CN109534779B - 一种高强度陶瓷纤维隔热材料及其制备方法 - Google Patents

一种高强度陶瓷纤维隔热材料及其制备方法 Download PDF

Info

Publication number
CN109534779B
CN109534779B CN201811612217.2A CN201811612217A CN109534779B CN 109534779 B CN109534779 B CN 109534779B CN 201811612217 A CN201811612217 A CN 201811612217A CN 109534779 B CN109534779 B CN 109534779B
Authority
CN
China
Prior art keywords
ceramic fiber
oven
sample
acetate solution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811612217.2A
Other languages
English (en)
Other versions
CN109534779A (zh
Inventor
艾兵
张世超
孙现凯
陈玉峰
孙浩然
陶柳实
闫达琛
方凯
赵洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Building Materials Academy CBMA
Original Assignee
China Building Materials Academy CBMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Building Materials Academy CBMA filed Critical China Building Materials Academy CBMA
Priority to CN201811612217.2A priority Critical patent/CN109534779B/zh
Publication of CN109534779A publication Critical patent/CN109534779A/zh
Application granted granted Critical
Publication of CN109534779B publication Critical patent/CN109534779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Thermal Insulation (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

本发明公开了一种高强度陶瓷纤维隔热材料及其制备方法。所述方法包括:将陶瓷纤维置于醋酸盐溶液中,混合均匀,将混合料浆装入金属夹板模具中,并对金属夹板模具施加压力,后保持压力不变,将装有混合料浆的金属夹板置于烘箱中,升高烘箱温度,保温保压一段时间后关闭烘箱,待烘箱自然冷却至室温,将模具中样品取出放于烘箱中,进一步烘干、自然冷却后,得到所述陶瓷纤维隔热材料。本发明工艺简单,制备成本低,反应时间短,耗能低,生产效率高。

Description

一种高强度陶瓷纤维隔热材料及其制备方法
技术领域
本发明属于新型保温隔热材料领域,具体涉及一种高强度陶瓷纤维隔热材料及其制备方法。
背景技术
陶瓷纤维隔热材料因同时具备耐高温和低导热率的性能特点,可以应用于许多高温场合,如火箭、飞机、飞船等发动机的组件,汽车发动机组件,热交换器组件等,能够有效阻隔热结构件表面或超高温部件的热量向其它部件的传播。但是在实际施工过程中,陶瓷纤维隔热材料的力学性能较差,在外力的作用下非常容易碎裂,增加了施工难度,而且裂纹的出现也会直接影响材料的隔热效果。
为了克服陶瓷纤维材料力学性能差的问题,目前的解决方法是在制备陶瓷纤维材料时,加入一定量的胶黏剂,如磷酸铝胶黏剂、磷酸铬胶黏剂、硅酸铝胶黏剂、铝溶胶等,但是胶黏剂的加入会提高材料的导热系数,同时显著增加纤维隔热材料的重量,这对有荷载要求的器件的组装是非常不利的。
发明内容
有鉴于此,本发明的主要目的在于提供一种高强度陶瓷纤维隔热材料及其制备方法。
为了达到上述的目的,本发明提供了一种高强度陶瓷纤维隔热材料的制备方法,包括如下步骤:
1)称取陶瓷纤维材料,置于该陶瓷纤维材料相应金属的醋酸盐溶液中,混合均匀;
2)将步骤1)得到的混合料浆装入金属夹板模具中,并对金属夹板模具施加压力;
3)保持压力不变,将装有混合料浆的金属夹板放置于烘箱中,升高烘箱温度至醋酸盐分解温度,样品保温保压反应,后关闭烘箱,待烘箱自然冷却至室温,将模具中样品取出放于烘箱中,继续烘干后取出,再次自然冷却,得到所述高强度陶瓷纤维隔热材料。
优选地,其中步骤1)中,所述陶瓷纤维材料为氧化铝纤维、氧化锆纤维、硅酸铝纤维或莫来石纤维。
优选地,其中步骤1)中,所述醋酸盐溶液为醋酸铝溶液或醋酸锆溶液,这是根据所选陶瓷纤维材料选定的,以保证陶瓷纤维材料在处理后的纯度。
优选地,其中步骤1)中,所述醋酸盐溶液的重量百分比浓度为15~30%。
优选地,其中步骤1)中,所述醋酸盐溶液的用量为陶瓷纤维材料重量的25~65%。
优选地,其中步骤2)中,所述金属夹板模具包括平行设置的第一金属面板及第二金属面板,且所述第一金属面板及第二金属面板通过相互配合的多个螺栓及螺母连接。
优选地,其中步骤2)中,所述施加压力的范围为3~6Mpa。
优选地,其中步骤3)中,所述烘箱的升温速率为5~10℃/min;所述样品保温保压反应的时间为4~12h;所述继续烘干的温度为100-120℃,时间为12-14h。
本发明提供了一种高强度陶瓷纤维隔热材料,其强度为150~300KPa,相对密度为0.17~0.63g/cm-3,导热系数为0.054~0.108W/m·K。
优选地,其中所述高强度陶瓷纤维隔热材料是通过上述方法制得的。
本发明的有益效果是:将醋酸盐溶液与陶瓷纤维材料混合,利用醋酸盐分解温度低的性质,在恰当的温度和压力环境下(将烘箱的温度升高到醋酸盐的分解温度以上),醋酸盐分解出的氧化物沉积在纤维搭接点处,使纤维搭接点形成致密连接,从而提升陶瓷纤维隔热材料强度。本发明工艺简单,制备成本低,反应时间短,耗能低,生产效率高,在保证隔热材料质轻性质的同时,可获得高强度的陶瓷纤维隔热材料,同时,所制得的陶瓷纤维隔热材料具有较低的导热系数。本发明适用于为需要做隔热保护的高温部件提供材料支持。
附图说明
图1为本发明的混合料浆装入金属夹板模具中的示意图;
图2为本发明实施例1~4的原始陶瓷纤维材料结构示意图;
图3为本发明实施例1~4所制备的高强度陶瓷纤维材料结构示意图;
其中,第一金属面板-1;第二金属面板-2;螺栓-3;螺母-4;混合料浆-5;金属夹板模具-10。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明提供了一种高强度陶瓷纤维隔热材料的制备方法,包括如下步骤:
1)称取陶瓷纤维材料,置于该陶瓷纤维材料相应金属的醋酸盐溶液(重量百分比浓度为15~30%)中,混合均匀,所述醋酸盐溶液的用量为陶瓷纤维材料重量的25~65%;所述陶瓷纤维材料为氧化铝纤维、氧化锆纤维、硅酸铝纤维或莫来石纤维;所述醋酸盐溶液为醋酸铝溶液或醋酸锆溶液,这是根据所选陶瓷纤维材料选定的,以保证陶瓷纤维材料在处理后的纯度。
2)将步骤1)得到的混合料浆5装入金属夹板模具10中,如图1所示,所述金属夹板模具10包括平行设置的第一金属面板1及第二金属面板2,且所述第一金属面板1及第二金属面板2通过相互配合的多个螺栓3及螺母4连接,可以利用调节螺栓和螺母对金属面板施加压力(3Mpa~6Mpa);由于混合料浆5比较粘稠,故没有必要在金属夹板模具10中设置成型的腔体。
3)保持压力不变,将装有混合料浆的金属夹板放置于烘箱中,升高烘箱温度(升温速率为5~10℃/min)至醋酸盐分解温度,样品保温保压反应4~12h,后关闭烘箱,待烘箱自然冷却至室温,将模具中样品取出放于烘箱中,继续于100-120℃下烘干12-14h后取出,再次自然冷却,得到所述高强度陶瓷纤维隔热材料,其强度为150~300KPa,相对密度为0.17~0.63g/cm-3,导热系数为0.054~0.108W/m·K。。
实施例1
取氧化铝陶瓷纤维材料,置入浓度为15wt%的醋酸铝溶液中,醋酸铝溶液用量为氧化铝纤维材料的25%,二者混合均匀,将制得的混合料浆倒入金属夹板模具中,施加在金属夹板模具上的压力为3MPa,将带有混合料浆的金属夹板模具置于烘箱中,烘箱缓慢升温到150℃,样品保温保压反应12h后,将烘箱关闭,自然降温至室温,将金属夹板模具中样品取出放于烘箱中,100℃继续烘干12h后取出,再次自然冷却,得到高强度的氧化铝陶瓷纤维材料。图2为本实施例的原始氧化铝陶瓷纤维材料结构示意图。原始氧化铝陶瓷纤维材料在纤维搭接点处仅仅是简单的交织在一起,在外力作用下,纤维非常容易产生移动变形。图3为本实施例中经过处理后的高强度氧化铝陶瓷纤维材料的结构示意图,经过处理的氧化铝陶瓷纤维材料,醋酸盐高温分解出的金属氧化物沉积在纤维搭接点处,使纤维之间形成紧密联接,同时不会破坏纤维内部的孔结构,保证了纤维材料的隔热效果不会降低。测试氧化铝陶瓷纤维材料在处理前后的抗拉强度,相对密度为和导热系数,具体结果见下表1。
实施例2
取氧化锆陶瓷纤维材料,置入浓度为20wt%的醋酸锆溶液中,醋酸锆溶液用量为氧化锆纤维材料的35%,二者混合均匀,将制得的混合料浆倒入金属夹板模具中,施加在金属夹板模具上的压力为5MPa,将带有混合料浆的金属夹板模具置于烘箱中,烘箱缓慢升温到220℃,样品保温保压反应8h后,将烘箱关闭,自然降温至室温,将金属夹板模具中样品取出放于烘箱中,120℃继续烘干12h后取出,再次自然冷却,得到高强度的氧化锆陶瓷纤维材料。图2和图3为本实施例的原始氧化锆陶瓷纤维材料和经过处理后的氧化锆陶瓷纤维材料的结构示意图,纤维处理后的效果同实施例1一致。测试氧化锆陶瓷纤维材料在处理前后的抗拉强度,相对密度为和导热系数,具体结果见下表1。
实施例3
取硅酸铝陶瓷纤维材料,置入浓度为28wt%的醋酸铝溶液中,醋酸铝溶液用量为硅酸铝纤维材料的45%,二者混合均匀,将制得的混合料浆倒入金属夹板模具中,施加在金属夹板模具上的压力为6MPa,将带有混合料浆的金属夹板模具置于烘箱中,烘箱缓慢升温到200℃,样品保温保压反应6h后,将烘箱关闭,自然降温至室温,将金属夹板模具中样品取出放于烘箱中,120℃继续烘干12h后取出,再次自然冷却,得到高强度的硅酸铝陶瓷纤维材料。图2和图3为本实施例的原始硅酸铝陶瓷纤维材料和经过处理后的硅酸铝陶瓷纤维材料的结构示意图,纤维处理后的效果同实施例1一致。测试硅酸铝陶瓷纤维材料在处理前后的抗拉强度,相对密度为和导热系数,具体结果见下表1。
实施例4
取莫来石陶瓷纤维材料,置入浓度为30wt%的醋酸铝溶液中,醋酸铝溶液用量为莫来石纤维材料的65%,二者混合均匀,将制得的混合料浆倒入金属夹板模具中,施加在金属夹板模具上的压力为4.5MPa,将带有混合料浆的金属夹板模具置于烘箱中,烘箱缓慢升温到250℃,样品保温保压反应5.5h后,将烘箱关闭,自然降温至室温,将模具中样品取出放于烘箱中,120℃继续烘干12h后取出,再次自然冷却,得到高强度的莫来石陶瓷纤维材料。图2和图3为本实施例的原始莫来石陶瓷纤维材料和经过处理后的莫来石陶瓷纤维材料的结构示意图,纤维处理后的效果同实施例1一致。测试莫来石陶瓷纤维材料在处理前后的抗拉强度,相对密度为和导热系数,具体结果见下表1。
表1
Figure BDA0001925036580000061
从表1的结果中可以看出,陶瓷纤维隔热材料经过处理后,强度有所提升,相对密度和导热系数基本没有变化,保证了陶瓷纤维隔热材料良好的隔热性能的基础上,同时增强了陶瓷纤维的强度。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (9)

1.一种高强度陶瓷纤维隔热材料的制备方法,其特征在于,包括如下步骤:
1)称取陶瓷纤维材料,置于该陶瓷纤维材料相应金属的醋酸盐溶液中,混合均匀;
2)将步骤1)得到的混合料浆装入金属夹板模具中,并对金属夹板模具施加压力;
3)保持压力不变,将装有混合料浆的金属夹板放置于烘箱中,升高烘箱温度至醋酸盐分解温度,样品保温保压反应,后关闭烘箱,待烘箱自然冷却至室温,将模具中样品取出放于烘箱中,继续烘干后取出,再次自然冷却,得到所述高强度陶瓷纤维隔热材料。
2.如权利要求1所述的制备方法,其特征在于,步骤1)中,所述陶瓷纤维材料为氧化铝纤维、氧化锆纤维、硅酸铝纤维或莫来石纤维。
3.如权利要求1所述的制备方法,其特征在于,步骤1)中,所述醋酸盐溶液为醋酸铝溶液或醋酸锆溶液。
4.如权利要求3所述的制备方法,其特征在于,步骤1)中,所述醋酸盐溶液的重量百分比浓度为15~30%。
5.如权利要求4所述的制备方法,其特征在于,步骤1)中,所述醋酸盐溶液的用量为陶瓷纤维材料重量的25~65%。
6.如权利要求1所述的制备方法,其特征在于,步骤2)中,所述金属夹板模具包括平行设置的第一金属面板及第二金属面板,且所述第一金属面板及第二金属面板通过相互配合的多个螺栓及螺母连接。
7.如权利要求1所述的制备方法,其特征在于,所述施加压力的范围为3~6Mpa。
8.如权利要求1所述的制备方法,其特征在于,步骤3)中,所述烘箱的升温速率为5~10℃/min;所述样品保温保压反应的时间为4~12h;所述继续烘干的温度为100-120℃,时间为12-14h。
9.一种高强度陶瓷纤维隔热材料,其特征在于,其强度为150~300KPa,相对密度为0.17~0.63g/cm-3,导热系数为0.054~0.108W/m·K;所述高强度陶瓷纤维隔热材料是通过权利要求1-8任一项所述的方法制得的。
CN201811612217.2A 2018-12-27 2018-12-27 一种高强度陶瓷纤维隔热材料及其制备方法 Active CN109534779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811612217.2A CN109534779B (zh) 2018-12-27 2018-12-27 一种高强度陶瓷纤维隔热材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811612217.2A CN109534779B (zh) 2018-12-27 2018-12-27 一种高强度陶瓷纤维隔热材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109534779A CN109534779A (zh) 2019-03-29
CN109534779B true CN109534779B (zh) 2021-02-02

Family

ID=65857692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811612217.2A Active CN109534779B (zh) 2018-12-27 2018-12-27 一种高强度陶瓷纤维隔热材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109534779B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112791513A (zh) * 2020-12-31 2021-05-14 中国建筑材料科学研究总院有限公司 陶瓷纤维管及其制备方法
CN117929076A (zh) * 2024-03-25 2024-04-26 山东鲁阳浩特高技术纤维有限公司 一种陶瓷纤维模块导热系数的测试方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1482925A (en) * 1973-11-26 1977-08-17 Foseco Trading Ag Method for producing shaped articles
CN102503355B (zh) * 2011-10-18 2013-05-01 浙江大学 纤维/ZrO2气凝胶复合材料的制备方法
CN106117560B (zh) * 2016-07-19 2017-05-17 安徽同和晶体新材料股份有限公司 一种聚合羟基乙酸锆的水溶液的制备方法
CN108383486B (zh) * 2016-11-16 2019-12-24 航天特种材料及工艺技术研究所 一种耐高温辐射透波隔热材料及其制备方法
CN106810284A (zh) * 2016-12-30 2017-06-09 闫博文 一种双层耐高温隔热吸波复合材料的制备方法
CN108641361B (zh) * 2018-04-23 2020-12-01 华东理工大学 一种纤维增强的有机硅气凝胶隔热复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"空天飞行器用热防护陶瓷材料";陈玉峰等;《现代技术陶瓷》;20171031;第38卷(第5期);第311-390页 *
"超高温刚性隔热材料的制备及性能";孙晶晶等;《宇航材料工艺》;20120815(第4期);第93-96页 *

Also Published As

Publication number Publication date
CN109534779A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
CN106699209B (zh) 连续氧化铝纤维增强氧化铝陶瓷基复合材料的制备方法
CN106946579B (zh) 耐1500℃轻质刚性陶瓷纤维隔热瓦的制备方法
WO2022144013A1 (zh) 一种刚玉质微纳孔绝隔热耐火材料及其制备方法
CN110790530B (zh) 一种高强度纳米隔热材料及其制备方法
CN109534779B (zh) 一种高强度陶瓷纤维隔热材料及其制备方法
CN111454071B (zh) 岩棉纤维增强氧化硅基高强度隔热复合材料及其制备方法
CN105272322A (zh) 一种轻质耐高温陶瓷纤维刚性隔热瓦及其制造方法
CN107382346B (zh) 耐火耐磨浇筑料及制备方法
CN103387377A (zh) 一种基于超大型蜂窝陶瓷载体拼接用的拼接泥
CN110204322B (zh) 一种莫来石隔热耐火砖及其制备方法
CN111844962A (zh) 一种陶瓷纤维增强气凝胶毡及其制备方法
CN110040995A (zh) 一种高温用轻质韧性莫来石骨料制备方法
CN106882950B (zh) 一种硅溶胶增强耐高温磷酸盐胶黏剂的方法
CN113831102B (zh) 连续玄武岩纤维增强磷酸基地质聚合物复合材料及其制备方法
CN114349490B (zh) 一种二氧化硅气凝胶隔热材料及其制备方法
CN112174651B (zh) 轻质耐火砖及其制备方法
CN108455993A (zh) 建筑耐火材料及其制备方法
CN101386545B (zh) 一种改进轻质耐火砖力学性能的方法
CN104529487B (zh) 超高温氧化镁纤维制品及其制备方法
CN106565248A (zh) 一种分散剂水解失效固化陶瓷悬浮体的方法及陶瓷成型方法
CN111943700A (zh) 一种具有弥散气孔的高强轻质绝热板及其制备方法
CN112341227A (zh) 一种耐高温纳米隔热材料及其制备方法
CN105732062A (zh) 一种纤维增强复合承压保温板及其制备方法
CN111892406B (zh) 湿纺-浸渍法制备弱界面纤维独石硼化锆超高温陶瓷
CN111039681A (zh) 一种制备莫来石纤维基多孔隔热瓦的简易方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant