CN109581225A - 电池在线参数辨识的能量状态估算方法及电池管理系统 - Google Patents

电池在线参数辨识的能量状态估算方法及电池管理系统 Download PDF

Info

Publication number
CN109581225A
CN109581225A CN201811629519.0A CN201811629519A CN109581225A CN 109581225 A CN109581225 A CN 109581225A CN 201811629519 A CN201811629519 A CN 201811629519A CN 109581225 A CN109581225 A CN 109581225A
Authority
CN
China
Prior art keywords
battery
model
energy state
order
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811629519.0A
Other languages
English (en)
Inventor
文艺
张家斌
黄福贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN CHAOSIWEI ELECTRONICS Co Ltd
Original Assignee
SHENZHEN CHAOSIWEI ELECTRONICS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN CHAOSIWEI ELECTRONICS Co Ltd filed Critical SHENZHEN CHAOSIWEI ELECTRONICS Co Ltd
Priority to CN201811629519.0A priority Critical patent/CN109581225A/zh
Publication of CN109581225A publication Critical patent/CN109581225A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm

Abstract

本发明公开一种电池在线参数辨识的能量状态估算方法及电池管理系统,电池在线参数辨识的能量状态估算方法包括:拟合出电池的开路电压与电池能量的特性曲线,对电池进行脉冲放电‑静置处理,获得电压响应曲线,并离线辨识出电池二阶RC模型的参数值。根据电池二阶RC模型建立电池的离散状态空间模型,检测当前的电池工作电压值,根据特性曲线获得当前的能量状态的初始值,得到当前的能量状态估计值,根据能量状态估计值及特性曲线在线辨识电池二阶RC模型的参数值。根据电池二阶RC模型的参数值实时更新离散状态空间模型的参数值,并根据更新后的离散状态空间模型估算能量状态估计值,从而解决现有技术中电池的能量状态估算累计误差过大的技术问题。

Description

电池在线参数辨识的能量状态估算方法及电池管理系统
技术领域
本发明涉及电源模块技术领域,特别涉及电池在线参数辨识的能量状态估算方法及电池管理系统。
背景技术
BMS(Battery Management System,电池管理系统)作为电动汽车监管电池的重要部件,目前国内外主要通过实时检测电池外特性并估算SOC(State Of Charge,电池荷电状态)来防止电池不合理的使用,从而保证电池使用的安全性和长寿命,能最大限度发挥电池的性能,提高电池容量和能量利用率。而目前国内外关于SOE(State Of Energy,电池能量状态)估算的研究甚少,动力电池SOE估计方法主要包括:内阻法、瓦时积分法、开路电压法等。
在电池应用过程中,电池的电量一直用电池容量和荷电状态来描述。随着动力电池在电动汽车中的大量应用,电池作为动力源用来存储和释放能量,但电池容量和SOC不能线性对应车辆的行驶里程,于是研究人员开始从能量的角度,提出了电池的SOE的概念。纯电动汽车上电池组与电机相连接并为电机提供能量,电池的剩余能量能表征电机的工作能力,也能反映电池的工作能力。相比容量状态,能量状态更能反映电池的放电能力。其中,内阻法依据电池内阻和SOE之间的函数关系,通过检测电池内阻检测内阻来计算电池SOE,然而在线、准确地测量电池内阻存在因难,限制了该方法在实际工程中的应用。瓦时积分法虽然原理简单且易于实现,但是无法消除SOE初始误差以及因电流测量和电压测量不准确而引起的累计误差。开路电压法根据OCV(Open Circuit Voltage,开路电压)和SOE的对应关系来计算电池SOE,需要将电池充分静置后才能测量OCV,因此不适用于SOE的在线估计。
发明内容
本发明的主要目的是提出一种电池在线参数辨识的能量状态估算方法,旨在解决现有技术中电池的能量状态测量不准确引起的累计误差。
为实现上述目的,本发明提出一种电池在线参数辨识的能量状态估算方法,用于电池管理系统,所述电池在线参数辨识的能量状态估算方法包括:
对电池进行放电-静置处理,拟合出电池的开路电压与电池能量的特性曲线;
对电池进行脉冲放电-静置处理,获得电压响应曲线,并离线辨识出所述电池二阶RC模型的参数值;
根据电池二阶RC模型建立电池的离散状态空间模型;
检测当前的电池工作电压值,根据所述特性曲线获得当前的能量状态的初始值;
根据所述当前能量状态的初始值及所述离散状态空间模型得到当前的能量状态估计值;
根据所述能量状态估计值及所述特性曲线,得到当前的开路电压值,以在线辨识电池二阶RC模型的参数值;
根据电池二阶RC模型的参数值实时更新离散状态空间模型的参数值,并根据更新后的离散状态空间模型去估算能量状态估计值。
可选地,所述“对电池进行放电-静置处理,拟合出电池的开路电压与电池能量的特性曲线”的步骤包括:
对电池进行脉冲放电-静置处理;
获取电池在多个温度值下的开路电压及对应的电池能量;
拟合出开路电压与电池能量的特性曲线。
可选地,所述“对电池进行脉冲放电-静置处理,获得电压响应曲线,并离线辨识出所述电池二阶RC模型的参数值”的步骤还包括:
在多个开路电压处对电池进行恒定电流的脉冲放电-静置处理;
记录多个开路电压时脉冲放电-静置处理的电压响应,以得到电压响应曲线;
根据所述电压响应曲线,离线分析获得电池二阶RC模型在多个SOC值时所对应的参数值。
可选地,所述“辨识电池二阶RC模型的参数值”的步骤包括:
依据基尔霍夫定律及拉布拉斯变换,将所述电池二阶RC等效电路模型转换为二阶RC等效电路模型频域下的状态方程;
利用含遗传因子的递推最小二乘法,对电池二阶RC等效电路模型进行参数识别。
可选地,所述“根据电池二阶RC模型建立电池的离散状态空间模型”的步骤包括:
根据电池二阶RC模型,得到电池的状态方程和量测方程;
将所述电池的状态方程及量测方程离散,得到状态方程及量测方程的离散模型;
依据所述状态方程及量测方程的离散模型建立电池的离散状态空间模型。
可选地,所述“辨识电池二阶RC模型的参数值”的步骤包括:
依据所述电池二阶RC模型建立的电池二阶RC模型频域下的所述状态方程如下:
其中,Uoc代表电池的开路电压(OCV),Ul为电池组的端电压,R0为电池的欧姆内阻,R1、R2分别为电池充放电过程中的电化学极化电阻和浓度差极化电阻,C1、C2分别为电池充放电过程中的暂态电容、电化学极化和浓度差极化电容,U1、U2分别为通过电容C1、C2的电压值,U为电池端电压,I为电池端电流;
令时间常数τ1=R1C1,τ2=R2C2
则所述状态方程可以简化为:
τ1τ2Uocs2+(τ12)Uocs+Uoc
τ1τ2IR0s2+Is|R1τ2+R2τ1+R012)|+I(R1+R2+R0)
1τ2Us2+(τ12)Us+U
设a=τ1τ2,b=τ12,c=R1+R2+R0
d=R1τ2+R2τ1+R012)
则上式可简化为
aUocs2+bUocs+Uoc=aR0Is2+dIs+cI+aUs2+bUs+U
将上式进行离散化处理,其中T为采样时间,整理可得:
Uoc(k)-U=k1|U(k-1)-Uoc(k-1)|+k2|U(k-2)-Uoc(k-2)|
+k3I(k)+k4I(k-1)+k5I(k-2)
其中,
代入递推最小二乘的辨识方法中,当前时刻的θ=|k1k2k3k4k5|T值,然后根据以下公式,
R0=k5/k2
R1=(τ1c+τ2Ri-d)/(τ12)
R2=c-R1-Ri
C1=τ1/R1
C2=τ2/R2
计算出电路模型参数R0、R1、R2、C1、C2,从而根据开路电压实现电池二阶RC模型参数的在线辨识。
可选地,所述“对电池进行脉冲放电-静置处理,获得电压响应曲线,并离线辨识出所述电池二阶RC模型的参数值”的步骤之前还包括:
选取电池二阶RC模型。
可选地,所述“根据电池二阶RC模型建立电池的离散状态空间模型”的步骤包括:
根据选取的所述电池二阶RC模型,进行公式变换得到电池的状态方程和量测方程:
状态方程离散化后的离散模型:
令电池模型中的状态变量为x=[x1 x2 x3]=[Uoc U1 U2]T,电池管理系统输入u为电池的工作电流I,且放电为正,电池管理系统输出y为电池的工作电压U,采样时间为T;
电池离散状态空间模型为:
其中
Dk=-R0(k)。
可选地,所述“根据所述当前能量状态的初始值及所述离散状态空间模型得到当前的能量状态估计值”的步骤包括:
算法系统参数状态量初始化
x0=[SOC(0) 0 0]T
运行扩展卡尔曼滤波算法预测模块:
(1)状态预测:
(2)状态预测误差协方差矩阵:
纠错模块:
(1)卡尔曼增益:
其中,
(2)状态估计:
(3)状态估计误协方差矩阵:
Pk=(I-GkCk)Pk|k-1
其中,Pk为协方差,Gk为卡尔曼增益,Qk-1为过程噪声误差,Rk-1为观测噪声误差。
为实现上述目的,本发明还提出一种电池管理系统,包括存储器、传感器、处理器及存储在所述存储器上并可在所述处理器上运行的电池在线参数辨识的能量状态估算程序,所述传感器与所述处理器连接,所述传感器用于检测电池工作电压值,所述电池在线参数辨识的能量状态估算程序被MCU内的处理器执行,实现如上所述的电池在线参数辨识的能量状态估算方法。
本发明通过提供一种电池在线参数辨识的能量状态估算方法,首先对电池进行放电-静置处理,拟合出电池的开路电压与电池能量的特性曲线,然后对电池进行脉冲放电-静置处理,获得电压响应曲线,并离线辨识出所述电池二阶RC模型的参数值,然后根据电池二阶RC模型建立电池的离散状态空间模型,检测当前的电池工作电压值,根据所述特性曲线获得当前的能量状态的初始值,根据所述当前能量状态的初始值及所述离散状态空间模型得到当前的能量状态估计值,随后根据所述能量状态估计值及所述特性曲线,得到当前的开路电压值,从而在线辨识电池二阶RC模型的参数值,在根据电池二阶RC模型的参数值实时更新离散状态空间模型的参数值,并根据更新后的离散状态空间模型去估算能量状态估计值。本发明采用了基于动态参数的动力电池SOE估算策略,其中首先离线辨识电池二阶RC模型的参数值,再根据电池二阶RC模型的参数值实时更新离散状态空间模型的参数值及根据更新参数值后的所述离散状态空间模型预测下次的能量状态估计值,相较于传统的参数离线辨识方法和传统的卡尔曼滤波、滑模观测器和神经网络等方法,该估算方法及电池管理系统的克服了传统的参数离线辨识方法的SOE初值不准确及累计误差的现象,从而可以使得该估算方法适应了电池特性的动态变化,且电池模型精度高,收敛速度快,稳定可靠,可广泛应用于电动汽车和储能电池等电池管理领域。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明电池在线参数辨识的能量状态估算方法一实施例的流程示意图;
图2为本发明电池在线参数辨识的能量状态估算方法又一实施例的流程示意图;
图3为本发明电池在线参数辨识的能量状态估算方法一实施例中的电池二阶RC模型电路图;
图4为本发明电池管理系统的模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种电池在线参数辨识的能量状态估算方法,用于解决传统的参数离线辨识方法的SOE初值不准确及累计误差的技术问题。
在本发明的一实施例中,如图1所示,为实现上述目的,本发明提出一种电池在线参数辨识的能量状态估算方法,用于电池管理系统,电池在线参数辨识的能量状态估算方法包括:
S1,对电池进行放电-静置处理,拟合出电池的开路电压与电池能量的特性曲线;
可以理解的是,对电池进行一段放电处理,随后静置的时间一般为可以使电池状态稳定的时间,然后测量此时的电池的开路电压与电池容量,之后再次进行放电-静置-测量的步骤,然后拟合成电池的开路电压与电池容量的特性曲线,依据此时的特性曲线,可以在已知电池工作的电压值的情况下,方便的知道电池的能量状态的初始值,从而方便后续的估算过程。此处理过程在电池启动时进行,后续电池运行过程中,若需要进行能量状态估计,仅需要依据特性曲线进行离线估算即可,从而减少了数据处理过程。
可选地,“对电池进行放电-静置处理,拟合出电池的开路电压与电池能量的特性曲线”的步骤包括:
对电池进行脉冲放电-静置处理;
获取电池在多个温度值下的开路电压及对应的电池能量;
拟合出开路电压与电池能量的特性曲线。
其中,获取电池在多个温度值下的开路电压及对应的电池能量,可以使得开路电压与电池能量的特性曲线的精度更为精确,为后续准确地预判电池的能量状态提供数据支持。
S2,对电池进行脉冲放电-静置处理,获得电压响应曲线,并离线辨识出电池二阶RC模型的参数值;
其中,依据混合动力脉冲能力特性实验方法中的方法所示,对电池进行脉冲放电-静置,从而可以获得电压响应曲线,根据电压响应曲线,可以获取对应的电池二阶RC模型的参数值,从而实现了电池二阶RC模型的参数值的快速获取。
可选地,“对电池进行脉冲放电-静置处理,获得电压响应曲线,并离线辨识出电池二阶RC模型的参数值”的步骤还包括:
在多个开路电压处对电池进行恒定电流的脉冲放电-静置处理;
记录多个开路电压时脉冲放电-静置处理的电压响应,以得到电压响应曲线;
根据电压响应曲线,离线分析获得电池二阶RC模型在多个SOC值时所对应的参数值。
此时,根据电压响应曲线,离线分析获得电池二阶RC模型在多个SOC值时所对应的参数值,从而可以使得后续的判断过程更为快捷。
S3,根据电池二阶RC模型建立电池的离散状态空间模型;
将此时获得的参数值代入电池二阶RC模型中,即可以获得电池的离散状态空间模型,也即获得多个电池的离散状态空间模型。
S4,检测当前的电池工作电压值,根据特性曲线获得当前的能量状态的初始值;
S5,根据当前能量状态的初始值及离散状态空间模型得到当前的能量状态估计值;
其中,根据电池二阶RC模型在多个SOC值时所对应的参数值,即每个能量状态的初始值对应一个离散状态空间模型,由此可以根据能量状态的初始值估算得到能量状态估计值,此时的估算过程由于前述的检测以及判断过程,保证了估计值的精度不会偏离实际能量状态值较大范围,从而提高了能量状态估计的精度。
S6,根据能量状态估计值及特性曲线,得到当前的开路电压值,以在线辨识电池二阶RC模型的参数值;
可选地,“辨识电池二阶RC模型的参数值”的步骤包括:
依据基尔霍夫定律及拉布拉斯变换,将电池二阶RC等效电路模型转换为二阶RC等效电路模型频域下的状态方程;
利用含遗传因子的递推最小二乘法,对电池二阶RC等效电路模型进行参数识别。
可选地,“辨识电池二阶RC模型的参数值”的步骤包括:
依据电池二阶RC模型建立的电池二阶RC模型频域下的状态方程如下:
其中,Uoc代表电池的开路电压(OCV),Ul为电池组的端电压,R0为电池的欧姆内阻,R1、R2分别为电池充放电过程中的电化学极化电阻和浓度差极化电阻,C1、C2分别为电池充放电过程中的暂态电容、电化学极化和浓度差极化电容,U1、U2分别为通过电容C1、C2的电压值,U为电池端电压,I为电池端电流;
令时间常数τ1=R1C1,τ2=R2C2
则状态方程可以简化为:
τ1τ2Uocs2+(τ12)Uocs+Uoc
τ1τ2IR0s2+Is|R1τ2+R2τ1+R012)|+I(R1+R2+R0)
1τ2Us2+(τ12)Us+U
设a=τ1τ2,b=τ12,c=R1+R2+R0
d=R1τ2+R2τ1+R012)
则上式可简化为
aUocs2+bUocs+Uoc=aR0Is2+dIs+cI+aUs2+bUs+U
将上式进行离散化处理,其中T为采样时间,整理可得:
Uoc(k)-U=k1|U(k-1)-Uoc(k-1)|+k2|U(k-2)-Uoc(k-2)|
+k3I(k)+k4I(k-1)+k5I(k-2)
其中,
代入递推最小二乘的辨识方法中,当前时刻的θ=|k1k2k3k4k5|T值,然后根据以下公式,
R0=k5/k2
R1=(τ1c+τ2Ri-d)/(τ12)
R2=c-R1-Ri
C1=τ1/R1
C2=τ2/R2
计算出电路模型参数R0、R1、R2、C1、C2,从而根据开路电压实现电池二阶RC模型参数的在线辨识。
值得注意的是,此刻的公式仅当电池采用电池二阶RC模型时可以适用,当电池采用其他不同的模型时,也可以采用“依据基尔霍夫定律及拉布拉斯变换,将电池二阶RC等效电路模型转换为二阶RC等效电路模型频域下的状态方程,利用含遗传因子的递推最小二乘法,对电池二阶RC等效电路模型进行参数识别”的处理过程,具体的模型的推导公式此处不再赘述。此时,依据上述变换以及各种状态方程的确立,从而进一步保证了能量状态估算值的准确性,从而进一步电池能量状态估算的精度。
S7,根据电池二阶RC模型的参数值实时更新离散状态空间模型的参数值,并根据更新后的离散状态空间模型去估算能量状态估计值。
其中,如图2所示,在第一种情况中,可以在每一次电池二阶RC模型的参数值实时更新后再进行下一次估算,以此来实现更为精确地估算。在第二种情况中,可以将此次获得的电池二阶RC模型的参数值与上一次的电池二阶RC模型的参数值比较,若差值超过第一预设值,视为异常值,此时不对离散状态空间模型的参数值进行更新,此时的第一预设值根据需要设定。由此可以排除一些由于测量误差而导致的参数更新不准的情况,使得估算的结果更进一步精确。在第三种情况中,可以将此次获得的电池二阶RC模型的参数值与上一次的电池二阶RC模型的参数值比较,若差值小于第二预设值(第二预设值小于第一预设值),此时不对离散状态空间模型的参数值进行更新,从而加快下次估算能量状态的速度,此时,第二预设值设置在保证预测精度的基础上,例如,本方法的预测精度可以优化至0.01时,将第二预设值设置在0.01-0.09的范围,当此次获得的电池二阶RC模型的参数值与上一次的电池二阶RC模型的参数值的差值处于这个范围时,不对离散状态空间模型的参数值进行更新,直接进行下一次测量,从而减少了运算时间,加快了下次估算能量状态的速度,使得电池估算的速度更为快速和准确,减少信息滞留时间,实现实时估算。
可选地,“根据电池二阶RC模型建立电池的离散状态空间模型”的步骤包括:
根据电池二阶RC模型,得到电池的状态方程和量测方程;
将电池的状态方程及量测方程离散,得到状态方程及量测方程的离散模型;
依据状态方程及量测方程的离散模型建立电池的离散状态空间模型。
可选地,“根据电池二阶RC模型建立电池的离散状态空间模型”的步骤包括:
根据选取的电池二阶RC模型,进行公式变换得到电池的状态方程和量测方程:
状态方程离散化后的离散模型:
令电池模型中的状态变量为x=[x1x2x3]=[UocU1U2]T,电池管理系统输入u为电池的工作电流I,且放电为正,电池管理系统输出y为电池的工作电压U,采样时间为T;
电池离散状态空间模型为:
其中
Dk=-R0(k)。
可选地,“根据当前能量状态的初始值及离散状态空间模型得到当前的能量状态估计值”的步骤包括:
算法系统参数状态量初始化
x0=[SOC(0)0 0]T
运行扩展卡尔曼滤波算法预测模块:
(1)状态预测:
(2)状态预测误差协方差矩阵:
纠错模块:
(1)卡尔曼增益:
其中,
(2)状态估计:
(3)状态估计误协方差矩阵:
Pk=(I-GkCk)Pk|-1
其中,Pk为协方差,Gk为卡尔曼增益,Qk-1为过程噪声误差,Rk-1为观测噪声误差。
可选地,“对电池进行脉冲放电-静置处理,获得电压响应曲线,并离线辨识出电池二阶RC模型的参数值”的步骤之前还包括:
选取电池二阶RC模型。
其中,电池二阶RC模型并不局限于本发明中所采用如图3所示的电池二阶RC模型,利用本方案中的电池在线参数辨识的能量状态估算方法,所有类型的电池二阶RC模型均可实现电池估算。
为实现上述目的,本发明还提出一种电池管理系统,如图4所示,包括存储器13、传感器11、处理器12及存储在存储器13上并可在所述处理器12上运行的电池在线参数辨识的能量状态估算程序,传感器11与所述处理器12连接,所述传感器11用于检测电池工作电压值,所述电池在线参数辨识的能量状态估算程序被MCU内的处理器12执行,实现如上所述的电池在线参数辨识的能量状态估算方法。
值得注意的是,因为本发明电池管理系统包含了上述电池在线参数辨识的能量状态估算方法的全部实施例,因此本发明电池管理系统具有上述电池在线参数辨识的能量状态估算方法的所有有益效果,此处不再赘述。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

1.一种电池在线参数辨识的能量状态估算方法,用于电池管理系统,其特征在于,所述电池在线参数辨识的能量状态估算方法包括:
对电池进行放电-静置处理,拟合出电池的开路电压与电池能量的特性曲线;
对电池进行脉冲放电-静置处理,获得电压响应曲线,并离线辨识出所述电池二阶RC模型的参数值;
根据电池二阶RC模型建立电池的离散状态空间模型;
检测当前的电池工作电压值,根据所述特性曲线获得当前的能量状态的初始值;
根据所述当前能量状态的初始值及所述离散状态空间模型得到当前的能量状态估计值;
根据所述能量状态估计值及所述特性曲线,得到当前的开路电压值,以在线辨识电池二阶RC模型的参数值;
根据电池二阶RC模型的参数值实时更新离散状态空间模型的参数值,并根据更新后的离散状态空间模型去估算能量状态估计值。
2.如权利要求1所述的电池在线参数辨识的能量状态估算方法,其特征在于,所述“对电池进行放电-静置处理,拟合出电池的开路电压与电池能量的特性曲线”的步骤包括:
对电池进行脉冲放电-静置处理;
获取电池在多个温度值下的开路电压及对应的电池能量;
拟合出开路电压与电池能量的特性曲线。
3.如权利要求1所述的电池在线参数辨识的能量状态估算方法,其特征在于,所述“对电池进行脉冲放电-静置处理,获得电压响应曲线,并离线辨识出所述电池二阶RC模型的参数值”的步骤还包括:
在多个开路电压处对电池进行恒定电流的脉冲放电-静置处理;
记录多个开路电压时脉冲放电-静置处理的电压响应,以得到电压响应曲线;
根据所述电压响应曲线,离线分析获得电池二阶RC模型在多个SOC值时所对应的参数值。
4.如权利要求1所述的电池在线参数辨识的能量状态估算方法,其特征在于,所述“辨识电池二阶RC模型的参数值”的步骤包括:
依据基尔霍夫定律及拉布拉斯变换,将所述电池二阶RC等效电路模型转换为二阶RC等效电路模型频域下的状态方程;
利用含遗传因子的递推最小二乘法,对电池二阶RC等效电路模型进行参数识别。
5.如权利要求1所述的电池在线参数辨识的能量状态估算方法,其特征在于,所述“根据电池二阶RC模型建立电池的离散状态空间模型”的步骤包括:
根据电池二阶RC模型,得到电池的状态方程和量测方程;
将所述电池的状态方程及量测方程离散,得到状态方程及量测方程的离散模型;
依据所述状态方程及量测方程的离散模型建立电池的离散状态空间模型。
6.如权利要求4所述的电池在线参数辨识的能量状态估算方法,其特征在于,所述“辨识电池二阶RC模型的参数值”的步骤包括:
依据所述电池二阶RC模型建立的电池二阶RC模型频域下的所述状态方程如下:
其中,Uoc代表电池的开路电压(OCV),Ul为电池组的端电压,R0为电池的欧姆内阻,R1、R2分别为电池充放电过程中的电化学极化电阻和浓度差极化电阻,C1、C2分别为电池充放电过程中的暂态电容、电化学极化和浓度差极化电容,U1、U2分别为通过电容C1、C2的电压值,U为电池端电压,I为电池端电流;
令时间常数τ1=R1C1,τ2=R2C2
则所述状态方程可以简化为:
τ1τ2Uocs2+(τ12)Uocs+Uoc
τ1τ2IR0s2+Is|R1τ2+R2τ1+R012)|+I(R1+R2+R0)
1τ2Us2+(τ12)Us+U
设a=τ1τ2,b=τ12,c=R1+R2+R0
d=R1τ2+R2τ1+R012)
则上式可简化为
aUocs2+bUocs+Uoc=aR0Is2+dIs+cI+aUs2+bUs+U
将上式进行离散化处理,其中T为采样时间,整理可得:
Uoc(k)-U=k1|U(k-1)-Uoc(k-1)|+k2|U(k-2)-Uoc(k-2)|
+k3I(k)+k4I(k-1)+k5I(k-2)
其中,
代入递推最小二乘的辨识方法中,当前时刻的θ=|k1k2k3k4k5|T值,然后根据以下公式,
R0=k5/k2
R1=(τ1c+τ2Ri-d)/(τ12)
R2=c-R1-Ri
C1=τ1/R1
C2=τ2/R2
计算出电路模型参数R0、R1、R2、C1、C2,从而根据开路电压实现电池二阶RC模型参数的在线辨识。
7.如权利要求1所述的电池在线参数辨识的能量状态估算方法,其特征在于,所述“对电池进行脉冲放电-静置处理,获得电压响应曲线,并离线辨识出所述电池二阶RC模型的参数值”的步骤之前还包括:
选取电池二阶RC模型。
8.如权利要求7所述的电池在线参数辨识的能量状态估算方法,其特征在于,所述“根据电池二阶RC模型建立电池的离散状态空间模型”的步骤包括:
根据选取的所述电池二阶RC模型,进行公式变换得到电池的状态方程和量测方程:
状态方程离散化后的离散模型:
令电池模型中的状态变量为x=[x1 x2 x3]=[Uoc U1 U2]T,电池管理系统输入u为电池的工作电流I,且放电为正,电池管理系统输出y为电池的工作电压U,采样时间为T;
电池离散状态空间模型为:
其中
Dk=-R0(k)。
9.如权利要求8所述的电池在线参数辨识的能量状态估算方法,其特征在于,所述“根据所述当前能量状态的初始值及所述离散状态空间模型得到当前的能量状态估计值”的步骤包括:
算法系统参数状态量初始化
x0=[SOC(0) 0 0]T
运行扩展卡尔曼滤波算法
预测模块:
(1)状态预测:
(2)状态预测误差协方差矩阵:
纠错模块:
(1)卡尔曼增益:
其中,
(2)状态估计:
(3)状态估计误协方差矩阵:
Pk=(I-GkCk)Pk|k-1
其中,Pk为协方差,Gk为卡尔曼增益,Qk-1为过程噪声误差,Rk-1为观测噪声误差。
10.一种电池管理系统,其特征在于,包括存储器、传感器、处理器及存储在所述存储器上并可在所述处理器上运行的电池在线参数辨识的能量状态估算程序,所述传感器与所述处理器连接,所述传感器用于检测电池工作电压值,所述电池在线参数辨识的能量状态估算程序被MCU内的处理器执行,实现如权利要求1-8任一项所述的电池在线参数辨识的能量状态估算方法。
CN201811629519.0A 2018-12-28 2018-12-28 电池在线参数辨识的能量状态估算方法及电池管理系统 Pending CN109581225A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811629519.0A CN109581225A (zh) 2018-12-28 2018-12-28 电池在线参数辨识的能量状态估算方法及电池管理系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811629519.0A CN109581225A (zh) 2018-12-28 2018-12-28 电池在线参数辨识的能量状态估算方法及电池管理系统

Publications (1)

Publication Number Publication Date
CN109581225A true CN109581225A (zh) 2019-04-05

Family

ID=65932295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811629519.0A Pending CN109581225A (zh) 2018-12-28 2018-12-28 电池在线参数辨识的能量状态估算方法及电池管理系统

Country Status (1)

Country Link
CN (1) CN109581225A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231567A (zh) * 2019-07-16 2019-09-13 奇瑞新能源汽车股份有限公司 一种电动汽车soc估算算法
CN110261778A (zh) * 2019-05-27 2019-09-20 南京理工自动化研究院有限公司 一种锂离子电池soc估测算法
CN110297185A (zh) * 2019-08-14 2019-10-01 莆田市烛火信息技术有限公司 一种新能源汽车电池参数动态监测系统
CN110297186A (zh) * 2019-08-14 2019-10-01 莆田市烛火信息技术有限公司 一种新能源汽车电池参数检测方法
CN110361652A (zh) * 2019-06-26 2019-10-22 河南理工大学 一种基于模型参数优化的卡尔曼滤波锂电池soc估计方法
CN110554320A (zh) * 2019-09-24 2019-12-10 东风航盛(武汉)汽车控制系统有限公司 锂离子电池的soc估算方法
CN110716146A (zh) * 2019-09-30 2020-01-21 精进电动科技股份有限公司 一种动力电池开路电压的估计方法
CN111308352A (zh) * 2019-11-28 2020-06-19 湖南海博瑞德电智控制技术有限公司 一种锂离子的电池衰减估算方法
CN111929585A (zh) * 2019-05-13 2020-11-13 顺丰科技有限公司 电池电荷状态计算装置、方法、服务器及介质
CN111983479A (zh) * 2020-08-04 2020-11-24 珠海迈巨微电子有限责任公司 电池物理模型实时建立方法、更新方法及电池监控设备
CN112051504A (zh) * 2020-08-13 2020-12-08 联合汽车电子有限公司 电池容量的预测方法、装置、终端及计算机可读存储介质
CN112816879A (zh) * 2021-01-05 2021-05-18 南京航空航天大学 一种用于变工况车用动力电池SoE在线估计方法
CN115980590A (zh) * 2023-01-10 2023-04-18 上海玫克生储能科技有限公司 电化学参数的辨识方法、装置、设备和存储介质
CN116540115A (zh) * 2023-06-30 2023-08-04 云南丁旺科技有限公司 电池能量状态监测方法和电池系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501724A (zh) * 2016-10-28 2017-03-15 合肥工业大学 一种基于rls和ekf算法的全钒液流电池soc估计方法
CN107238803A (zh) * 2017-07-10 2017-10-10 安徽锐能科技有限公司 用于估计电池soe的方法和计算机可读存储介质
CN107346002A (zh) * 2017-07-10 2017-11-14 安徽锐能科技有限公司 用于估计电池soe的装置
CN107390127A (zh) * 2017-07-11 2017-11-24 欣旺达电动汽车电池有限公司 一种soc估算方法
CN107406004A (zh) * 2015-01-13 2017-11-28 沃尔沃汽车公司 用于确定车辆中的电池的能量状态的值的方法及设备
CN107741569A (zh) * 2017-11-16 2018-02-27 温州大学 一种基于分段扩展卡尔曼滤波的锂电池荷电状态的估算方法
CN108508371A (zh) * 2018-04-09 2018-09-07 重庆大学 一种基于等效电路模型的动力电池soc/soh/sop联合估计方法
CN108544925A (zh) * 2018-04-02 2018-09-18 北京理工大学 电池管理系统
CN108872866A (zh) * 2018-06-04 2018-11-23 桂林电子科技大学 一种锂离子电池荷电状态动态评估与长效预测融合方法
CN109061520A (zh) * 2018-10-25 2018-12-21 杭州神驹科技有限公司 一种动力电池健康与功率状态在线估算方法及系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406004A (zh) * 2015-01-13 2017-11-28 沃尔沃汽车公司 用于确定车辆中的电池的能量状态的值的方法及设备
CN106501724A (zh) * 2016-10-28 2017-03-15 合肥工业大学 一种基于rls和ekf算法的全钒液流电池soc估计方法
CN107238803A (zh) * 2017-07-10 2017-10-10 安徽锐能科技有限公司 用于估计电池soe的方法和计算机可读存储介质
CN107346002A (zh) * 2017-07-10 2017-11-14 安徽锐能科技有限公司 用于估计电池soe的装置
CN107390127A (zh) * 2017-07-11 2017-11-24 欣旺达电动汽车电池有限公司 一种soc估算方法
CN107741569A (zh) * 2017-11-16 2018-02-27 温州大学 一种基于分段扩展卡尔曼滤波的锂电池荷电状态的估算方法
CN108544925A (zh) * 2018-04-02 2018-09-18 北京理工大学 电池管理系统
CN108508371A (zh) * 2018-04-09 2018-09-07 重庆大学 一种基于等效电路模型的动力电池soc/soh/sop联合估计方法
CN108872866A (zh) * 2018-06-04 2018-11-23 桂林电子科技大学 一种锂离子电池荷电状态动态评估与长效预测融合方法
CN109061520A (zh) * 2018-10-25 2018-12-21 杭州神驹科技有限公司 一种动力电池健康与功率状态在线估算方法及系统

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
WANG Y J ET AL.: ""Model-based state-of-energy estimation of lithium-ion batteries in electric vehicles"", 《ENERGY PROCEDIA》 *
WANGY ET AL.: ""An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles"", 《JOURNAL OF POWER SOURCES》 *
WEIGEZHANG ET AL.: ""Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery"", 《JOURNAL OF POWER SOURCES》 *
YONGZHI ZHANG ET AL.: ""lithium-Ion Battery Pack State of Charge and State of Energy Estimation Algorithms Using a Hardware-in-the-Loop Validation"", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
ZHANG Y Z ET AL.: ""A Data-Driven Based State of Energy Estimator of Lithium-ion Batteries Used to Supply Electric Vehicles"", 《ENERGY PROCEDIA》 *
卢佳翔: "电动汽车动力电池能量状态估算方法研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
张禹轩: ""电动汽车动力电池模型参数在线辨识及SOC估计"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
潘仲明: "《随机信号分析与最优估计理论》", 31 January 2012 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929585A (zh) * 2019-05-13 2020-11-13 顺丰科技有限公司 电池电荷状态计算装置、方法、服务器及介质
CN111929585B (zh) * 2019-05-13 2023-08-04 丰翼科技(深圳)有限公司 电池电荷状态计算装置、方法、服务器及介质
CN110261778A (zh) * 2019-05-27 2019-09-20 南京理工自动化研究院有限公司 一种锂离子电池soc估测算法
CN110361652A (zh) * 2019-06-26 2019-10-22 河南理工大学 一种基于模型参数优化的卡尔曼滤波锂电池soc估计方法
CN110231567A (zh) * 2019-07-16 2019-09-13 奇瑞新能源汽车股份有限公司 一种电动汽车soc估算算法
CN110297185A (zh) * 2019-08-14 2019-10-01 莆田市烛火信息技术有限公司 一种新能源汽车电池参数动态监测系统
CN110297186A (zh) * 2019-08-14 2019-10-01 莆田市烛火信息技术有限公司 一种新能源汽车电池参数检测方法
CN110554320A (zh) * 2019-09-24 2019-12-10 东风航盛(武汉)汽车控制系统有限公司 锂离子电池的soc估算方法
CN110716146A (zh) * 2019-09-30 2020-01-21 精进电动科技股份有限公司 一种动力电池开路电压的估计方法
CN111308352A (zh) * 2019-11-28 2020-06-19 湖南海博瑞德电智控制技术有限公司 一种锂离子的电池衰减估算方法
CN111983479A (zh) * 2020-08-04 2020-11-24 珠海迈巨微电子有限责任公司 电池物理模型实时建立方法、更新方法及电池监控设备
CN112051504A (zh) * 2020-08-13 2020-12-08 联合汽车电子有限公司 电池容量的预测方法、装置、终端及计算机可读存储介质
CN112051504B (zh) * 2020-08-13 2024-03-19 联合汽车电子有限公司 电池容量的预测方法、装置、终端及计算机可读存储介质
CN112816879A (zh) * 2021-01-05 2021-05-18 南京航空航天大学 一种用于变工况车用动力电池SoE在线估计方法
CN115980590A (zh) * 2023-01-10 2023-04-18 上海玫克生储能科技有限公司 电化学参数的辨识方法、装置、设备和存储介质
CN115980590B (zh) * 2023-01-10 2023-08-08 上海玫克生储能科技有限公司 电化学参数的辨识方法、装置、设备和存储介质
CN116540115A (zh) * 2023-06-30 2023-08-04 云南丁旺科技有限公司 电池能量状态监测方法和电池系统
CN116540115B (zh) * 2023-06-30 2023-09-26 云南丁旺科技有限公司 电池能量状态监测方法和电池系统

Similar Documents

Publication Publication Date Title
CN109581225A (zh) 电池在线参数辨识的能量状态估算方法及电池管理系统
CN106054084B (zh) 一种动力电池soc估计方法
US8612168B2 (en) Method and apparatus for estimating battery capacity of a battery
CN108919137B (zh) 一种考虑不同电池状态的电池老化状态估计方法
CN110031770B (zh) 一种快速得到电池包中所有单体电池容量的方法
US8452556B2 (en) Method and apparatus for estimating SOC of a battery
CN106842060A (zh) 一种基于动态参数的动力电池soc估算方法及系统
CN106249171B (zh) 一种用于宽采样间隔的动力电池系统辨识和状态估计方法
CN109188293B (zh) 基于新息协方差带渐消因子的ekf锂离子电池soc估算方法
CN100492751C (zh) 基于标准电池模型的镍氢动力电池荷电状态的估计方法
JP6509725B2 (ja) バッテリの充電状態の推定
CN107390127A (zh) 一种soc估算方法
CN110596606B (zh) 一种锂电池剩余电量估计方法、系统及装置
CN104267261B (zh) 基于分数阶联合卡尔曼滤波的二次电池简化阻抗谱模型参数在线估计方法
CN110261779A (zh) 一种三元锂电池荷电状态与健康状态在线协同估计方法
CN103809125B (zh) 锂离子电池的剩余放电容量估计方法及系统
US20150112527A1 (en) Battery soc estimation with automatic correction
CN108732508B (zh) 一种锂离子电池容量的实时估计方法
CN103323781B (zh) 动力电池组在线参数检测系统及soc估计方法
CN103744026A (zh) 基于自适应无迹卡尔曼滤波的蓄电池荷电状态估算方法
CN105223487B (zh) 一种锂离子电池的多状态解耦估计方法
CN109541485A (zh) 一种动力电池的soc估算方法
CN106772072A (zh) 一种基于电池特性曲线的soc估算方法及装置
CN104535932A (zh) 一种锂离子电池荷电状态估计方法
CN105572596B (zh) 锂电池soc估算方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190405