯片,从而大大增加雷达系统成本。传统的测距方式一般只作一次采样,采样数据量大,当增大信号带宽时,波形设计难度增大,数据量提高,数据传输速率难以达到要求;且信号处理过程粗糙——传统测距方法不进行插值和数字滤波处理,而是在获得目标包络后,直接求得目标在距离维的最大值位置,并计算该点对应的距离,从而得到目标距离信息。如此,传统测距方式要达到增大信号带宽、提高数据传输速率和测距精度的目的,必须有更高标准的波形设计和硬件系统设计作支撑才行,对相应采样和数据处理芯片的要求也更高,导致设计和制作困难,大大增加设备成本。

发明内容

本发明的目的在于,针对上述现有技术的不足,提供一种在不提高波形设计难度及更高硬件设计要求的前提下,数据传输速率高,满足数据传输要求,提高雷达对目标距离的测量精度,提升雷达整机工作性能,有效降低雷达制作成本的雷达精细化测距方法。

本发明是通过如下的技术方案来实现上述目的的:

一种雷达精细化测距方法,其特征在于:它的测距信号处理流程包括:射频采样——混频与滤波——低采样频率重采样——测速与距离补偿——脉压与插值——滤波和距离补偿;以线性调频信号为例 (本发明方法同样适用于其它波形),它具体包括如下步骤:

(1)射频采样,雷达通过A/D转换器对接收到的射频信号进行射频采样,线性调频信号的形式可用下式(A)表示;

其中,B表示带宽;T表示脉宽;f 0表示射频频率;N(t)表示噪声和干扰;f d 表示多普勒频率(静止目标的f d 为0);

(2)混频与数字滤波,根据雷达系统设计,预先设计好波形存入波形产生器,雷达在工作过程中,波形产生器根据设置调取并生成本振信号;线性调频信号的本振信号形式见下式(B):

射频信号经混频器与本振信号进行混频并通过数字滤波后得到基带信号,滤波器系数是预先生成存入系统中的,根据需求调取;线性调频信号的基带信号形式见下式(C);

(3)低采样频率重采样,信号经过混频和数字滤波后,用较低的采样率对基带信号进行抽取,获得重采样信号;例如,原采样频率为240MHz的信号,经过40倍抽取后,获得的信号的采样频率为6MHz;

(4)测速与多普勒补偿,雷达的探测目标通常为运动目标,而目标的运动又会带来测距误差,因此,为了更准确的测距,需要通过信号处理方法对目标速度进行测量,并进行多普勒补偿;当探测波形为线性调频信号时,具有多普勒频率的目标的回波信号可用下式(D)表示,

其中,f d 表示多普勒频率。f d 可通过比幅法求得,然后根据多普勒频率与速度的关系〔见下式(E)〕求得目标速度:

其中V表示目标速度,λ表示雷达工作波长;最后经过去模糊处理得到目标精确速度;求得目标多普勒频率后,用下式(F)与式(D)混频进行多普勒补偿,补偿后的信号形式见下式(G):

(5)脉压与插值,根据雷达系统设计,预先求得脉压系数,并编辑后保存在系统中;雷达在工作过程中根据不同需要调取对应的脉压系数,对多普勒补偿后的信号进行脉压处理;脉压处理可在时域进行也可在频域进行,可进行匹配滤波也可进行失配滤波;线性调频信号脉压通常为匹配滤波,滤波器形式如下式(H)所示:

然后对脉压后的信号进行插值;

(6)数字滤波和距离补偿,根据雷达系统中的波形,预先设计相应的滤波器,并编辑后保存在系统中,信号处理过程中根据波形选择相应的滤波器系数,对插值后的信号进行数字滤波(即滤波器系数与插值后信号球卷积);根据不同采样频率和插值倍数,预先求得目标不同速度时所产生的距离误差值,并编辑后保存在内存中,然后根据步骤(4)中测得的目标速度信息调取距离误差值,补偿距离误差。

本发明与现有技术相比的有益效果在于:

该雷达精细化测距方法,通过步骤(1)进行第一次射频采样,通过步骤(2)得到线性调频信号的基带信号,通过步骤(3)完成第二次低频率重采样,步骤(1)、步骤(3)的两次采样,实现用较低采样率和更少数据量进行测距达到高采样率和高数据量才可以达到的测距效果;下表1为仿真实验数据。

表1 仿真实验结果

由表1可见,与传统测距方法相比,本发明具有更高的测距精度。

通过本发明方法步骤(4)、步骤(5)、步骤(6),在信号处理过程中增加多普勒补偿、脉压与插值、数字滤波和距离补偿,可在不提高波形设计难度和硬件性能的基础上,实现更高的测距精度及更高的距离分辨率;测距精度比传统技术高4.6倍。由于本发明测距方法的两次采样使得采样率低、数据量少,因此,对采样和信号处理芯片的要求较低,即在相同指标要求的情况下,该雷达精细化测距方法的数据传输速率高,满足数据传输要求,提高雷达对目标距离的测量精度,提升雷达整机工作性能,有效降低雷达设备成本,提高了雷达的性价比。解决了现有测距方式只作一次采样,使得采样数据量大,当增大信号带宽时,波形设计难度增大,数据量提高,数据传输速率难以达到要求;且信号处理过程粗糙,如果要达到增大信号带宽、提高数据传输速率和测距精度的目的,必须有更高标准的波形设计和硬件系统设计作支撑才行,对相应采样和数据处理芯片的要求也更高,导致设计和制作困难,大大增加设备成本的问题。

附图说明

图1为一种雷达精细化测距方法的信号处理流程示意图;

图2为仿真本发明“一种雷达精细化测距方法”的仿真6M重采样信号匹配滤波后即信号抽取后的脉压图像;

图3为仿真本发明“一种雷达精细化测距方法”的重采样信号脉压,然后插值成48M信号归一化后的图像;

图4为仿真本发明“一种雷达精细化测距方法”的滤波后信号通过距离补偿后的图像;

图5为仿真本发明“一种雷达精细化测距方法”的48M采样信号脉压的图像。

具体实施方式

下面结合附图对该雷达精细化测距方法的实施方式作进一步详细说明:(参见图1~5):

本发明的设计思路是:针对现有传统测距技术的不足,为了能够获得更高的测距精度及更高的距离分辨率,本发明对雷达信号处理技术做了改进;本发明包括两次采样,并在信号处理过程中增加了插值、滤波和距离补偿流程;本发明以高采样频率对射频信号进行采样;采样信号与本振信号进行混频和滤波,获得基带信号;用较低的采样频率对生成的基带信号进行重新采样即信号抽取;考虑到雷达的探测目标通常为运动目标,而目标的运动又会带来测距误差,因此,为了更准确测距,需要对目标速度进行测量,并进行多普勒补偿;对多普勒补偿后的信号进行脉压和插值;然后对插值信号进行滤波;由于滤波器的滤波效果会产生暂态点,去掉暂态点后会引起距离偏差,因此最后需要对滤波后去掉暂态点的信号进行距离补偿。这样,由六个步骤构成本发明“一种雷达精细化测距方法”。

一种雷达精细化测距方法,其特征在于:它的测距信号处理流程包括:射频采样——混频与滤波——低采样频率重采样——测速与距离补偿——脉压与插值——滤波和距离补偿(参见图1);以线性调频信号为例 (本发明方法同样适用于其它波形),它具体包括如下步骤:

(1)射频采样,雷达通过A/D转换器对接收到的射频信号进行射频采样,线性调频信号的形式可用下式(A)表示;

其中,B表示带宽;T表示脉宽;f 0表示射频频率;N(t)表示噪声和干扰;f d 表示多普勒频率(静止目标的f d 为0);

(2)混频与数字滤波,根据雷达系统设计,预先设计好波形存入波形产生器,雷达在工作过程中,波形产生器根据设置调取并生成本振信号;线性调频信号的本振信号形式见下式(B):

射频信号经混频器与本振信号进行混频并通过数字滤波后得到基带信号,滤波器系数是预先生成存入系统中的,根据需求调取;线性调频信号的基带信号形式见下式(C);

(3)低采样频率重采样,信号经过混频和数字滤波后,用较低的采样率对基带信号进行抽取,获得重采样信号;例如,原采样频率为240MHz的信号,经过40倍抽取后,获得的信号的采样频率为6MHz;(参见图2、图3);

(4)测速与多普勒补偿,雷达的探测目标通常为运动目标,而目标的运动又会带来测距误差,因此,为了更准确的测距,需要通过信号处理方法对目标速度进行测量,并进行多普勒补偿;当探测波形为线性调频信号时,具有多普勒频率的目标的回波信号可用下式(D)表示:(参见图4);

其中,f d 表示多普勒频率。f d 可通过比幅法求得,然后根据多普勒频率与速度的关系〔见下式(E)〕求得目标速度:

其中V表示目标速度,λ表示雷达工作波长;最后经过去模糊处理得到目标精确速度;求得目标多普勒频率后,用下式(F)与式(D)混频进行多普勒补偿,补偿后的信号形式见下式(G):

(5)脉压与插值,根据雷达系统设计,预先求得脉压系数,并编辑后保存在系统中;雷达在工作过程中根据不同需要调取对应的脉压系数,对多普勒补偿后的信号进行脉压处理;脉压处理可在时域进行也可在频域进行,可进行匹配滤波也可进行失配滤波;线性调频信号脉压通常为匹配滤波,滤波器形式如下式(H)所示:

然后对脉压后的信号进行插值;(参见图2、图5);

(6)数字滤波和距离补偿,根据雷达系统中的波形,预先设计相应的滤波器,并编辑后保存在系统中,信号处理过程中根据波形选择相应的滤波器系数,对插值后的信号进行数字滤波(即滤波器系数与插值后信号球卷积);根据不同采样频率和插值倍数,预先求得目标不同速度时所产生的距离误差值,并编辑后保存在内存中,然后根据步骤(4)中测得的目标速度信息调取距离误差值,补偿距离误差(参见图4)。

该雷达精细化测距方法的仿真实验过程概括如下:

用MATLAB软件,以线性调频信号模拟雷达发射脉冲信号,以高斯白噪声模拟系统噪声及杂波,对本发明“一种雷达精细化测距方法”进行仿真。

首先,用较高的采样频率生成线性调频信号及高斯白噪声信号,模拟A/D转换器的采样信号与特定信号混频并通过模拟滤波器滤波后生成的信号;然后,用较低的采样频率对线性调频信号与高斯白噪声信号叠加后的信号进行采样,模拟重采样信号;之后,根据给定的速度对重采样信号进行多普勒补偿,对多普勒补偿后的信号做匹配数字滤波;然后,对匹配数字滤波后的信号进行插值;随后,用提前设计好的数字滤波器对插值信号进行滤波;最后,根据目标速度对滤波后的信号进行距离补偿。

具体仿真实验过程如下:

1)采用MATLAB软件对现有传统测距技术的信号处理进行仿真实验,模拟带宽为2.5M,脉宽为400us,波长为1.52m,采样频率分别为6M和48M,两个目标位置分别为120000m和253571m。

2)采用MATLAB对本发明进行仿真实验,模拟带宽为2.5M,脉宽为400us,波长为1.52m,两个目标位置分别为120000m和253571m,重采样频率为6M,插值信号为48M。

仿真结果如下:当采样频率为6M时,采用传统测距技术,两个目标距离分别120000m和253575m,距离偏差分别为0m和4m;当采样频率为48M时,用传统测距技术,两个目标距离分别120000m和253571.875m,距离偏差分别为0m和0.875m;信号带宽为48M时的处理时间为信号带宽为6M时的8倍。采用本发明,对原采样信号进行抽取、脉压、插值、滤波和距离补偿后,两个目标距离分别120000m和253571.875m,距离偏差分别为0m和0.875m。由实验可知,当采样频率较低时,传统测距技术测距精度较低;当采样频率较高时,则数据传输速率无法满足要求;而本发明对信号进行抽取后降低了数据量,满足了数据传输速率要求,且本发明的测距精度与传统测距技术的高采样频率的测距精度达到了同等水平。

通过仿真实验表明:现有传统测距技术,当信号带宽较小时,距离分辨率和测距精度较差;当信号带宽大时,波形设计难度增大,同时,因数据量提高,数据传输速率也难以达到要求;而本发明对大带宽信号进行抽取和两次采样,降低了数据量,通过本发明六个步骤的测距方法进行处理,使测距精度与现有大带宽传统测距技术精度相同。

经实验结果得到如下结论:与低采样频率(6M)的传统测距技术相比,本发明的数据传输速率快8倍;本发明的测距精度比低采样频率(6M)时的传统测距技术高4.6倍多;与高采样频率(48M)的传统测距技术相比,本发明对数据传输速率的要求更低,对硬件的要求更低,且更易于实现,测距效果好,提升了雷达性价比。

此外,经研究发现,当目标速度不同时,目标距离偏差就不同,因此距离补偿值也就不同。目标速度不为零时,48M插值信号出现的距离误差如下:

1)对于目标1

当目标速度位于(0,200]m/s时,测量距离偏差为6.25米;

当目标速度位于[201,394]m/s时,测量距离偏差为12.5米;

当目标速度位于[395,594]m/s时,测量距离偏差为18.75米;

当目标速度位于[595,792]m/s时,测量距离偏差为25米;

当目标速度位于[793,991]m/s时,测量距离偏差为31.25米;

当目标速度位于[992,1186]m/s时,测量距离偏差为37.5米

2)对于目标2

当目标速度位于(0,80]m/s时,测量距离偏差为6.25米;

当目标速度位于[81,278]m/s时,测量距离偏差为12.5米;

当目标速度位于[279,473]m/s时,测量距离偏差为18.75米;

当目标速度位于[474,675]m/s时,测量距离偏差为25米;

当目标速度位于[676,872]m/s时,测量距离偏差为31.25米;

当目标速度位于[873,1069]m/s时,测量距离偏差为37.5米

当目标速度位于[1070,1267]m/s时,测量距离偏差为43.75米;(参见图4)。

以上所述只是本发明的较佳实施例而已,上述举例说明不对本发明的实质内容作任何形式上的限制,所属技术领域的普通技术人员在阅读了本说明书后依据本发明的技术实质对以上具体实施方式所作的任何简单修改或变形,以及可能利用上述揭示的技术内容加以变更或修饰为等同变化的等效实施例,均仍属于本发明技术方案的范围内,而不背离本发明的实质和范围。

Claims (1)

1.一种雷达精细化测距方法,其特征在于:它的测距信号处理流程包括:射频采样——混频与滤波——低采样频率重采样——测速与距离补偿——脉压与插值——滤波和距离补偿;以线性调频信号为例,它具体包括如下步骤:
(1)射频采样,雷达通过A/D转换器对接收到的射频信号进行射频采样,线性调频信号的形式可用下式(A)表示;
其中,B表示带宽;T表示脉宽;f 0表示射频频率;N(t)表示噪声和干扰;f d 表示多普勒频率(静止目标的f d 为0);
(2)混频与数字滤波,根据雷达系统设计,预先设计好波形存入波形产生器;雷达在工作过程中,波形产生器根据设置调取并生成本振信号;线性调频信号的本振信号形式见下式(B):
射频信号经混频器与本振信号进行混频并通过数字滤波后得到基带信号,滤波器系数预先生成存入系统中,根据需求调取;线性调频信号的基带信号形式见下式(C):
(3)低采样频率重采样,信号经过混频和数字滤波后,用较低的采样率对基带信号进行抽取,获得重采样信号;例如,原采样频率为240MHz的信号,经过40倍抽取后,获得的信号的采样频率为6MHz;
(4)测速与多普勒补偿,雷达的探测目标通常为运动目标,而目标的运动又会带来测距误差,因此,为了更准确的测距,需要通过信号处理方法对目标速度进行测量,并进行多普勒补偿;当探测波形为线性调频信号时,具有多普勒频率的目标的回波信号可用下式(D)表示:
其中,f d 表示多普勒频率;
f d 可通过比幅法求得,然后根据多普勒频率与速度的关系〔见下式(E)〕求得目标速度:
其中V表示目标速度,λ表示雷达工作波长;最后经过去模糊得到目标精确速度;求得目标多普勒频率后,用下式(F)与式(D)混频进行多普勒补偿,补偿后的信号形式见下式(G):
(5)脉压与插值,根据雷达系统设计,预先求得脉压系数,并编辑后保存在系统中;雷达在工作过程中根据不同需要调取对应的脉压系数,对多普勒补偿后的信号进行脉压处理;脉压处理可在时域进行也可在频域进行,可进行匹配滤波也可进行失配滤波;线性调频信号脉压通常为匹配滤波,滤波器形式如下式(H)所示:
然后对脉压后的信号进行插值;
(6)数字滤波和距离补偿,根据雷达系统中的波形,预先设计相应的滤波器,并编辑后保存在系统中,信号处理过程中根据波形选择相应的滤波器系数,对插值后的信号进行数字滤波(即滤波器系数与插值后信号球卷积);根据不同采样频率和插值倍数,预先求得目标不同速度时所产生的距离误差值,并编辑后保存在内存中,然后根据步骤(4)中测得的目标速度信息调取距离误差值,补偿距离误差。
CN201811504938.1A 2018-12-10 2018-12-10 一种雷达精细化测距方法 CN109581347B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811504938.1A CN109581347B (zh) 2018-12-10 2018-12-10 一种雷达精细化测距方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811504938.1A CN109581347B (zh) 2018-12-10 2018-12-10 一种雷达精细化测距方法

Publications (2)

Publication Number Publication Date
CN109581347A true CN109581347A (zh) 2019-04-05
CN109581347B CN109581347B (zh) 2020-09-01

Family

ID=65928033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811504938.1A CN109581347B (zh) 2018-12-10 2018-12-10 一种雷达精细化测距方法

Country Status (1)

Country Link
CN (1) CN109581347B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430380A (zh) * 2008-12-19 2009-05-13 北京航空航天大学 基于非均匀采样的大斜视角机载sar聚束模式成像方法
CN101923782A (zh) * 2010-07-28 2010-12-22 北京交通大学 基于地磁传感技术的交通车辆速度获取方法
CN102353940A (zh) * 2011-06-10 2012-02-15 西安电子科技大学 基于fpga的脉冲压缩优化方法
CN104201991A (zh) * 2014-09-10 2014-12-10 四川九洲电器集团有限责任公司 实现捷变频米波雷达的数字下变频系统
RU2553272C1 (ru) * 2014-04-18 2015-06-10 Открытое акционерное общество "Научно-производственный комплекс "Научно-исследовательский институт дальней радиосвязи" Способ измерения дальности и радиальной скорости в рлс с зондирующим составным псевдослучайным лчм импульсом
CN105785356A (zh) * 2016-05-17 2016-07-20 荆州南湖机械股份有限公司 一种测量多普勒频率的改进方法
CN105974365A (zh) * 2016-03-22 2016-09-28 荆州南湖机械股份有限公司 一种雷达信号通用处理平台
KR101705532B1 (ko) * 2015-11-11 2017-02-10 국방과학연구소 주파수 변조 레이더 및 그것의 제어방법
CN107797099A (zh) * 2017-09-26 2018-03-13 西安空间无线电技术研究所 一种多通道数字接收机实时内定标处理方法及装置
CN108732546A (zh) * 2018-06-06 2018-11-02 招商局重庆交通科研设计院有限公司 远距离非接触式隧道检测距离补偿装置及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430380A (zh) * 2008-12-19 2009-05-13 北京航空航天大学 基于非均匀采样的大斜视角机载sar聚束模式成像方法
CN101923782A (zh) * 2010-07-28 2010-12-22 北京交通大学 基于地磁传感技术的交通车辆速度获取方法
CN102353940A (zh) * 2011-06-10 2012-02-15 西安电子科技大学 基于fpga的脉冲压缩优化方法
RU2553272C1 (ru) * 2014-04-18 2015-06-10 Открытое акционерное общество "Научно-производственный комплекс "Научно-исследовательский институт дальней радиосвязи" Способ измерения дальности и радиальной скорости в рлс с зондирующим составным псевдослучайным лчм импульсом
CN104201991A (zh) * 2014-09-10 2014-12-10 四川九洲电器集团有限责任公司 实现捷变频米波雷达的数字下变频系统
KR101705532B1 (ko) * 2015-11-11 2017-02-10 국방과학연구소 주파수 변조 레이더 및 그것의 제어방법
CN105974365A (zh) * 2016-03-22 2016-09-28 荆州南湖机械股份有限公司 一种雷达信号通用处理平台
CN105785356A (zh) * 2016-05-17 2016-07-20 荆州南湖机械股份有限公司 一种测量多普勒频率的改进方法
CN107797099A (zh) * 2017-09-26 2018-03-13 西安空间无线电技术研究所 一种多通道数字接收机实时内定标处理方法及装置
CN108732546A (zh) * 2018-06-06 2018-11-02 招商局重庆交通科研设计院有限公司 远距离非接触式隧道检测距离补偿装置及方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YIMIN LIU,ET AL: "Velocity Estimation and Range Shift Compensation for High Range Resolution Profiling in Stepped-Frequency Radar", 《IEEE GEOSCIENCE AND REMOTE SENSING LETTERS》 *
李攀: "多普勒频移对脉冲压缩雷达的影响及其补偿研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
杨明磊等: "多载频FMCW在MIMO雷达中的应用研究", 《电子学报》 *
王梦玉: "基于TMS320C6678的雷达信号处理系统软件设计与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Also Published As

Publication number Publication date
CN109581347B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN105556332B (zh) 管道或管中的fmcw雷达的频散校正
CN103067104B (zh) 基于数字本振对射频信号高速扫频频谱测量的系统及方法
US7583222B2 (en) Method for using pulse compression in weather radar
CN104897962B (zh) 基于互素感知的单频信号短样本高精度测频方法及其装置
CN102571483B (zh) 适用于脉冲状态的一体化网络参数测试仪及其测试方法
CN101603985B (zh) 高准确度正弦信号测量方法
CN102288807B (zh) 一种测量电网电压闪变的方法
CN102325058B (zh) 一种变频系统群时延测试方法
CN103248444B (zh) 一种基于单元组合面向测试参数的系统集成方法
CN103630888B (zh) 基于对称三角lfmcw雷达的高精度实时微波测速测距装置
Yuan et al. Application research of keystone transform in weak high-speed target detection in low-PRF narrowband chirp radar
CN103454637B (zh) 基于调频步进频的太赫兹逆合成孔径雷达成像方法
CN101701984B (zh) 基于三项系数Nuttall窗插值FFT的基波与谐波检测方法
CN106093893B (zh) 一种双极化雷达任意极化波的在线标定方法
CN103676622A (zh) 一种高精度的正负时间间隔测量方法及装置
CN203672448U (zh) 雷达物位计系统
CN201926756U (zh) 嵌入式电子式互感器校验仪
CN101701982A (zh) 基于加窗插值fft的电力系统谐波检测方法
CN105466453B (zh) 一种导航设备在线监测系统及方法
CN103616569A (zh) 一种毫米波平面近场测试相位修正方法
CN101609144B (zh) 闪电辐射源三维定位系统
WO2018188228A1 (zh) 高精度频率测量系统及方法
Venkatachalam et al. Development of a new high speed dual-channel impulse ground penetrating radar
CN104316913A (zh) 多通道接收机实时校准装置及校准与误差补偿方法
CN102707263B (zh) 一种多频多基地高频地波雷达系统及其操作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant