CN109574153A - 一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺 - Google Patents

一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺 Download PDF

Info

Publication number
CN109574153A
CN109574153A CN201811551124.3A CN201811551124A CN109574153A CN 109574153 A CN109574153 A CN 109574153A CN 201811551124 A CN201811551124 A CN 201811551124A CN 109574153 A CN109574153 A CN 109574153A
Authority
CN
China
Prior art keywords
cathode
anode
electrode
chlorophenol
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811551124.3A
Other languages
English (en)
Other versions
CN109574153B (zh
Inventor
孙治荣
王睿浩
朱凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201811551124.3A priority Critical patent/CN109574153B/zh
Publication of CN109574153A publication Critical patent/CN109574153A/zh
Application granted granted Critical
Publication of CN109574153B publication Critical patent/CN109574153B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺,属于电化学水处理技术领域。本发明以优化后的Pd/RGO‑nafion/Ti电极为阴极,以溶胶凝胶法制备的SnO2‑Sb‑Ni电极为阳极,采用三联耦合装置,可以将阴极脱氯过程所需最适电流提高到与阳极苯酚降解所需最适电流相匹配,这就解决了阴极还原氯酚及阳极氧化苯酚所需最适电流密度不匹配的问题,使得阴阳极均在最优条件下降解污染物,同步实现电催化还原与氧化反应的高效进行。该耦合装置可以将目前电化学技术上单纯的阳极氧化和阴极还原过程耦合起来实现双重利用,解决了辅助电极只提供电路的问题,极大提高了能源的利用率。

Description

一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺
技术领域
本发明涉及电化学水处理技术领域,具体涉及一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺的构建,该工艺体系可实现阴阳极两种不同污染物的同步高效降解。
背景技术
电化学还原是指氯代有机物在电极阴极表面形成吸附态,再被电子攻击,从而造成吸附态氯代有机物的C-Cl键断裂的反应。通过阴极还原可将多氯代芳香族化合物部分或完全脱氯,转化为低毒的加氢产物,作为氧化法和生物法的预处理具有广阔的前景。
电催化氧化法处理废水中的有机污染物,就是使有机物在电极表面发生直接或间接氧化反应,最终生成H2O和CO2而从体系中除去。一般认为根据电极参与氧化反应的机理不同,电催化氧化过程可分为直接电化学氧化法和间接电化学氧化法两个过程。
传统的电化学催化只是单纯的研究电化学还原或电催化氧化,这就造成了辅助电极只是单纯提供电路,或者只是对工作电极提供少部分帮助的情况,这种单一的降解办法能耗大,成本高,制约了其在废水处理中的发展以及实际应用的可能性。因此,开发一种将单纯的阳极氧化和阴极还原过程耦合起来实现双重利用的工艺,具有十分重要的意义。
发明内容
本发明提供了一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺的构建。包括以下内容:
(1)一个阳极室对应两个并联阴极室的三联耦合装置;包括:两个实现阴极氯酚脱氯的并联阴极室;一个实现阳极苯酚开环降解的阳极室;阳极室分别和两个阴极室连通,阴阳极室之间采用用于区分阴阳极室的只允许阳离子自由通过的阳离子交换膜分隔;阳极室与电池的正极连接,阴极室分别与电池的负极连接;
(2)分别将相同体积、浓度的2,4,6-TCP溶液分别注入到三联耦合装置两端的两阴极室内,在阴极电化学还原作用下实现氯酚脱氯;将一定体积的苯酚溶液注入到阳极室内,在阳极电化学氧化作用下实现苯酚开环降解;阴极室和阳极室的支持电解质均为0.01-0.1mol/L的Na2SO4溶液;
(3)优化后的石墨烯镀钯电极为阴极分别放置在两个阴极室内,溶胶凝胶法制备的SnO2-Sb-Ni电极为阳极放置在阳极室内,调节阴阳极室pH,阴极室pH为1-3,阳极室pH为3-9;施加耦合降解总电流为40-120mA,阳极电流密度为5-15mA/cm2,阴极电流密度为0.5-1.5mA/cm2,进行阴阳极耦合降解污染物;
作为优选,负载石墨烯镀钯阴极的优化制备方法如下:首先,称取一定量的石墨烯和萘酚溶液超声分散于异丙醇溶液中(石墨烯,萘酚膜溶液在异丙醇溶液中的质量浓度分别为0.05%,6%),采用表面涂覆的方法涂覆到预处理除油除氧化物后的4×5cm2钛网上,室温晾干,制得以钛网为基体的石墨烯-萘酚电极;其次,配制浓度为9mmol/L的氯化钯(PdCl2)溶液,以制备的石墨烯-萘酚电极为阴极,以铂片为阳极,在PdCl2溶液中采用恒定电流法电沉积制得Pd/RGO-nafion/Ti电极即石墨烯镀钯电极,沉积电流密度为2.5mA/cm2-4.5mA/cm2,沉积时间为30~90min。
阳极面积与单个阴极面积比为1:1-1:5。
与现有技术相比,本发明具有以下优异效果:
(1)优化后的石墨烯镀钯电极与原始电极相比具有更高的氢吸附峰电流值,意味着具有更高的电催化还原脱氯能力。
(2)将阴极的面积由原始的2×2cm2扩大为4×5cm2,阴极降解氯酚最适电流密度相近的情况下,大幅提高了最适降解电流;
(3)三联耦合装置进一步解决了阴阳极电催化污染物所需最适电流密度不匹配的问题,实现了阴极还原氯酚与阳极氧化苯酚的同步高效耦合,解决了辅助电极单纯提供电路的问题,极大提高了能源的利用率;
(4)由于阴阳极室之间加了阳离子交换膜,使得阳极降解苯酚不受阴极的影响,从而展示出更高的降解能力;
(5)采用三联耦合装置将阴极还原氯酚与阳极氧化苯酚同步耦合,由于并联所以总电阻变为单联阴极降解装置的一半。相同电压下,同一时间污染物的处理量增长为原始阴极降解装置的一倍。
附图说明
图1为实施例1所优化后的的Pd/RGO-nafion/Ti电极和原始的Pd/RGO-nafion/Ti电极的CV曲线图。
图2为实施例1优化后的的Pd/RGO-nafion/Ti电极在耦合体系中对氯酚的降解率以及同时阳极对苯酚的转化率(conversion efficiency)。
图3耦合体系与非耦合体系下同一阳极对苯酚的降解情况(phenolconcentration)。
图4为三联耦合降解装置
具体实施方式
下面实施例和对比例将结合附图对本发明作进一步的说明,但本发明并不限于以下实施例。
实施例1:
(1)将120mL相同体积浓度为150mg/L的2,4,6-TCP溶液分别注入到两端的阴极室内,在阴极电化学还原作用下实现氯酚脱氯;阳极室内注入60mL浓度为50mg/L的苯酚溶液,在阳极电化学氧化作用下实现苯酚开环降解。支持电解质均为0.05mol/L的Na2SO4溶液。
(2)调节阴极室内pH为2.3,阳极室内pH为5.8。区分阴阳极室的离子交换膜为只允许阳离子自由通过的阳离子交换膜。
(3)优化后的石墨烯镀钯电极为阴极分别放置在两个阴极室内,溶胶凝胶法制备的SnO2-Sb-Ni电极(Zhirong Sun,Huan Zhang1,Xuefeng Wei,Xiaoyue Ma,Xiang Hu(2015)Preparation and electrochemical properties of SnO2-Sb-Ni-Ce oxide anodefor phenol oxidation.Journal of Solid State Electrochemistry 19:2445–2456)为阳极放置在阳极室内,阳极面积与单个阴极面积比为1:5,施加80mA的总电流进行阴阳极耦合降解污染物。氯酚的降解率如图2中曲线(1)所示。苯酚的转化率(conversionefficiency)如图2中曲线(2)所示。
(4)作为优选,负载石墨烯镀钯阴极的优化制备方法如下:首先,称取一定量的石墨烯和萘酚溶液超声分散于异丙醇溶液中(石墨烯,萘酚膜溶液在异丙醇溶液中的质量浓度分别为0.05%,6%),采用表面涂覆的方法涂覆到预处理除油除氧化物后的4×5cm2钛网上,室温晾干,制得以钛网为基体的石墨烯-萘酚电极;其次,配制浓度为9mmol/L的氯化钯(PdCl2)溶液,以制备的石墨烯-萘酚电极为阴极,以铂片为阳极,在PdCl2溶液中采用恒定电流法电沉积制得Pd/RGO-nafion/Ti电极,沉积电流为4mA/cm2,沉积时间为70min。
(5)电化学性能测试:以优化后的Pd/RGO-nafion/Ti电极作为工作电极,铂片为对电极,Hg/Hg2SO4电极为参比电极,以0.5mol/L H2SO4为电解质溶液,采用循环伏安法(CV)测定电极的电化学性能,扫描速率为50mV/s。测得该电极循环伏安曲线如图1中曲线(2)所示。
实施例2:
制备原始的Pd/RGO-nafion/Ti电极。
电化学性能测试:以原始的Pd/RGO-nafion/Ti电极作为工作电极,铂片为对电极,Hg/Hg2SO4电极为参比电极,以0.5mol/L H2SO4为电解质溶液,采用循环伏安法(CV)测定电极的电化学性能,扫描速率为50mV/s。测得该电极循环伏安曲线如图1中曲线(1)所示。
实施例3:
具体制备过程同实施例1,耦合情况下苯酚的降解情况(phenol concentration)如图3中曲线(1)所示
在非耦合装置单个反应器内注入60mL浓度为50mg/L的苯酚溶液,调节pH为5.8,铂片为对电极,溶胶凝胶法制备的SnO2-Sb-Ni电极为阳极,施加80mA的总电流在阳极降解苯酚,支持电解质为0.05mol/L的Na2SO4溶液。苯酚的降解情况(phenol concentration)如图3中曲线(2)所示。

Claims (5)

1.一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺方法,其特征在于,包括以下内容:
(1)一个阳极室对应两个并联阴极室的三联耦合装置;包括:两个实现阴极氯酚脱氯的并联阴极室;一个实现阳极苯酚开环降解的阳极室;阳极室分别和两个阴极室连通,阴阳极室之间采用用于区分阴阳极室的只允许阳离子自由通过的阳离子交换膜分隔;阳极室与电源的正极连接,阴极室分别与电源的负极连接;
(2)分别将相同体积、浓度的2,4,6-TCP溶液分别注入到三联耦合装置两端的两阴极室内,在阴极电化学还原作用下实现氯酚脱氯;将一定体积的苯酚溶液注入到阳极室内,在阳极电化学氧化作用下实现苯酚开环降解;阴极室和阳极室的支持电解质均为0.01-0.1mol/L Na2SO4溶液;
(3)优化后的石墨烯镀钯电极为阴极分别放置在两个阴极室内,溶胶凝胶法制备的SnO2-Sb-Ni电极为阳极放置在阳极室内,调节阴阳极室pH,阴极室pH为1-3,阳极室pH为3-9;阳极电流密度为5-15mA/cm2,阴极电流密度为0.5-1.5mA/cm2;进行阴阳极耦合降解污染物。
2.按照权利要求1所述的一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺方法,其特征在于,Na2SO4的浓度为0.05mol/L。
3.按照权利要求1所述的一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺方法,其特征在于,负载石墨烯镀钯阴极的优化制备方法如下:首先,称取一定量的石墨烯和萘酚溶液超声分散于异丙醇溶液中(石墨烯,萘酚膜溶液在异丙醇溶液中的质量浓度分别为0.05%,6%),采用表面涂覆的方法涂覆到预处理除油除氧化物后的4×5cm2钛网上,室温晾干,制得以钛网为基体的石墨烯-萘酚电极;其次,配制浓度为9mmol/L的氯化钯(PdCl2)溶液,以制备的石墨烯-萘酚电极为阴极,以铂片为阳极,在PdCl2溶液中采用恒定电流法电沉积制得Pd/RGO-nafion/Ti电极即石墨烯镀钯电极,沉积电流密度为2.5mA/cm2-180mA/cm2,沉积时间为30~90min。
4.按照权利要求1所述的一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺方法,其特征在于,阳极面积与单个阴极面积比为1:1-1:5。
5.按照权利要求1所述的一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺方法,其特征在于,施加耦合降解总电流为40-120mA,阳极电流密度为5-15mA/cm2,阴极电流密度为0.5-1.5mA/cm2
CN201811551124.3A 2018-12-18 2018-12-18 一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺 Active CN109574153B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811551124.3A CN109574153B (zh) 2018-12-18 2018-12-18 一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811551124.3A CN109574153B (zh) 2018-12-18 2018-12-18 一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺

Publications (2)

Publication Number Publication Date
CN109574153A true CN109574153A (zh) 2019-04-05
CN109574153B CN109574153B (zh) 2021-05-28

Family

ID=65930976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811551124.3A Active CN109574153B (zh) 2018-12-18 2018-12-18 一种阴极还原氯酚与阳极氧化苯酚的同步高效耦合工艺

Country Status (1)

Country Link
CN (1) CN109574153B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603191A (zh) * 2021-08-23 2021-11-05 中国科学院生态环境研究中心 一种金属钌基电极及其制备方法和应用
CN114105258A (zh) * 2021-11-17 2022-03-01 上海纳米技术及应用国家工程研究中心有限公司 一种用于电催化降解吡啶的电极的制作方法及其产品和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103334122A (zh) * 2013-05-30 2013-10-02 扬州大学 还原石墨烯-钯复合物修饰电极的制备及其应用
CN103343342A (zh) * 2013-07-09 2013-10-09 北京工业大学 一种聚吡咯-多壁碳纳米管协同修饰载钯复合电极的方法及应用
CN104016449A (zh) * 2014-05-29 2014-09-03 北京工业大学 一种Sb-Ni-Nd共掺杂SnO2高催化活性阳极的制备及应用
CN106947990A (zh) * 2017-03-13 2017-07-14 北京工业大学 一种电泳‑脉冲沉积制备石墨烯修饰载钯电极的方法
CN108017120A (zh) * 2017-12-05 2018-05-11 淮南师范学院 一种采用新型阳极电催化氧化处理苯酚有机废水的方法
CN108448144A (zh) * 2018-03-12 2018-08-24 广州大学 一种微生物燃料电池
CN108773876A (zh) * 2018-06-01 2018-11-09 山东深信节能环保科技有限公司 一种利用三明治构型的电极体系以及电解方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103334122A (zh) * 2013-05-30 2013-10-02 扬州大学 还原石墨烯-钯复合物修饰电极的制备及其应用
CN103343342A (zh) * 2013-07-09 2013-10-09 北京工业大学 一种聚吡咯-多壁碳纳米管协同修饰载钯复合电极的方法及应用
CN104016449A (zh) * 2014-05-29 2014-09-03 北京工业大学 一种Sb-Ni-Nd共掺杂SnO2高催化活性阳极的制备及应用
CN106947990A (zh) * 2017-03-13 2017-07-14 北京工业大学 一种电泳‑脉冲沉积制备石墨烯修饰载钯电极的方法
CN108017120A (zh) * 2017-12-05 2018-05-11 淮南师范学院 一种采用新型阳极电催化氧化处理苯酚有机废水的方法
CN108448144A (zh) * 2018-03-12 2018-08-24 广州大学 一种微生物燃料电池
CN108773876A (zh) * 2018-06-01 2018-11-09 山东深信节能环保科技有限公司 一种利用三明治构型的电极体系以及电解方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603191A (zh) * 2021-08-23 2021-11-05 中国科学院生态环境研究中心 一种金属钌基电极及其制备方法和应用
CN113603191B (zh) * 2021-08-23 2022-11-01 中国科学院生态环境研究中心 一种金属钌基电极及其制备方法和应用
CN114105258A (zh) * 2021-11-17 2022-03-01 上海纳米技术及应用国家工程研究中心有限公司 一种用于电催化降解吡啶的电极的制作方法及其产品和应用

Also Published As

Publication number Publication date
CN109574153B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
Ghadge et al. Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells
Wen et al. Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination
Shen et al. Influence of antimony ions in negative electrolyte on the electrochemical performance of vanadium redox flow batteries
Li et al. Fabrication of a stable Ti/TiOxHy/Sb− SnO2 anode for aniline degradation in different electrolytes
Liu et al. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell
Jiang et al. Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes
Li et al. Cr (VI) reduction at rutile-catalyzed cathode in microbial fuel cells
Pant et al. Anode and cathode materials characterization for a microbial fuel cell in half cell configuration
Meng et al. Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel
CN106006860A (zh) 一种太阳能供电的高盐有机废水处理装置
Li et al. Preparation of 3D PbO2 nanospheres@ SnO2 nanowires/Ti electrode and its application in methyl orange degradation
Xia et al. An energy-saving production of hydrogen peroxide via oxygen reduction for electro-Fenton using electrochemically modified polyacrylonitrile-based carbon fiber brush cathode
Feng et al. Effects of sulfide on microbial fuel cells with platinum and nitrogen-doped carbon powder cathodes
Luo et al. Ni-coated carbon fiber as an alternative cathode electrode material to improve cost efficiency of microbial fuel cells
Wu et al. Degradation of chloramphenicol with novel metal foam electrodes in bioelectrochemical systems
CN106277229B (zh) 一种修饰电极电催化氧化处理有机污染物阿特拉津的方法
Xu et al. Simultaneous electricity generation and wastewater treatment in a photocatalytic fuel cell integrating electro-Fenton process
Yu et al. Heterojunction between anodic TiO2/g-C3N4 and cathodic WO3/W nano-catalysts for coupled pollutant removal in a self-biased system
Wang et al. Earth-abundant metal-free carbon-based electrocatalysts for Zn-air batteries to power electrochemical generation of H2O2 for in-situ wastewater treatment
Li et al. Enhanced O2− and HO via in situ generating H2O2 at activated graphite felt cathode for efficient photocatalytic fuel cell
Chisholm et al. Decoupled electrolysis using a silicotungstic acid electron-coupled-proton buffer in a proton exchange membrane cell
Liu et al. Enhanced performance of microbial fuel cell using carbon microspheres modified graphite anode
Zheng et al. Stormwater herbicides removal with a solar-driven advanced oxidation process: A feasibility investigation
Wang et al. Electricity and hydrogen co-production from a bio-electrochemical cell with acetate substrate
Liu et al. Coupling photocatalytic fuel cell based on S-scheme g-C3N4/TNAs photoanode with H2O2 activation for p-chloronitrobenzene degradation and simultaneous electricity generation under visible light

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant