CN109545985A - 一种提高钙钛矿成膜均匀性的装置及其方法 - Google Patents

一种提高钙钛矿成膜均匀性的装置及其方法 Download PDF

Info

Publication number
CN109545985A
CN109545985A CN201710862827.7A CN201710862827A CN109545985A CN 109545985 A CN109545985 A CN 109545985A CN 201710862827 A CN201710862827 A CN 201710862827A CN 109545985 A CN109545985 A CN 109545985A
Authority
CN
China
Prior art keywords
perovskite
presoma
tablet press
press machine
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710862827.7A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Qianna Optoelectronics Technology Co Ltd
Original Assignee
Hangzhou Qianna Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Qianna Optoelectronics Technology Co Ltd filed Critical Hangzhou Qianna Optoelectronics Technology Co Ltd
Priority to CN201710862827.7A priority Critical patent/CN109545985A/zh
Priority to EP18849414.0A priority patent/EP3506378A4/en
Priority to US16/340,539 priority patent/US20200048792A1/en
Priority to PCT/CN2018/087358 priority patent/WO2019056779A1/zh
Publication of CN109545985A publication Critical patent/CN109545985A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/007Apparatus for preparing, pre-treating the source material to be used for crystal growth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/02Conditioning the material prior to shaping
    • B28B17/026Conditioning ceramic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/025Hot pressing, e.g. of ceramic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/028Centering the press head, e.g. using guiding pins or chamfered mould edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/04Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form with one ram per mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/18Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by screw means
    • B30B1/20Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by screw means driven by hand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/32Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by plungers under fluid pressure
    • B30B1/326Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by plungers under fluid pressure operated by hand or foot, e.g. using hydraulic jacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/34Heating or cooling presses or parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B13/00Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
    • B28B13/02Feeding the unshaped material to moulds or apparatus for producing shaped articles
    • B28B13/0215Feeding the moulding material in measured quantities from a container or silo
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及一种提高钙钛矿成膜均匀性的装置,包括研磨机以及压片机,所述研磨机将钙钛矿前驱体研磨成粉末,所述压片机将研磨后的前驱体粉末压制成前驱体薄片,所述压片机包括压制前驱体粉末的模具以及加热装置,所述加热装置给下模具加热。本发明还公开一种如前所述的提高钙钛矿成膜均匀性的装置的使用方法,以及公开一种钙钛矿太阳能电池的制备方法。本发明制备的前驱体薄片不仅很好地解决了颗粒尺寸不均一,在蒸发源底部铺展不平,或覆盖不完全等问题,而且在抽真空和充气的过程中也不会发生飞溅,同时,由于前驱物粉体压制紧实,在加热蒸发的过程中更利于热量的传导,提高了热能使用效率。

Description

一种提高钙钛矿成膜均匀性的装置及其方法
技术领域
本发明涉及钙钛矿太阳能电池制造技术领域,特别涉及一种提高钙钛矿成膜均匀性的装置及其方法。
背景技术
在钙钛矿太阳能电池中,钙钛矿薄膜质量的好坏直接影响电池性能的优劣。目前,钙钛矿薄膜的制备方法主要分为两大类:溶液法和气相法。溶液法分为一步溶液法和两步溶液法。由于一步溶液法不能控制钙钛矿薄膜的结晶过程,故而薄膜的均匀性和重复性较差。两步溶液法在制备时对操作手法要求较高,且材料用量大,不适合大尺寸组件的生产。气相法主要包括:双源气相蒸发沉积法和化学气相沉积法等。由于气相法制备的钙钛矿薄膜结晶质量好,均匀致密,可实现规模化生产,因而在钙钛矿产业化的进程中极具潜力,并已在其他类型的薄膜太阳能电池,如铜铟镓硒(CIGS)、碲化镉(CdTe)、砷化镓(GaAs)等薄膜太阳能电池的工业化生产中得到广泛应用。
在气相蒸发沉积法制备钙钛矿薄膜的过程中,AX前驱体颗粒大小的均匀性和在蒸发源底部的平铺状态对钙钛矿薄膜的均匀结晶至关重要。如果AX前驱体的颗粒大小不均匀,或在蒸发源底部铺展后表面不平,或者覆盖底部不完全,都将影响AX蒸发的均匀性,进而影响钙钛矿薄膜的成膜质量。例如,AX前驱体颗粒大小不均时,小颗粒更易蒸发,而大颗粒则蒸发较慢,使AX蒸气呈现不均匀的上升状态;由于AX在蒸发源底部铺展后,其蒸发过程是一个热传导过程,热量从底部传导到上表面,使最上层的AX先行蒸发,此时,如果AX铺展不平,造成有些地方厚,有些地方薄,其热量传导过程就会有差异,薄的地方更易蒸发,造成气固反应的不均匀,AX在底部铺展不完全的情况与此类似。
另一方面,在气相蒸发沉积的操作中,在开始阶段的抽真空过程和沉积完成后的充气过程中,蒸发腔室内的气体在初始阶段都会有一个较大的扰动,容易造成AX前驱物粉体的飞溅,影响钙钛矿薄膜的结晶。
现有的气相蒸发沉积法工艺有待进一步改进和提高。
发明内容
本发明所要解决的技术问题在于,提供一种提高钙钛矿成膜均匀性的装置及其方法,提出了一种压片状AX前驱体的制备方法,不仅很好的解决了颗粒尺寸不均一,在蒸发源底部铺展不平,或覆盖不完全等问题,而且在抽真空和充气的过程中不会发生飞溅,同时,由于AX前驱物粉体压制紧实,在加热蒸发的过程中更利于热量的均匀传导,提高了热能使用效率。
本发明是这样实现的,提供一种提高钙钛矿成膜均匀性的装置,包括研磨机以及压片机,所述研磨机将钙钛矿前驱体研磨成粉末,所述压片机将研磨后的前驱体粉末压制成前驱体薄片,所述压片机包括压制前驱体粉末的模具以及加热装置,所述加热装置给下模具加热。
进一步地,所述压片机为手动式压片机,所述手动式压片机包括底座、模座、立柱、上板、手轮、丝杆、手柄压杆以及电源,在所述底座中设置油压系统,所述加热装置设置在模座中,所述模座设置在底座中部,所述模具设置在模座上,所述上板设置在两个立柱的顶部,所述手轮带动丝杆转动,所述丝杆下压到模具上,所述手柄压杆调节油压系统的压力,所述电源给加热装置提供电力。
进一步地,所述钙钛矿前驱体包括卤化甲胺(MAX)、卤化甲脒(FAX)、卤化乙胺(EAX)、卤化铯(CsX)、卤化铷(RbX)中至少一种,其中,卤化物(X)为 Cl、Br、I中任意一种。
进一步地,所述钙钛矿前驱体研磨后的粉末粒度在0.1-100μm范围。
进一步地,所述加热装置的温度控制在100-250℃之间,所述压片机的压力范围为1-30MPa之间。
进一步地,所述前驱体薄片的厚度在0.2-30mm之间。
本发明是这样实现的,还提供一种如前所述的提高钙钛矿成膜均匀性的装置的使用方法,包括如下步骤:
1)首先通过研磨机对一种或多种前驱体进行研磨,得到粒度在0.1-100μm范围内,颗粒尺寸均一的前驱体粉末;
2)接着将研磨后的前驱体粉末转移到模具中,使用压片机对前驱体粉末进行压片,制成前驱体薄片。
进一步地,所述研磨机为行星式球磨机,所述行星式球磨机的公转转速范围为50-400转/分钟,自转转速范围为100-800转/分钟,球磨时间在1-720min范围,前驱体研磨后获得粒度在0.1-100μm范围内、颗粒尺寸均一的前驱体粉末。
进一步地,所述压片机为手动式压片机,所述手动式压片机包括底座、模座、立柱、上板、手轮、丝杆、手柄压杆以及电源,在所述底座中设置油压系统,所述加热装置设置在模座中,所述模座设置在底座中部,所述模具设置在模座上,所述上板设置在两个立柱的顶部,所述手轮带动丝杆转动,所述丝杆下压到模具上,所述手柄压杆调节油压系统的压力,所述电源给加热装置提供电力;所述加热装置的温度控制在100-250℃之间,将球磨好的前驱体粉末加入模具中,随模具加热0-30min,转动手轮使丝杠旋紧以固定模具,接着摇动手柄压杆给模具加压,压力范围为1-30MPa,压片完毕后,取出模具中的已压制好的前驱体薄片。
本发明是这样实现的,还提供一种钙钛矿太阳能电池的制备方法,其步骤包括:在基底上预先制备好金属卤化物薄膜,然后传送入蒸发室内抽真空,并对提前放入的前驱体薄片进行加热蒸发,使所述前驱体薄片中的前驱体以蒸气形式与金属卤化物薄膜进行气固反应生成致密均匀的钙钛矿薄膜,其中,所述的前驱体薄片是利用如前所述的提高钙钛矿成膜均匀性的装置制成的,或者是利用如上所述的提高钙钛矿成膜均匀性的装置的使用方法制成的。
与现有技术相比,本发明的提高钙钛矿成膜均匀性的装置及其方法,利用研磨机将钙钛矿前驱体研磨成粉末,再通过压片机将研磨后的前驱体粉末压制成前驱体薄片,制备的压片状前驱体不仅很好地解决了颗粒尺寸不均一,在蒸发源底部铺展不平,或覆盖不完全等问题,而且在抽真空和充气的过程中也不会发生飞溅,同时,由于前驱物粉体压制紧实,在加热蒸发的过程中更利于热量的传导,提高了热能使用效率。
附图说明
图1为本发明的手动式压片机一较佳实施例的立体示意图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
气相蒸发沉积法是当前采用较多的一种制备钙钛矿薄膜的方法,此方法一般将基底传入蒸发室内抽真空,然后对提前放入的AX和BX2进行加热蒸发,使AX以与BX2进行反应生成致密均匀的钙钛矿薄膜。已报道的相关工作对蒸发源中的AX前驱物并未做相关处理,不仅无法保证AX前驱物颗粒尺寸的均匀性,且容易出现在蒸发源底部铺展不平,覆盖不完全等问题,另外在抽真空和充气过程中,蒸发腔室内的气体在初始阶段都会有一个大的扰动,容易造成AX前驱物粉体的飞溅。这些问题都将影响AX蒸发的均匀性,进而影响钙钛矿薄膜的成膜质量。
本发明正是对现有的气相辅助沉积法提出改进方案。
请参照图1所示,本发明提高钙钛矿成膜均匀性的装置及其方法的较佳实施例,包括研磨机(图中未示出)以及压片机。所述研磨机将一种或多种钙钛矿前驱体研磨成粉末。所述压片机将研磨后的前驱体粉末压制成前驱体薄片。
在本实施例中,所述压片机为手动式压片机。所述压片机包括压制前驱体粉末的模具110以及加热装置(图中未示出),还包括底座100、模座105、立柱101、上板102、手轮103、丝杆104、手柄压杆107、电源109、放油阀108以及压力表106。所述加热装置给模具加热。在所述底座100中设置油压系统,所述加热装置设置在模座105中。所述模座105设置在底座100中部。所述模具110设置在模座105上,所述上板102设置在两个立柱101的顶部。所述手轮103带动丝杆104转动,所述丝杆104下压到模具110上,压紧模具110。所述手柄压杆107用来给油压系统加压,所述电源109给加热装置提供电力,用来给模座105中的电阻丝提供电流,使其发热,并与热电偶连接,将模座105温度转换成数字信号显示在显示屏中。放油阀108用来释放油压系统的压力,压力表106显示油压系统的实时压力。
所述钙钛矿前驱体包括卤化甲胺(MAX)、卤化甲脒(FAX)、卤化乙胺(EAX)、卤化铯(CsX)、卤化铷(RbX)中至少一种,其中,卤化物(X)为 Cl、Br、I中任意一种。
在本实施例中,所述钙钛矿前驱体研磨后的粉末粒度在0.1-100μm范围。所述加热装置的温度控制在100-250℃之间,所述压片机的压力范围为1-30MPa之间。所述前驱体薄片的厚度在0.2-30mm之间。
本发明还公开一种如前所述的提高钙钛矿成膜均匀性的装置的使用方法,包括如下步骤:
1)首先通过研磨机对一种或多种前驱体进行研磨,得到粒度在0.1-100μm范围内,颗粒尺寸均一的前驱体粉末。多种前驱体经过研磨机研磨后实现均匀混合,适用于制备混合型钙钛矿薄膜的气相法中。
2)接着将研磨后的前驱体粉末转移到模具中,使用压片机对前驱体粉末进行压片,制成前驱体薄片。前驱体将制成前驱体薄片,解决了粉末铺展的诸多弊端,且可实现批量生产,随用随取,适用于工业化生产的需求。
在本实施例中,所述研磨机为行星式球磨机,所述行星式球磨机的公转转速范围为50-400转/分钟,自转转速范围为100-800转/分钟,球磨时间在1-720min范围,前驱体研磨后获得粒度在0.1-100μm范围内、颗粒尺寸均一的前驱体粉末。
在本实施例中,所述压片机为手动式压片机,所述手动式压片机包括底座、模座、立柱、上板、手轮、丝杆、手柄压杆以及电源。在所述底座中设置油压系统,所述加热装置设置在模座中,所述模座设置在底座中部,所述模具设置在模座上,所述上板设置在两个立柱的顶部,所述手轮带动丝杆转动,所述丝杆下压到模具上。所述手柄压杆调节油压系统的压力,所述电源给加热装置提供电力。
所述加热装置的温度控制在100-250℃之间,将球磨好的前驱体粉末加入模具中,随模具加热0-30min。转动手轮使丝杠旋紧以固定模具,接着摇动手柄压杆给模具加压,压力范围为1-30MPa。压片完毕后,取出模具中的已压制好的前驱体薄片。
前驱体薄片的尺寸与蒸发源内部尺寸一致,使压制出的前驱体薄片能正好平放于蒸发源底部,且覆盖完全。前驱体薄片与压缩饼干类似,可实现批量生产,放于干燥环境中保存备用,在每次制备钙钛矿薄膜之前可随用随取。
为进一步详细说明本发明,以下将结合附图,通过列举实施例作进一步说明,需要指出的是下述实例的具体工艺参数仅是合适范围中的一个示例,并非对本发明的保护范围增加了限制。
1)取MAI与FAI两种卤化物颗粒,按照3:7的质量比加入到行星式球磨机的球磨罐中进行球磨,球磨机公转转速300转/分钟,自转转速为600转/分钟,球磨时间2小时,获得颗粒尺寸均一的两种AX前驱体粉末。
2)将定制的模具110放于压片机的模座105的中心位置,通过电源109进行加热,温度设置为120℃,然后将球磨好的MAI和FAI混合粉末加入模具110中,摇晃模具110使粉末填充均匀,并随模具加热10min。
3)压片前,将放油阀108拧紧,转动手轮103使丝杠104旋紧以固定模具110,接着前后摇动手柄压杆107给模具加压,压力达到15MPa时完成压片。
4)此时,先松开放油阀108以释放压力,同时关闭电源109,松开丝杠104,取出模具110中的MAI和FAI混合粉末前驱体压片。
本发明还公开了一种钙钛矿太阳能电池的制备方法,其步骤包括:在基底上预先制备好金属卤化物薄膜,然后传送入蒸发室内抽真空,并对提前放入的前驱体薄片进行加热蒸发,使所述前驱体薄片中的前驱体以蒸气形式与金属卤化物薄膜进行气固反应生成致密均匀的钙钛矿薄膜。其中,所述的前驱体薄片是利用如前所述的提高钙钛矿成膜均匀性的装置制成的,或者是利用如上所述的提高钙钛矿成膜均匀性的装置的使用方法制成的。
使用这种压片状AX前驱物制备的钙钛矿薄膜表面平整、致密均匀、结晶良好。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种提高钙钛矿成膜均匀性的装置,其特征在于,包括研磨机以及压片机,所述研磨机将钙钛矿前驱体研磨成粉末,所述压片机将研磨后的前驱体粉末压制成前驱体薄片,所述压片机包括压制前驱体粉末的模具以及加热装置,所述加热装置给模具加热。
2.如权利要求1所述的提高钙钛矿成膜均匀性的装置,其特征在于,所述压片机为手动式压片机,所述手动式压片机包括底座、模座、立柱、上板、手轮、丝杆、手柄压杆以及电源,在所述底座中设置油压系统,所述加热装置设置在模座中,所述模座设置在底座中部,所述模具设置在模座上,所述上板设置在两个立柱的顶部,所述手轮带动丝杆转动,所述丝杆下压到模具上,所述手柄压杆调节油压系统的压力,所述电源给加热装置提供电力。
3. 如权利要求1所述的提高钙钛矿成膜均匀性的装置,其特征在于,所述钙钛矿前驱体包括卤化甲胺、卤化甲脒、卤化乙胺、卤化铯、卤化铷中至少一种,其中,卤化物为 Cl、Br、I中任意一种。
4.如权利要求1所述的提高钙钛矿成膜均匀性的装置,其特征在于,所述钙钛矿前驱体研磨后的粉末粒度在0.1-100μm范围。
5.如权利要求1所述的提高钙钛矿成膜均匀性的装置,其特征在于,所述加热装置的温度控制在100-250℃之间,所述压片机的压力范围为1-30MPa之间。
6.如权利要求1所述的提高钙钛矿成膜均匀性的装置及其方法,其特征在于,所述前驱体薄片的厚度在0.2-30mm之间。
7.一种如权利要求1至6中任意一项所述的提高钙钛矿成膜均匀性的装置的使用方法,其特征在于,包括如下步骤:
1)首先通过研磨机对一种或多种前驱体进行研磨,得到粒度在0.1-100μm范围内的前驱体粉末;
2)接着将研磨后的前驱体粉末转移到模具中,使用压片机对前驱体粉末进行压片,制成前驱体薄片。
8.如权利要求7所述的提高钙钛矿成膜均匀性的装置的使用方法,其特征在于,所述研磨机为行星式球磨机,所述行星式球磨机的公转转速范围为50-400转/分钟,自转转速范围为100-800转/分钟,球磨时间在1-720min范围,前驱体研磨后获得粒度在0.1-100μm范围内的前驱体粉末。
9.如权利要求7所述的提高钙钛矿成膜均匀性的装置的使用方法,其特征在于,所述压片机为手动式压片机,所述手动式压片机包括底座、模座、立柱、上板、手轮、丝杆、手柄压杆以及电源,在所述底座中设置油压系统,所述加热装置设置在模座中,所述模座设置在底座中部,所述模具设置在模座上,所述上板设置在两个立柱的顶部,所述手轮带动丝杆转动,所述丝杆下压到模具上,所述手柄压杆调节油压系统的压力,所述电源给加热装置提供电力;所述加热装置的温度控制在100-250℃之间,将球磨好的前驱体粉末加入模具中,随模具加热0-30min,转动手轮使丝杠旋紧以固定模具,接着摇动手柄压杆给模具加压,压力范围为1-30MPa,压片完毕后,取出模具中的已压制好的前驱体薄片。
10.一种钙钛矿太阳能电池的制备方法,其特征在于,其步骤包括:在基底上预先制备好金属卤化物薄膜,然后传送入蒸发室内抽真空,并对提前放入的前驱体薄片进行加热蒸发,使所述前驱体薄片中的前驱体以蒸气形式与金属卤化物薄膜进行气固反应生成致密均匀的钙钛矿薄膜,其中,所述的前驱体薄片是利用如权利要求1至6中任意一项所述的提高钙钛矿成膜均匀性的装置制成的,或者是利用如权利要求7至9中任意一项所述的提高钙钛矿成膜均匀性的装置的使用方法制成的。
CN201710862827.7A 2017-09-22 2017-09-22 一种提高钙钛矿成膜均匀性的装置及其方法 Pending CN109545985A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201710862827.7A CN109545985A (zh) 2017-09-22 2017-09-22 一种提高钙钛矿成膜均匀性的装置及其方法
EP18849414.0A EP3506378A4 (en) 2017-09-22 2018-05-17 DEVICE FOR IMPROVING THE UNIFORMITY OF PEROVSKITE FILM FORMATION AND ASSOCIATED METHOD
US16/340,539 US20200048792A1 (en) 2017-09-22 2018-05-17 Device and Method for Improving Perovskite Film Formation Uniformity
PCT/CN2018/087358 WO2019056779A1 (zh) 2017-09-22 2018-05-17 一种提高钙钛矿成膜均匀性的装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710862827.7A CN109545985A (zh) 2017-09-22 2017-09-22 一种提高钙钛矿成膜均匀性的装置及其方法

Publications (1)

Publication Number Publication Date
CN109545985A true CN109545985A (zh) 2019-03-29

Family

ID=65811086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710862827.7A Pending CN109545985A (zh) 2017-09-22 2017-09-22 一种提高钙钛矿成膜均匀性的装置及其方法

Country Status (4)

Country Link
US (1) US20200048792A1 (zh)
EP (1) EP3506378A4 (zh)
CN (1) CN109545985A (zh)
WO (1) WO2019056779A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110614791A (zh) * 2019-09-20 2019-12-27 西南交通大学 一种压片环境可控的压片装置及使用方法
CN112002814A (zh) * 2020-07-29 2020-11-27 隆基绿能科技股份有限公司 基于固相反应的钙钛矿太阳能电池的制备方法
CN112119870A (zh) * 2020-10-16 2020-12-25 中国农业科学院都市农业研究所 一种固化基质制造装置、工艺及其制造的固化基质
CN112234144A (zh) * 2019-07-15 2021-01-15 北京大学 一种钙钛矿微晶膜的制备方法及太阳能电池器件
CN117651465A (zh) * 2024-01-29 2024-03-05 西安电子科技大学 一种多步压片钙钛矿异质结晶圆x射线探测器及制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11806963B2 (en) * 2020-03-25 2023-11-07 Benjamin BRITTON Hand-operated screw press
FR3111919B1 (fr) * 2020-06-30 2022-08-26 Commissariat Energie Atomique Procede de depot d’une couche de perovskite inorganique
EP4273295A1 (en) 2022-05-03 2023-11-08 Universitat de València Improved synthesis process of thin films by vapour deposition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929575A (en) * 1988-03-21 1990-05-29 The Dow Chemical Company Melt processable, green, ceramic precursor powder
US6482387B1 (en) * 1996-04-22 2002-11-19 Waltraud M. Kriven Processes for preparing mixed metal oxide powders
CN1753190A (zh) * 2005-08-08 2006-03-29 西北工业大学 钙钛矿锰氧化物异质薄膜及其制备方法
US20100155647A1 (en) * 2008-12-18 2010-06-24 Canon Kabushiki Kaisha Oxynitride piezoelectric material and method of producing the same
US20140144772A1 (en) * 2012-11-29 2014-05-29 Corning Incorporated High rate deposition systems and processes for forming hermetic barrier layers
CN105024012A (zh) * 2015-06-13 2015-11-04 中国科学院青岛生物能源与过程研究所 一种制备高质量钙钛矿薄膜的新方法
CN105514275A (zh) * 2015-12-01 2016-04-20 新疆中兴能源有限公司 基于NiO空穴传输层的甲胺铅碘基太阳能电池制备方法
CN106854749A (zh) * 2016-12-02 2017-06-16 广州光鼎科技有限公司 一种钙钛矿材料及其相关薄膜的制备方法
CN207517733U (zh) * 2017-09-22 2018-06-19 杭州纤纳光电科技有限公司 一种提高钙钛矿成膜均匀性的装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277467A (ja) * 1995-04-06 1996-10-22 Mitsubishi Materials Corp (Ba,Sr)Ti系ペロブスカイト構造酸化物薄膜形成用スパッタリング焼結ターゲット材の製造法
US6893498B1 (en) * 2002-03-29 2005-05-17 Silicon Light Machines Corporation Method and apparatus for adjusting lithium oxide concentration in wafers
CN101307491B (zh) * 2008-02-02 2010-09-29 中国科学院物理研究所 Sr1-xCaxCrO3钙钛矿莫特化合物及其高压高温合成方法
CN102260802B (zh) * 2011-07-20 2013-06-12 佛山市钜仕泰粉末冶金有限公司 一种靶材制备装置及其靶材加工方法
CN103926123A (zh) * 2014-04-21 2014-07-16 江苏赛宝龙石化有限公司 一种实验室压片机装置
CN104404478A (zh) * 2014-11-24 2015-03-11 天津理工大学 一种有机铵金属卤化物薄膜的制备方法
CN104485425B (zh) * 2014-12-08 2017-12-01 清华大学 钙钛矿型材料制备方法和设备及其光伏器件的加工方法
US20160362812A1 (en) * 2015-06-12 2016-12-15 Ohio State Innovation Foundation Off-axis sputtering deposition for growth of single crystalline films of a broad range of complex materials

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929575A (en) * 1988-03-21 1990-05-29 The Dow Chemical Company Melt processable, green, ceramic precursor powder
US6482387B1 (en) * 1996-04-22 2002-11-19 Waltraud M. Kriven Processes for preparing mixed metal oxide powders
CN1753190A (zh) * 2005-08-08 2006-03-29 西北工业大学 钙钛矿锰氧化物异质薄膜及其制备方法
US20100155647A1 (en) * 2008-12-18 2010-06-24 Canon Kabushiki Kaisha Oxynitride piezoelectric material and method of producing the same
US20140144772A1 (en) * 2012-11-29 2014-05-29 Corning Incorporated High rate deposition systems and processes for forming hermetic barrier layers
CN105024012A (zh) * 2015-06-13 2015-11-04 中国科学院青岛生物能源与过程研究所 一种制备高质量钙钛矿薄膜的新方法
CN105514275A (zh) * 2015-12-01 2016-04-20 新疆中兴能源有限公司 基于NiO空穴传输层的甲胺铅碘基太阳能电池制备方法
CN106854749A (zh) * 2016-12-02 2017-06-16 广州光鼎科技有限公司 一种钙钛矿材料及其相关薄膜的制备方法
CN207517733U (zh) * 2017-09-22 2018-06-19 杭州纤纳光电科技有限公司 一种提高钙钛矿成膜均匀性的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANG-WEN CHEN 等: "Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum DepositionEfficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition", ADVANCED MATERIALS, vol. 26, no. 38, 1 October 2014 (2014-10-01), pages 6647 - 6652, XP055298089, DOI: 10.1002/adma.201402461 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234144A (zh) * 2019-07-15 2021-01-15 北京大学 一种钙钛矿微晶膜的制备方法及太阳能电池器件
CN112234144B (zh) * 2019-07-15 2022-11-25 北京大学 一种钙钛矿微晶膜的制备方法及太阳能电池器件
CN110614791A (zh) * 2019-09-20 2019-12-27 西南交通大学 一种压片环境可控的压片装置及使用方法
CN112002814A (zh) * 2020-07-29 2020-11-27 隆基绿能科技股份有限公司 基于固相反应的钙钛矿太阳能电池的制备方法
CN112119870A (zh) * 2020-10-16 2020-12-25 中国农业科学院都市农业研究所 一种固化基质制造装置、工艺及其制造的固化基质
CN117651465A (zh) * 2024-01-29 2024-03-05 西安电子科技大学 一种多步压片钙钛矿异质结晶圆x射线探测器及制备方法

Also Published As

Publication number Publication date
EP3506378A1 (en) 2019-07-03
US20200048792A1 (en) 2020-02-13
EP3506378A4 (en) 2019-10-30
WO2019056779A1 (zh) 2019-03-28

Similar Documents

Publication Publication Date Title
CN109545985A (zh) 一种提高钙钛矿成膜均匀性的装置及其方法
CN207517733U (zh) 一种提高钙钛矿成膜均匀性的装置
CN101786885B (zh) 一种控制晶粒度制造ito靶材的方法
CN105752949B (zh) 一种层状铼氮化合物ReN2的合成方法
CN106601917B (zh) 一种无铅有机无机阳离子共同杂化钙钛矿材料及其薄膜的制备方法
CN103695852B (zh) 钨硅靶材的制造方法
CN103833375B (zh) 注浆成型的陶瓷旋转靶材的制备方法
CN106587847B (zh) 一种石墨烯-水泥基高导热复合材料及其制备方法
CN102021460B (zh) 一种采用冷等静压和液相烧结制备W-10Ti合金靶材的方法
CN109742238A (zh) 一种铅卤钙钛矿多晶薄片及其制备方法
CN102211188A (zh) 半导体及太阳能溅射靶材行业用钨钛合金靶材的制备方法
CN108912803A (zh) 一种石墨烯散热浆料的制备方法
CN109809697A (zh) 一种锆酸钆玻璃陶瓷的合成方法
CN105112859B (zh) 一种钠掺杂钼平面靶材的制备方法
CN106116587A (zh) 一种立方相Ca2Si热电材料及其制备方法
CN105016316B (zh) 一种直接制备四方相PbSe2化合物的方法
CN104478458A (zh) 一种石墨烯球增韧SiCN陶瓷的制备方法
Shai et al. Origins, Impacts, and Mitigation Strategies of Strain in Efficient and Stable Perovskite Solar Cells
CN108620586A (zh) 3d打印高致密度钛-硼化钛的复合材料及其制备方法
CN105223052B (zh) 合成光电材料铜锌锡硫相转变测定的扩散偶方法
PT1341737E (pt) Substrato à base de nitreto de silício para componentes semicondutores
CN109748589A (zh) 一种高性能碳化硼陶瓷复合材料及制备方法
CN104810431A (zh) 一种丝网印刷工艺制备铜铟镓硒薄膜的方法
CN105965710B (zh) 一种硅棒金钢线切割树脂板的制备方法及应用
US7915072B1 (en) Non-vacuum coating method for preparing light absorbing layer of solar cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication