CN109534690A - 一种磁力增韧抑制硬脆材料加工损伤的方法 - Google Patents

一种磁力增韧抑制硬脆材料加工损伤的方法 Download PDF

Info

Publication number
CN109534690A
CN109534690A CN201811396952.4A CN201811396952A CN109534690A CN 109534690 A CN109534690 A CN 109534690A CN 201811396952 A CN201811396952 A CN 201811396952A CN 109534690 A CN109534690 A CN 109534690A
Authority
CN
China
Prior art keywords
brittle material
hard brittle
toughening
magnetic
magnetic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811396952.4A
Other languages
English (en)
Other versions
CN109534690B (zh
Inventor
王龙
李平
陈小虎
阳能军
唐修检
李若亭
田欣利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rocket Force University of Engineering of PLA
Original Assignee
Rocket Force University of Engineering of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rocket Force University of Engineering of PLA filed Critical Rocket Force University of Engineering of PLA
Priority to CN201811396952.4A priority Critical patent/CN109534690B/zh
Publication of CN109534690A publication Critical patent/CN109534690A/zh
Application granted granted Critical
Publication of CN109534690B publication Critical patent/CN109534690B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/10Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5144Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the metals of the iron group
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/27Mixtures of metals, alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

本发明提供一种磁力增韧抑制硬脆材料加工损伤的方法,属于机械加工过程的质量控制技术领域。本发明将硬脆材料浸入充满磁流变液的装夹模具中,磁流变液进而渗入硬脆材料表层的孔隙、裂纹等缺陷内部,且在工件周围形成液态包封。加工时,施加以可控的磁场,使得磁流变液受磁力影响产生磁流变效应,形成具有较大屈服强度的高粘度弹性膜。因此,硬脆材料表层缺陷内部磁流变液固化而形成封孔增韧机制,材料周围的磁流变液固化而形成三维周向预压应力包封,且可吸收砂轮等刀具施加给工件的冲击振动与能量,有利于抑制裂纹向径向深处或侧向边缘扩展,从而减少裂纹、表面破碎、边缘破碎等缺陷产生,改善了加工质量。

Description

一种磁力增韧抑制硬脆材料加工损伤的方法
技术领域
本发明属于机械加工过程的质量控制技术领域,尤其涉及一种磁力增韧抑制硬脆材料加工损伤的方法。
背景技术
工程陶瓷、光学玻璃等材料具有高硬度低韧性的特点,它们的断裂强度对应力集中效应与残余拉应力非常敏感,在加工过程容易出表面破碎与微裂纹现象。另外,在硬脆材料的入口与出口部位容易崩边,即边缘破碎现象,主要源于刀具与工件的冲击应力作用、边缘缺乏材料支撑等因素有关。表面破碎、微裂纹、边缘破碎等加工损伤现象出现随机性较大,成为硬脆材料加工过程中质量难于控制的难题。
目前,硬脆材料的增韧抑制加工损伤措施大致归结为:1)能量辅助加热法;采用激光、电火花等能量辅助加热切削方式,使材料去除机理偏于延性域去除,抑制陶瓷的崩碎损伤,但难以实现对加热过程的精确控制,且容易造成工件的热损伤。2)机械式包封预应力控制法;采用金属材料对硬脆材料工件进行机械式的周向包封,实现预施压应力增韧工件表面方式,降低了硬脆材料的边缘碎裂,该方法已证实有效但目前应用较少。3)材料改性增韧法;通过颗粒增韧、晶须增韧、相变增韧、原位增韧和复合增韧等方法改善硬脆材料自身韧性,提高材料的断裂强度,但这类增韧补强方法需优化材料组分并形成多相复合,且工艺技术复杂。此外,陆军装甲兵学院的唐修检等人最新研究进展表明,采用有机封孔剂可有效阻止裂纹径向扩展,并使裂纹向表面产生偏转,达到封孔增韧强化作用。
发明内容
针对工程陶瓷、光学玻璃等硬脆性材料在加工过程中存在难以控制的微裂纹、表面破碎和崩边等损伤问题,提出一种硬脆材料表层实时磁力增韧抑制加工损伤的新方法,其利用磁流变效应实现硬脆材料表层的实时增韧,在加工过程中抑制加工损伤,有利于提高工件的加工表面质量,并有准确可控制的优点,更好的实现硬脆材料的高效精密加工。
本发明的磁力增韧抑制硬脆材料加工损伤的方法,其包括以下步骤:
步骤1,先将磁流变液添加至装夹模具中,再将工程陶瓷、光学玻璃等硬脆材料浸入至磁流体液中。磁流体液进而渗入至硬脆材料表层的孔隙、裂纹等缺陷内部,并且在工件周围侧面外形成液态包封。
步骤2,在采用砂轮等刀具加工硬脆材料时,在装夹模具中区域内施加磁场,使得磁流变液由液态向固态形成可控的迅速转化。通过控制电磁铁线圈电流,磁流变液固化形成具有合适屈服强度的高粘度弹性膜,实现硬脆性材料表层裂纹、孔隙等缺陷的封孔增韧作用,且装夹模具内侧与工件各侧表面之间的磁流体固化后起到包封预加压应力作用,增加材料裂纹朝表层深处与自由表面扩展的难度,且吸收刀具作用在工件表面的冲击能量,有效抑制变质层微裂纹、表面破碎、边缘破碎等缺陷的产生。
步骤3,当硬脆材料加工结束后,撤销电磁铁线圈中的电流导致磁场消失,使得磁流变体又由固态恢复其液态特性,将工件取出且进行表面清洗。
本发明具有如下的特点及有益效果:
本发明基于磁流变效应,能够达到工程陶瓷、光学玻璃等硬脆材料表层裂纹、孔隙等缺陷的封孔增韧作用与工件各侧表面的周向包封预加压应力作用,能够在机械加工过程中实现抑制微裂纹、边缘破碎等加工损伤。
(1)本发明彻底改变了传统的硬脆性材料增韧方式,首次提出磁力增韧的方法。该新方法无需改变材料特性,能在机械加工过程改变表层的韧性与应力状态,实时增韧工件表层材料,改善硬脆材料的磨削性能,抑制微裂纹、表面破碎、崩边等加工损伤,提高工件加工表面质量,实现硬脆材料的高效精密加工。
(2)本发明巧妙利用磁流变效应,达到硬脆材料工件表层的封孔增韧与周向包封预压力增韧综合效果。在磁流变液渗入硬脆性材料工件表层孔隙内再转变为固态的弹性膜体,以达到封孔增韧强化作用。在夹具内侧与工件外侧面之间的间隙的磁流体转变为固态的弹性膜体,实现预压应力包封,达到工件表层增韧强化作用。
(3)磁流变效应对磁场作用的响应十分敏感,磁流变液的屈服强度与粘度随磁场强度增大可通过电磁铁线圈的电流强度进行准确控制。因此,该方法具有准确灵活可控性,便于实现机械加工过程的智能化控制。
附图说明
图1为未施加磁场力作用时磁力增韧系统;
图2为在磨削加工过程施加磁场力作用示意图;
具体实施方式
磁流变液在外加磁场作用下产生磁流变效应,可在液态与固态之间瞬间实现连续可逆的转化,其液固相转化程度、粘度与剪切屈服强度均可通过磁场强度实现可控的连续无级变化。磁流变液作为研究热点,目前已知的可应用范围为汽车制动器、离合器、智能阻尼减振器、硬脆材料磁力抛光、柔性夹具、密封元件等电子控制和机械领域。磁流变液是一种很有工程应用前景的新兴智能材料,在各领域内可继续挖掘其应用的潜力价值。本发明即首次提出磁力增韧的方法,巧妙利用磁流变效应,达到硬脆材料工件表层的封孔增韧与周向包封预压力增韧综合效果。在磁流变液渗入硬脆性材料工件表层孔隙内再转变为固态的弹性膜体,以达到封孔增韧强化作用。在夹具内侧与工件外侧面之间的间隙的磁流体转变为固态的弹性膜体,实现预压应力包封,达到工件表层增韧强化作用。
原理分析:封孔增韧有利于吸收冲击能量、减小应力集中效应、阻挡微裂纹扩展等缘由,抑制了表层缺陷的尖端失稳扩展。工件周向预压包封可以对工件提供弹性压应力场,改变工件表层应力状态,使横向裂纹仅能以较短延伸距离向磨削方向前沿扩展,且工件边缘处有材料支撑,从而抑制了表面破碎与崩边发生。磁流变液渗入工程陶瓷、光学玻璃等硬脆材料工件表层孔隙内再固化形成弹性膜体,以达到封孔增韧强化作用。在夹具内侧与工件外侧两者间隙的磁流体固化形成弹性膜体,实现预压应力包封,达到工件表层增韧强化作用。
故此,本发明提出一种利用磁流变效应实现硬脆材料表层实时磁力增韧抑制加工损伤的方法。下面通过具体的实施例及附图,对本发明的技术方案作进一步的详细说明。
采用卧轴矩台精密平面磨床进行氮化硅陶瓷的磨削试验。以基于氮化硅陶瓷工件表层实时磁力增韧抑制磨削损伤为例,它包括以下步骤:
第一步:采用的实时磁力增韧装置系统主要由装夹模具和电磁场加载装置组成,整个执行系统示意图如附图1所示。先将磁流变液3中注入装夹模具4中,再将氮化硅陶瓷2浸入磁流体液3中。进而,磁流体液3渗入至硬脆材料表层的裂纹7、孔隙8等缺陷内部,并且在工件周围侧面外形成液态包封。此时,电磁场控制器6处于关闭状态,电磁铁线圈5内无电流,装夹模具区域内均处于零磁场状态。金刚石砂轮1未接触工件表面,处于静止状态。
第二步:在金刚石砂轮1磨削加工氮化硅陶瓷2前,如附图2所示,开启并控制电磁场控制器,调节电磁铁线圈5的电流大小,从而在装夹模具4区域内施加以磁场力,使得磁流变液3由液态向固态转化,形成具有合适屈服应力的高粘度弹性膜。硬脆性材料表层裂纹、孔隙等缺陷内的磁流变液固化,起到封孔增韧作用。装夹模具4内侧与工件各侧表面之间的磁流变液固化,起到包封预加压应力作用。然后,金刚石砂轮1随磨床主轴高速旋转以一定磨削深度开始加工氮化硅陶瓷2上表面时,固化后的磁流变体的封孔增韧与包封预加压应力作用,将共同增加材料裂纹朝表层径向深处与自由表面扩展的难度,且吸收金刚石砂轮1作用在氮化硅陶瓷2工件表面的冲击能量,有效抑制变质层微裂纹、表面破碎、边缘破碎等缺陷的产生。
第三步:当氮化硅陶瓷2磨削加工结束后,撤销电磁铁线圈5中的电流导致磁场消失,使得磁流变体又由固态恢复其液态流变特性,将加工后的工件取出且进行表面清洗。采用输液泵与回收装置实现磁流变液的循环使用,避免污染环境与节约成本。

Claims (7)

1.一种磁力增韧抑制硬脆材料加工损伤的方法,其特征在于,包括以下步骤:
步骤1,将硬脆材料浸入充满磁流体液的装夹模具中,所述磁流体液渗入硬脆材料表层的缺陷内部,并在硬脆材料表层形成液态包封;
步骤2,加工硬脆材料时,在装夹模具区域内施加以可控的磁场,使得磁流变液在液固相态间形成可控的连续转化。
2.如权利要求1所述的磁力增韧抑制硬脆材料加工损伤的方法,其特征在于,
加工硬脆材料前,在装夹模具区域内磁场控制为零磁场状态,所述磁流体液渗入硬脆材料表层的缺陷内部,并在硬脆材料表层形成液态包封。
3.如权利要求1所述的磁力增韧抑制硬脆材料加工损伤的方法,其特征在于,通过控制电磁铁线圈电流,使缺陷内部中的磁流变液受磁力影响产生磁流变效应,从而固化且形成高粘度弹性膜,实现硬脆材料表层裂纹、孔隙的封孔增韧作用,使装夹模具与工件之间的磁流变液固化形成三维周向预压应力包封,增加材料裂纹朝表层径向深处与自由表面扩展的难度,且吸收刀具作用在工件表面的冲击能量。
4.如权利要求1所述的磁力增韧抑制硬脆材料加工损伤的方法,其特征在于,当硬脆材料加工结束后,撤销电磁铁线圈中的电流导致磁场消失,磁流变体由固态恢复液态特性,将工件取出且进行表面清洗。
5.如权利要求1所述的磁力增韧抑制硬脆材料加工损伤的方法,其特征在于,所述磁流变液是由微纳米级磁敏微粒均匀分散于水基或油基载液中形成的。
6.如权利要求5所述的磁力增韧抑制硬脆材料加工损伤的方法,其特征在于,所述纳米级磁敏微粒包括:羰基铁粉、合金铁粉等。
7.如权利要求1所述的磁力增韧抑制硬脆材料加工损伤的方法,其特征在于,所述缺陷内部包括表层裂纹、孔隙。
CN201811396952.4A 2018-11-22 2018-11-22 一种磁力增韧抑制硬脆材料加工损伤的方法 Active CN109534690B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811396952.4A CN109534690B (zh) 2018-11-22 2018-11-22 一种磁力增韧抑制硬脆材料加工损伤的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811396952.4A CN109534690B (zh) 2018-11-22 2018-11-22 一种磁力增韧抑制硬脆材料加工损伤的方法

Publications (2)

Publication Number Publication Date
CN109534690A true CN109534690A (zh) 2019-03-29
CN109534690B CN109534690B (zh) 2021-12-14

Family

ID=65849060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811396952.4A Active CN109534690B (zh) 2018-11-22 2018-11-22 一种磁力增韧抑制硬脆材料加工损伤的方法

Country Status (1)

Country Link
CN (1) CN109534690B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110064974A (zh) * 2019-04-25 2019-07-30 中国人民解放军陆军装甲兵学院 一种采用表层增韧抑制硬脆材料磨削加工崩裂损伤的方法
CN110346246A (zh) * 2019-07-22 2019-10-18 中国人民解放军火箭军工程大学 一种改善液压油低温流动性能的快速工艺方法
CN111151350A (zh) * 2020-01-15 2020-05-15 李沛泽 一种高效药物研磨设备
CN111633779A (zh) * 2020-06-07 2020-09-08 段克波 一种冷压机用自定位速冷结构
CN113105810A (zh) * 2021-04-07 2021-07-13 中国人民解放军陆军装甲兵学院 一种硬脆材料表面增韧剂及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202848A (zh) * 1995-10-16 1998-12-23 拜卢克普科学公司 确定性磁流变流体精整加工
US20010050454A1 (en) * 2000-02-18 2001-12-13 Xuesong Zhang Holding apparatus and method utilizing magnetorheological material
CN202825443U (zh) * 2012-09-11 2013-03-27 上海交通大学 表面光整处理换能加工装置
CN104144877A (zh) * 2011-11-28 2014-11-12 康宁股份有限公司 改善玻璃制品强度的方法
CN105328514A (zh) * 2010-07-09 2016-02-17 康宁股份有限公司 边缘抛光设备
CN108673214A (zh) * 2018-07-27 2018-10-19 上海理工大学 磁力调节单元及装夹装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202848A (zh) * 1995-10-16 1998-12-23 拜卢克普科学公司 确定性磁流变流体精整加工
US20010050454A1 (en) * 2000-02-18 2001-12-13 Xuesong Zhang Holding apparatus and method utilizing magnetorheological material
CN105328514A (zh) * 2010-07-09 2016-02-17 康宁股份有限公司 边缘抛光设备
CN104144877A (zh) * 2011-11-28 2014-11-12 康宁股份有限公司 改善玻璃制品强度的方法
CN202825443U (zh) * 2012-09-11 2013-03-27 上海交通大学 表面光整处理换能加工装置
CN108673214A (zh) * 2018-07-27 2018-10-19 上海理工大学 磁力调节单元及装夹装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110064974A (zh) * 2019-04-25 2019-07-30 中国人民解放军陆军装甲兵学院 一种采用表层增韧抑制硬脆材料磨削加工崩裂损伤的方法
CN110064974B (zh) * 2019-04-25 2020-05-15 中国人民解放军陆军装甲兵学院 一种采用表层增韧抑制硬脆材料磨削加工崩裂损伤的方法
CN110346246A (zh) * 2019-07-22 2019-10-18 中国人民解放军火箭军工程大学 一种改善液压油低温流动性能的快速工艺方法
CN111151350A (zh) * 2020-01-15 2020-05-15 李沛泽 一种高效药物研磨设备
CN111633779A (zh) * 2020-06-07 2020-09-08 段克波 一种冷压机用自定位速冷结构
CN111633779B (zh) * 2020-06-07 2021-12-14 莆田市在梦里贸易有限公司 一种冷压机用自定位速冷结构
CN113105810A (zh) * 2021-04-07 2021-07-13 中国人民解放军陆军装甲兵学院 一种硬脆材料表面增韧剂及其应用
CN113105810B (zh) * 2021-04-07 2022-05-13 中国人民解放军陆军装甲兵学院 一种硬脆材料表面增韧剂及其应用

Also Published As

Publication number Publication date
CN109534690B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
CN109534690A (zh) 一种磁力增韧抑制硬脆材料加工损伤的方法
CN103409758B (zh) 泵类壳体及叶片微细裂纹激光强化延寿方法
CN102191497B (zh) 一种在合金基体表面制备纳米碳基薄膜的方法和装置
CN104419925A (zh) 一种超声振动辅助激光熔覆复合处理装置
CN109967863A (zh) 一种基于现有激光加工设备的磁场辅助激光抛光方法
CN103409746B (zh) 一种毫秒激光熔覆制备纳米金刚石复合涂层的方法
CN108531911B (zh) 一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法
CN101239432A (zh) 合金表面微小裂纹止裂方法及其装置
CN102676793A (zh) 大型筒阀消应力和稳定尺寸的振动时效工艺
CN110064974A (zh) 一种采用表层增韧抑制硬脆材料磨削加工崩裂损伤的方法
CN103071912A (zh) 一种立式摩擦螺柱焊方法
CN107855672B (zh) 一种耦合高能量脉冲电流降低激光焊接残余应力的方法及系统
Cao et al. Numerical simulation of residual stress field induced by laser shock processing with square spot
CN106956079A (zh) 一种激光微熔凝弥合金属表面微裂纹的方法
CN207656133U (zh) 用于改善金属材料性能的高频振动焊接系统
CN206956107U (zh) 用于消除残余应力的高频冲击振动系统
CN203923374U (zh) 一种机械振动辅助激光熔覆轴类零件的装置
RU2625619C1 (ru) Способ повышения прочности детали с покрытием
CN104384713B (zh) 一种基于纳米颗粒增强的激光冲击冷焊方法
CN208358064U (zh) 一种耦合高能量脉冲电流降低激光焊接残余应力的系统
CN105803449A (zh) 一种金属表面剧烈形变合金化的方法
Lu et al. Experimental study on magnetorheological (MR) jet polishing of mould free surface
Wei et al. Characteristics analysis of fused silica material and experimental research on polishing removal efficiency
Wang et al. Noise and vibration of diamond sawblade for concrete dry cutting
Zhang et al. A study on critical heat flux in grind-hardening

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant