CN206956107U - 用于消除残余应力的高频冲击振动系统 - Google Patents

用于消除残余应力的高频冲击振动系统 Download PDF

Info

Publication number
CN206956107U
CN206956107U CN201720795219.4U CN201720795219U CN206956107U CN 206956107 U CN206956107 U CN 206956107U CN 201720795219 U CN201720795219 U CN 201720795219U CN 206956107 U CN206956107 U CN 206956107U
Authority
CN
China
Prior art keywords
frequency
residual stress
acceleration transducer
oscillograph
vibratory energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201720795219.4U
Other languages
English (en)
Inventor
顾邦平
张明月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN201720795219.4U priority Critical patent/CN206956107U/zh
Application granted granted Critical
Publication of CN206956107U publication Critical patent/CN206956107U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

用于消除残余应力的高频冲击振动系统,包括上位机系统、信号发生器、功率放大器、电磁式激振器、高频振动能量放大装置、加速度传感器、电荷放大器、示波器。上位机系统控制信号发生器输出正弦激振信号;高频振动能量放大装置固定于激振台面,加速度传感器与电荷放大器的输入通道连接,电荷放大器的输出通道与示波器连接,示波器与上位机系统连接。本实用新型具有能够通过高频冲击振动的方式来消除小尺寸构件和大型复杂构件残余应力的优点。

Description

用于消除残余应力的高频冲击振动系统
技术领域
本实用新型涉及振动时效技术领域,特指一种用于消除残余应力的高频冲击振动系统及方法。
技术背景
振动时效技术因为具有设备简单、节能环保、处理时间短、效果好等特点而成为备受关注的残余应力消除技术。目前国内外专家学者对传统低频振动时效技术(激振频率小于200Hz)进行了大量的研究,取得了丰富的理论成果并积累了大量成功的应用实例,但是传统低频振动时效技术采用可调电机作为激振器,导致其激振频率通常小于200Hz,表明传统低频振动时效技术的可选振型非常有限;同时传统低频振动时效技术是通过对构件进行整体激振的方式来消除残余应力的,导致了传统低频振动时效技术在消除构件局部残余应力或大型复杂构件残余应力时效果有限。高频振动时效技术(激振频率大于1kHz)与传统低频振动时效技术本质上都是对构件进行整体激振,从而达到消除构件内部残余应力的目的,然而由于高频激振器的驱动能力有限,因此对构件采用整体激振的方式进行高频振动时效处理,导致高频振动时效技术仅适用于消除小尺寸构件的残余应力。
针对振动时效技术存在的问题,本实用新型提出一种用于消除残余应力的高频冲击振动系统及方法。所谓的用于消除残余应力的高频冲击振动方法指的是采用冲击振动式的高频振动处理方法来消除构件的残余应力。用于消除残余应力的高频冲击振动方法采用高频振动能量放大装置和电磁式激振器组成高频冲击振动系统中的冲击振动产生单元,能够将高频振动能量直接注入到材料表面的局部区域,因此本实用新型所提出的用于消除残余应力的高频冲击振动方法不仅能够消除小尺寸构件的残余应力,也能够消除大型复杂构件的残余应力。
实用新型内容
针对振动时效技术存在的问题,本实用新型提出一种用于消除残余应力的高频冲击振动系统及方法。所谓的用于消除残余应力的高频冲击振动方法指的是采用冲击振动式的高频振动处理方法来消除构件的残余应力,即将高频振动能量直接注入到材料表面的局部区域。因此本实用新型提出的用于消除残余应力的高频冲击振动系统及方法不仅能够消除小尺寸构件的残余应力,也能够消除大型复杂构件的残余应力。
用于消除残余应力的高频冲击振动系统,包括上位机系统、信号发生器、功率放大器、电磁式激振器、高频振动能量放大装置、加速度传感器、电荷放大器、示波器;上位机系统控制信号发生器输出幅值和频率均能够独立且连续调节的正弦激振信号;正弦激振信号经过功率放大器放大后输入电磁式激振器,驱动电磁式激振器产生高频振动;
高频振动能量放大装置固定于电磁式激振器运动部件的激振台面上,高频振动能量放大装置包括上托台,固定在激振台面上的下底盘和连接上托台与下底盘的连杆;连杆的截面面积小于上托台的截面面积,同时连杆的截面面积小于下底盘的截面面积;
加速度传感器安装于上托台的下表面,加速度传感器的输出端与电荷放大器的输入通道连接,电荷放大器的输出通道与示波器的输入通道连接,示波器的输出通道与上位机系统连接。
具体来说,由上位机系统、信号发生器、功率放大器、电磁式激振器、高频振动能量放大装置、加速度传感器、电荷放大器以及示波器组成高频冲击振动系统,能够将高频振动能量直接注入到构件表面的局部区域,对构件进行局部高频冲击振动消除残余应力的处理。加速度传感器的输出信号表征高频振动能量放大装置的输出振级a,高频振动能量放大装置的输出振级a即为作用在构件表面局部区域上的振级。上位机系统实时显示高频振动能量放大装置的输出振级a。在高频冲击振动系统的共振频率下对构件进行激振处理时,能够提高注入到构件表面局部区域的高频振动能量,从而提高高频冲击振动消除构件残余应力的效果。
电磁式激振器用于产生激振频率大于1kHz的高频振动,其最高激振频率可以达到10kHz以上。
进一步,加速度传感器为压电式加速度传感器。
本实用新型的技术构思是:由上位机系统、信号发生器、功率放大器、电磁式激振器、高频振动能量放大装置、加速度传感器、电荷放大器以及示波器组成高频冲击振动系统;上托台上表面与构件紧密接触;上位机系统自动确定信号发生器输出的高频冲击振动处理消除残余应力的激振频率f;缓慢调节功率放大器的增益旋钮使得功率放大器输出恒定的电流I,驱动电磁式激振器对构件进行高频冲击振动处理。
本实用新型的有益效果如下:
1、本实用新型采用电磁式激振器和高频振动能量放大装置组成高频冲击振动产生单元,所产生的高频冲击振动幅值属于微米级别,能够对构件进行安全的时效处理,可以保护构件不受疲劳损伤的危险。
2、本实用新型采用的高频冲击振动处理方法突破了高频振动时效技术消除残余应力时,将构件装夹在电磁式激振器上进行整体激振的技术思路,而是采用高频振动能量放大装置将电磁式激振器输出的高频振动能量放大后,直接注入到构件的表面局部区域,这样的方法能够将高频振动能量有效的输入到待消除残余应力的表面局部区域,因此本实用新型提出的用于消除残余应力的高频冲击振动方法不仅能够消除小尺寸构件的残余应力,同时也能够消除大型复杂构件的残余应力。
3、在高频冲击振动系统的共振频率下对构件进行激振处理时,能够放大电磁式激振器输出的高频振动能量,即提高了注入构件表面局部区域的高频振动能量,具有能够显著的提高高频冲击振动消除构件残余应力的效果的优点。
4、用于消除残余应力的高频冲击振动系统对构件进行高频冲击振动处理的过程由上位机系统进行控制,无需手动操作,减少了工作量,提高了工作的效率。
附图说明
图1用于消除残余应力的高频冲击振动系统示意图。
图2高频振动能量放大装置示意图。
图3 AISI 1045钢构件尺寸示意图。
图4脉冲激光表面辐射示意图。
图5a高频冲击振动处理前的残余应力测试结果。
图5b高频冲击振动处理后的残余应力测试结果。
具体实施方式
参照附图,进一步说明本实用新型:
用于消除残余应力的高频冲击振动系统,包括上位机系统、信号发生器、功率放大器、电磁式激振器、高频振动能量放大装置2、加速度传感器5、电荷放大器、示波器;上位机系统控制信号发生器输出幅值和频率均能够独立且连续调节的正弦激振信号;正弦激振信号经过功率放大器放大后输入电磁式激振器,驱动电磁式激振器产生高频振动;
高频振动能量放大装置2固定于电磁式激振器运动部件3的激振台面4上,高频振动能量放大装置2包括上托台21,固定在激振台面4上的下底盘22和连接上托台21与下底盘22的连杆23;连杆23的截面面积小于上托台21的截面面积,同时连杆23的截面面积小于下底盘22的截面面积;
加速度传感器5安装于上托台21的下表面,加速度传感器5的输出端与电荷放大器的输入通道连接,电荷放大器的输出通道与示波器的输入通道连接,示波器的输出通道与上位机系统连接。
具体来说,由上位机系统、信号发生器、功率放大器、电磁式激振器、高频振动能量放大装置2、加速度传感器5、电荷放大器以及示波器组成高频冲击振动系统,能够将高频振动能量直接注入到构件1表面的局部区域,对构件1进行局部高频冲击振动消除残余应力的处理。加速度传感器5的输出信号表征高频振动能量放大装置2的输出振级a,高频振动能量放大装置2的输出振级a即为作用在构件1表面局部区域上的振级。上位机系统实时显示高频振动能量放大装置2的输出振级a。在高频冲击振动系统的共振频率下对构件1进行激振处理时,能够提高注入到构件1表面局部区域的高频振动能量,从而提高高频冲击振动消除构件1残余应力的效果。
电磁式激振器用于产生激振频率大于1kHz的高频振动,其最高激振频率可以达到10kHz以上。
进一步,加速度传感器5为压电式加速度传感器。
使用高频冲击振动系统消除残余应力的方法包括以下步骤:
(1)、制造高频振动能量放大装置2,高频振动能量放大装置2包括上托台21,固定在激振台面4上的下底盘22和连接上托台21与下底盘22的连杆23;连杆23的截面面积小于上托台21的截面面积,同时连杆23的截面面积小于下底盘22的截面面积;
(2)、将上托台21上表面与构件1紧密接触;将加速度传感器5安装在上托台21下表面;下底盘22固定在电磁式激振器的激振台面4上;下底盘22与上托台21通过连杆23连接;接通上位机系统与信号发生器之间的信号连线;接通上位机系统与示波器之间的信号连线;接通信号发生器与功率放大器之间的信号连线;接通功率放大器与电磁式激振器之间的信号连线;接通加速度传感器5与电荷放大器之间的信号连线;接通电荷放大器与示波器之间的信号连线;接通上位机系统、功率放大器、信号发生器、电荷放大器、示波器、电磁式激振器的电源;
(3)、确定信号发生器输出的高频冲击振动处理消除残余应力的激振频率f。
(4)、缓慢调节功率放大器的增益旋钮使得功率放大器输出恒定的电流I,驱动电磁式激振器对构件1进行高频冲击振动处理。
进一步,步骤(3)中,确定信号发生器输出的高频冲击振动处理消除残余应力的激振频率f包括以下步骤:
(3.1)、信号发生器的初始激振频率f0设置为1000Hz,然后以100Hz为步长逐步增加信号发生器输出的激振频率;缓慢调节功率放大器的增益旋钮使得功率放大器输出恒定的电流I;上位机系统分别记录下每一激振频率时高频振动能量放大装置2的输出振级a;上位机系统得到高频振动能量放大装置2输出振级a最大时的激振频率;上位机系统记录下该激振频率,并记为f1
(3.2)、信号发生器的初始激振频率设置为(f1-100)Hz,以10Hz为步长逐步增加信号发生器输出的激振频率,然后重复步骤(3.1)的过程,得到高频振动能量放大装置2输出振级a最大时的激振频率;上位机系统记录下该激振频率,并记为f2
(3.3)、信号发生器的初始激振频率设置为(f2-10)Hz,以1Hz为步长逐步增加信号发生器输出的激振频率,然后重复步骤(3.1)的过程,得到高频振动能量放大装置2输出振级a最大时的激振频率;上位机系统记录下该激振频率,并记为f3,即为高频冲击振动处理消除残余应力的激振频率f。
对图3中的AISI 1045钢构件1进行高频冲击振动处理。该构件1的长度为300mm,宽度为40mm,厚度为6mm。为了在构件1的表层产生初始残余应力,本实用新型中采用图4所示的脉冲激光表面辐射工艺对构件1表面进行脉冲激光表面辐射处理。在脉冲激光辐射的区域,构件1表面温度快速升高,材料表面发生微观组织的转变,从而在构件1表层产生了较大的拉伸残余应力。高频冲击振动处理前的残余应力测试结果见图5a,高频冲击振动处理后的残余应力测试结果见图5b,表明本实用新型所提出的用于消除残余应力的高频冲击振动方法能够有效的消除构件1的残余应力。
本说明书实施例所述的内容仅仅是对实用新型构思的实现形式的列举,本实用新型的保护范围不应当被视为仅限于实施例所陈述的具体形式,本实用新型的保护范围也及于本领域技术人员根据本实用新型构思所能够想到的等同技术手段。

Claims (2)

1.用于消除残余应力的高频冲击振动系统,包括上位机系统、信号发生器、功率放大器、电磁式激振器、高频振动能量放大装置、加速度传感器、电荷放大器、示波器;上位机系统控制信号发生器输出幅值和频率均能够独立且连续调节的正弦激振信号;正弦激振信号经过功率放大器放大后输入电磁式激振器,驱动电磁式激振器产生高频振动;
高频振动能量放大装置固定于电磁式激振器运动部件的激振台面上,高频振动能量放大装置包括上托台,固定在激振台面上的下底盘和连接上托台与下底盘的连杆;连杆的截面面积小于上托台的截面面积,同时连杆的截面面积小于下底盘的截面面积;
加速度传感器安装于上托台的下表面,加速度传感器的输出端与电荷放大器的输入通道连接,电荷放大器的输出通道与示波器的输入通道连接,示波器的输出通道与上位机系统连接。
2.如权利要求1所述的用于消除残余应力的高频冲击振动系统,其特征在于:加速度传感器为压电式加速度传感器。
CN201720795219.4U 2017-07-03 2017-07-03 用于消除残余应力的高频冲击振动系统 Expired - Fee Related CN206956107U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720795219.4U CN206956107U (zh) 2017-07-03 2017-07-03 用于消除残余应力的高频冲击振动系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720795219.4U CN206956107U (zh) 2017-07-03 2017-07-03 用于消除残余应力的高频冲击振动系统

Publications (1)

Publication Number Publication Date
CN206956107U true CN206956107U (zh) 2018-02-02

Family

ID=61384013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720795219.4U Expired - Fee Related CN206956107U (zh) 2017-07-03 2017-07-03 用于消除残余应力的高频冲击振动系统

Country Status (1)

Country Link
CN (1) CN206956107U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287408A (zh) * 2017-07-03 2017-10-24 上海海事大学 用于消除残余应力的高频冲击振动系统及方法
CN110760670A (zh) * 2019-12-03 2020-02-07 上海海事大学 用于消除小尺寸构件残余应力的智能高频振动时效系统
CN113832338A (zh) * 2021-11-05 2021-12-24 蓝家晟 一种基于大数据的钢结构桥墩残余应力消除系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287408A (zh) * 2017-07-03 2017-10-24 上海海事大学 用于消除残余应力的高频冲击振动系统及方法
CN110760670A (zh) * 2019-12-03 2020-02-07 上海海事大学 用于消除小尺寸构件残余应力的智能高频振动时效系统
CN113832338A (zh) * 2021-11-05 2021-12-24 蓝家晟 一种基于大数据的钢结构桥墩残余应力消除系统
CN113832338B (zh) * 2021-11-05 2023-06-23 蓝家晟 一种基于大数据的钢结构桥墩残余应力消除系统

Similar Documents

Publication Publication Date Title
CN206956107U (zh) 用于消除残余应力的高频冲击振动系统
CN107287408A (zh) 用于消除残余应力的高频冲击振动系统及方法
CN107931905A (zh) 用于改善金属材料性能的高频振动焊接系统及方法
CN105483360B (zh) 超声波应力消除方法及系统
JP2017071860A (ja) 金属部材残留応力を局部的に調整する方法及びシステム
CN110423882A (zh) 高频振动时效工艺参数确定系统和方法
CN102975025B (zh) 一种加工细长活塞杆的车床专用切削装置
CN103962642B (zh) 一种金属带锯超声锯切加工方法
CN103757197B (zh) 用于消除小尺寸构件残余应力的高频振动时效系统及方法
CN109534690A (zh) 一种磁力增韧抑制硬脆材料加工损伤的方法
CN207656133U (zh) 用于改善金属材料性能的高频振动焊接系统
CN107780946A (zh) 一种基于超声波共振的掘进机截割头
CN207134929U (zh) 一种具有减噪功能的发电机
CN101787690A (zh) 共振法加固液化地基的操作方法
CN113775323A (zh) 一种基于频谱共振的自适应脉动水力压裂技术
CN205315007U (zh) 一种带有超声波振动器的tbm高效碎岩刀盘
CN107855672A (zh) 一种耦合高能量脉冲电流降低激光焊接残余应力的方法及系统
CN201386128Y (zh) 一种电动振动时效装置
CN108130414B (zh) 钢结构桥梁的桥墩振动时效方法
CN209394932U (zh) 一种蒸压加气混凝土料浆快速消泡装置
CN106834657A (zh) 一种多维高频微观振动时效系统及方法
CN206319045U (zh) 一种多维高频微观振动时效系统
CN110777251A (zh) 用于消除大型结构件焊接残余应力的高频冲击振动装置
CN111318438A (zh) 一种压电叠堆式高频激振系统
CN108130413B (zh) 钢结构桥梁的钢梁振动时效方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180202

Termination date: 20180703