CN108531911B - 一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法 - Google Patents

一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法 Download PDF

Info

Publication number
CN108531911B
CN108531911B CN201810520763.7A CN201810520763A CN108531911B CN 108531911 B CN108531911 B CN 108531911B CN 201810520763 A CN201810520763 A CN 201810520763A CN 108531911 B CN108531911 B CN 108531911B
Authority
CN
China
Prior art keywords
ndfeb magnet
sintered ndfeb
laser
corrosion
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810520763.7A
Other languages
English (en)
Other versions
CN108531911A (zh
Inventor
罗开玉
王长雨
王芳
尹叶芳
许小红
鲁金忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Haixin Energy Research Institute Co., Ltd.
Original Assignee
Taizhou Haixin Energy Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Haixin Energy Research Institute Co Ltd filed Critical Taizhou Haixin Energy Research Institute Co Ltd
Priority to CN201810520763.7A priority Critical patent/CN108531911B/zh
Priority to US16/492,574 priority patent/US11342099B2/en
Priority to PCT/CN2018/098901 priority patent/WO2019227664A1/zh
Publication of CN108531911A publication Critical patent/CN108531911A/zh
Application granted granted Critical
Publication of CN108531911B publication Critical patent/CN108531911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及钕铁硼磁铁表面改性技术领域,特指一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法。先将烧结钕铁硼磁体浸泡在含氯溶液中使其表面轻微腐蚀,腐蚀后烧结钕铁硼磁体表层晶界处有原子空位或者缝隙产生,然后采用激光冲击强化将涂敷在烧结钕铁硼磁体表面的化合物纳米粉末植入晶界,在激光冲击强化产生的超强冲击波作用下将化合物纳米粉末植入到烧结钕铁硼磁体表层,获得高性能的梯度纳米材料,同时激光冲击强化使烧结钕铁硼磁体表面纳米化,诱导较深厚度的高幅残余压应力层,显著提高烧结钕铁硼磁体的耐腐蚀性能。

Description

一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法
技术领域
本发明涉及钕铁硼磁铁表面改性技术领域,特指一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法。
背景技术
钕铁硼磁铁为至目前为止具有最强磁力的永久磁铁,作为第三代稀土永磁材料,具有很高的性能,其广泛应用于能源、交通、机械、医疗、IT、家电等行业,特别是随着信息技术为代表的知识经济的发展,给稀土永磁钕铁硼产业等功能材料不断带来新的用途,这为钕铁硼产业带来更为广阔的市场前景。然而在潮湿的环境中,由于富Nd相的存在,使得磁体容易产生晶间腐蚀,其耐腐蚀性差,严重限制了其应用范围。烧结钕铁硼磁铁主要由Nd-Fe-B主相和富Nd晶界相组成,富Nd相活性大,电位低,在含有腐蚀介质、湿热等环境中容易腐蚀,由于富Nd相和Nd-Fe-B主相之间具有较大的电位差,烧结钕铁硼磁铁具有晶间腐蚀的行为。低的抗腐蚀性是钕铁硼磁铁的缺点,是制约其广泛应用的因素之一。烧结钕铁硼磁体的腐蚀不仅破坏了磁体的完整性,而且降低了其磁性能,从而严重影响其实际应用。因此,从烧结钕铁硼磁铁在1983年成功制备以来,研究其腐蚀机理,根据磁体的腐蚀机理从根源上提高磁体的抗腐蚀性能,具有非常重大的实际意义
目前,烧结钕铁硼磁体表面防护处理的方法主要有电镀锌、电镀镍、电泳涂覆等,但由于存在镀层结合力弱、抗腐蚀能力不足等缺点,表面防护迄今为止仍是限制烧结钕铁硼磁体应用的关键问题之一。化学镀获得非晶态镍磷合金是一种简单易行的方法,作为许多易腐蚀材料的抗腐蚀保护层取得了很好的抗腐蚀效果。但是由于烧结钕铁硼磁体材料制备工艺的限制,其表面粗糙、孔隙多。人们经过大量的实验发现。传统的化学镀工艺仍然不能充分的满足磁体的防护要求。因此,发展一种新型的提高烧结钕铁硼磁体耐腐蚀性能的表面改性方法成为必然。
激光冲击强化(又叫激光喷丸)是一种新型的材料表面强化技术,利用强激光诱导的冲击波力学效应对材料进行加工,具有高压、高能、超快和超高应变率等特点,同时在材料表层发生塑性变形,使得表层材料微观组织发生变化,达到细化晶粒的效果,同时诱导的残余应力层深度可达1~2mm,能够明显提高材料的强度、硬度、耐磨性和耐腐蚀性能。
发明内容
本发明基于烧结钕铁硼磁体的腐蚀机理,提出一种新型的提高烧结钕铁硼磁体耐蚀性能的表面改性方法,即先将烧结钕铁硼磁体浸泡在含氯溶液中一段时间,使其表面轻微腐蚀,腐蚀后的烧结钕铁硼磁体表层晶界处有原子空位或者缝隙产生,然后采用激光冲击强化将涂敷在烧结钕铁硼磁体表面的化合物纳米粉末植入晶界,在激光冲击强化产生的超强冲击波作用下将化合物纳米粉末植入到烧结钕铁硼磁体表层,获得高性能的梯度纳米材料。该技术通过在激光冲击强化产生的超强冲击波作用下将化合物纳米粉末有效植入到烧结钕铁硼磁体表层,改变晶界相成分和结构,改善晶界相物化性质,同时激光冲击强化使烧结钕铁硼磁体表面纳米化,诱导较深厚度的高副残余压应力层,显著提高烧结钕铁硼磁体的耐腐蚀性能。
具体步骤如下:
(1)将烧结钕铁硼磁体表面进行打磨、抛光处理后,放在酒精溶液中用超声波清洗机清除表面的灰尘与油渍;
(2)将烧结钕铁硼磁体浸泡在含氯溶液中使得烧结钕铁硼磁体表面腐蚀后晶界处有原子空位或者缝隙产生;
(3)将预处理的烧结钕铁硼磁体取出并用冷风吹干,安装在机械手专用夹具上;
(4)通过激光器控制装置设定激光器的输出功率和光斑参数,激光器采用的是单脉冲Nd:YAG激光器,工作参数为:波长1064nm,脉冲宽度8-16ns,单次脉冲能量5-7.6J,光斑半径2-3mm,设定行间和列间光斑搭接率为50%,同时将激光束光斑中心与磁体待冲击表面左上角重合,作为激光冲击强化起始位置,并使待冲击区域X轴和Y轴方向与加载平台的X轴和Y轴方向一致;
(5)将化合物纳米粉末均匀涂敷在烧结钕铁硼磁体试样腐蚀后的表面,同时打开激光器,采用逐行加工的方法通过机械手控制烧结钕铁硼磁体试样移动到激光束聚焦点上,对烧结钕铁硼磁体腐蚀后的表面进行激光搭接冲击强化,在激光冲击强化产生的超强冲击波作用下将化合物纳米粉末植入到烧结钕铁硼磁体试样表层,同时激光冲击强化诱导较深厚度的高幅残余压应力层,从而获得高性能的梯度纳米材料。
所述步骤(1)中,烧结钕铁硼磁体的原子百分比为NdaRbFe100-a-b-c-dBcMd,其中8≤a≤18,0.5≤b≤5,3.5≤c≤8,0.1≤d≤5,R为Pr、Dy、Tb、Ho、Gd、Ce、Co、Ni、Al、Cu、Ga元素中的一种或几种,M为Al、Cu、Ga、Mg、Zn、Sn、Si、Co、Ni、Nb、Zr、Ti、W、V元素中一种或几种。
所述步骤(2)中,含氯溶液为质量分数3.5%的NaCl溶液或者质量分数14%的MgCl2溶液,浸泡时间为30-120分钟。
所述步骤(5)中,所述步骤(5)中涂敷的化合物纳米粉末层厚度为0.5-1mm,化合物纳米粉末的平均颗粒尺度为30-150nm。
所述步骤(5)中,化合物纳米粉末为高熔点的AlN纳米粉末,属于共价键化合物,具有良好的热稳定性,能够稳定存在于晶界中。
本发明的技术效果:本发明先将烧结钕铁硼磁体浸泡在含氯溶液中一段时间,使其表面轻微腐蚀,腐蚀后烧结钕铁硼磁体表层晶界处有原子空位或者缝隙产生,然后采用激光冲击强化将涂敷在烧结钕铁硼磁体表面的化合物纳米粉末植入晶界,在激光冲击强化产生的超强冲击波作用下将化合物纳米粉末植入到烧结钕铁硼磁体表层,获得高性能的梯度纳米材料,改变了晶界相成分和结构,改善了晶界相物化性质,同时激光冲击强化使烧结钕铁硼磁体表面纳米化,诱导较深厚度的高幅残余压应力层,显著提高了烧结钕铁硼磁体的耐腐蚀性能。
附图说明
图1为烧结钕铁硼磁体表面的腐蚀形貌。
图2为添加与未添加AlN纳米粉末的烧结钕铁硼磁体Nd8Pr4Fe81Co2B3.5Cu1.5在质量分数14%的NaCl溶液中的动电位极化曲线对比示意图。
图3为添加与未添加AlN纳米粉末的烧结钕铁硼磁体Nd10Dy2Fe79B8Al0.5Mg0.5在质量分数3.5%的NaCl溶液中的动电位极化曲线对比示意图。
图4为添加与未添加AlN纳米粉末的烧结钕铁硼磁体Nd15Gd0.5Fe80B4Ni0.5在质量分数3.5%的NaCl溶液中的动电位极化曲线对比示意图。
具体实施方式
下面结合附图和具体实施例,对本发明的技术方案做进一步详细说明。
一种使用上述强化方法加工烧结钕铁硼磁体的实例,其步骤为:
实施例1:
(1)将烧结钕铁硼磁体Nd8Pr4Fe81Co2B3.5Cu1.5表面用500#到2400#的SiC砂纸进行打磨、抛光处理后,放在酒精溶液中用超声波清洗机清除表面的灰尘与油渍;
(2)将烧结钕铁硼磁体浸泡在质量分数为14%的MgCl2溶液中,静置30分钟,这时烧结钕铁硼磁体表面腐蚀后晶界处有原子空位或者缝隙产生。
(3)将预处理的烧结钕铁硼磁体取出并用冷风吹干,安装在机械手专用夹具上;
(4)通过激光器控制装置设定激光器的输出功率和光斑参数,激光器采用的是单脉冲Nd:
YAG激光器,工作参数为:波长1064nm,脉冲宽度16ns,单次脉冲能量5.6J,光斑半径3mm,设定行间和列间光斑搭接率为50%,同时将激光束光斑中心与磁体待冲击表面左上角重合,作为激光冲击强化起始位置,并使待冲击区域X轴和Y轴方向与加载平台的X轴和Y轴方向一致;
(5)将平均颗粒尺度为50nm的化合物AlN纳米粉末均匀涂敷在烧结钕铁硼磁体试样的腐蚀后的表面,涂层厚度为0.5mm,打开激光器,采用逐行加工的方法通过机械手控制烧结钕铁硼磁体试样移动到激光束聚焦点上,对磁体腐蚀后的表面进行大面积激光搭接冲击强化,在激光冲击强化产生的超强冲击波作用下化合物AlN纳米粉末植入到烧结钕铁硼磁体表层,同时激光冲击强化诱导较深厚度的高幅残余压应力层,从而获得高性能的梯度纳米材料。
本实施例对烧结钕铁硼磁体Nd8Tb3Fe83Co2B3.5Cu1.5进行电化学腐蚀测试,并与处理前对比。从图2中可以看出,添加化合物AlN纳米粉末后,试样的腐蚀电位升高,腐蚀电流密度降低。实验结果说明,晶界添加AlN纳米粉使晶界区域富Nd相数量减少,增加了晶界相的腐蚀电位,使晶界的稳定性升高,根据电极反应的机理,晶界相电位的升高会使整个烧结钕铁硼磁体的腐蚀电位升高。进一步说明了晶界添加AlN纳米粉末能够显著提高烧结烧结钕铁硼磁体Nd8Pr4Fe83Co2B3.5Cu1.5的抗腐蚀性能。
实施例2:
(1)将烧结钕铁硼磁体Nd10Dy2Fe79B8Al0.5Mg0.5表面用500#到2400#的SiC砂纸进行打磨、抛光处理后,放在酒精溶液中用超声波清洗机清除表面的灰尘与油渍;
(2)将烧结钕铁硼磁体浸泡在质量分数为3.5%的NaCl溶液中,静置60分钟,这时烧结钕铁硼磁体表面腐蚀后晶界处有原子空位或者缝隙产生。
(3)将预处理的烧结钕铁硼磁体取出并用冷风吹干,安装在机械手专用夹具上;
(4)通过激光器控制装置设定激光器的输出功率和光斑参数,激光器采用的是单脉冲Nd:YAG激光器,工作参数为:波长1064nm,脉冲宽度8ns,单次脉冲能量7.6J,光斑半径3mm,设定行间和列间光斑搭接率为50%,同时将激光束光斑中心与磁体待冲击表面左上角重合,作为激光冲击强化起始位置,并使待冲击区域X轴和Y轴方向与加载平台的X轴和Y轴方向一致;
(5)将平均颗粒尺度为150nm的化合物AlN纳米粉末均匀涂敷在烧结钕铁硼磁体试样的腐蚀后的表面,涂层厚度为1mm,打开激光器,采用逐行加工的方法通过机械手控制烧结钕铁硼磁体试样移动到激光束聚焦点上,对磁体腐蚀后的表面进行大面积激光搭接冲击强化,在激光冲击强化产生的超强冲击波作用下化合物AlN纳米粉末植入到烧结钕铁硼磁体表层,同时激光冲击强化诱导较深厚度的高幅残余压应力层,从而获得高性能的梯度纳米材料。
本实施例对烧结钕铁硼磁体Nd8Pr4Fe83Co2B3.5Cu1.5进行电化学腐蚀测试,并与处理前对比。从图3中同样可以看出,添加化合物AlN纳米粉末后,试样的腐蚀电位升高,腐蚀电流密度降低。
实施例3:
(1)将烧结钕铁硼磁体Nd15Gd0.5Fe80B4Ni0.5表面用500#到2400#的SiC砂纸进行打磨、抛光处理后,放在酒精溶液中用超声波清洗机清除表面的灰尘与油渍;
(2)将烧结钕铁硼磁体浸泡在质量分数为3.5%的NaCl溶液中,静置90分钟,这时烧结钕铁硼磁体表面腐蚀后晶界处有原子空位或者缝隙产生。
(3)将预处理的烧结钕铁硼磁体取出并用冷风吹干,安装在机械手专用夹具上;
(4)通过激光器控制装置设定激光器的输出功率和光斑参数,激光器采用的是单脉冲Nd:YAG激光器,工作参数为:波长1064nm,脉冲宽度10ns,单次脉冲能量6J,光斑半径3mm,设定行间和列间光斑搭接率为50%,同时将激光束光斑中心与磁体待冲击表面左上角重合,作为激光冲击强化起始位置,并使待冲击区域X轴和Y轴方向与加载平台的X轴和Y轴方向一致;
(5)将平均颗粒尺度为100nm的化合物AlN纳米粉末均匀涂敷在烧结钕铁硼磁体试样的腐蚀后的表面,涂层厚度为0.7mm,打开激光器,采用逐行加工的方法通过机械手控制烧结钕铁硼磁体试样移动到激光束聚焦点上,对磁体腐蚀后的表面进行大面积激光搭接冲击强化,在激光冲击强化产生的超强冲击波作用下化合物AlN纳米粉末植入到烧结钕铁硼磁体表层,同时激光冲击强化诱导较深厚度的高幅残余压应力层,从而获得高性能的梯度纳米材料。
本实施例对烧结钕铁硼磁体Nd8Pr4Fe83Co2B3.5Cu1.5进行电化学腐蚀测试,并与处理前对比。从图4中同样可以看出,添加化合物AlN纳米粉末后,试样的腐蚀电位升高,腐蚀电流密度降低。

Claims (4)

1.一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法,其特征在于:先将打磨、抛光、清洗后的烧结钕铁硼磁体浸在含氯溶液中使其表面腐蚀,腐蚀后烧结钕铁硼磁体原始晶界处有原子空位或者缝隙产生,然后采用激光冲击强化将涂敷在烧结钕铁硼磁体表面的化合物纳米粉末植入晶界,在激光冲击强化产生的超强冲击波作用下将化合物纳米粉末植入到烧结钕铁硼磁体表层,获得梯度纳米材料,同时激光冲击强化使烧结钕铁硼磁体表面纳米化,诱导形成残余压应力层,改变了晶界相成分和结构,改善了晶界相物化性质,达到抑制磁体表面晶界腐蚀的效果,从而显著提高烧结钕铁硼磁体的耐腐蚀性能;
含氯溶液为质量分数3.5%的NaCl溶液或者质量分数14%的MgCl2溶液,浸泡时间为30-120分钟;
化合物纳米粉末为高熔点的AlN纳米粉末,属于共价键化合物,具有良好的热稳定性,能够稳定存在于晶界中;
烧结钕铁硼磁体的原子百分比为NdaRbFe100-a-b-c-dBcMd,其中8≤a≤18,0.5≤b≤5,3.5≤c≤8,0.1≤d≤5,R为Pr、Dy、Tb、Ho、Gd、Ce、Co、Ni、Al、Cu、Ga元素中的一种或几种,M为Al、Cu、Ga、Mg、Zn、Sn、Si、Co、Ni、Nb、Zr、Ti、W、V元素中一种或几种;
激光器采用的是单脉冲Nd:YAG激光器,工作参数为:波长1064nm,脉冲宽度8-16ns,单次脉冲能量5-7.6J,光斑半径2-3mm。
2.如权利要求1所述的一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法,其特征在于,具体步骤如下:
(1)将烧结钕铁硼磁体表面进行打磨、抛光处理后,放在酒精溶液中用超声波清洗机清除表面的灰尘与油渍;
(2)将烧结钕铁硼磁体浸泡在含氯溶液中使得烧结钕铁硼磁体表面腐蚀后晶界处有原子空位或者缝隙产生;
(3)将预处理的烧结钕铁硼磁体取出并用冷风吹干,安装在机械手专用夹具上;
(4)通过激光器控制装置设定激光器的输出功率和光斑参数,同时将激光束光斑中心与磁体待冲击表面左上角重合,作为激光冲击强化起始位置,并使待冲击区域X轴和Y轴方向与加载平台的X轴和Y轴方向一致;
(5)将化合物纳米粉末均匀涂敷在烧结钕铁硼磁体试样腐蚀后的表面,同时打开激光器,采用逐行加工的方法通过机械手控制烧结钕铁硼磁体试样移动到激光束聚焦点上,对烧结钕铁硼磁体腐蚀后的表面进行激光搭接冲击强化,在激光冲击强化产生的超强冲击波作用下将化合物纳米粉末植入到烧结钕铁硼磁体试样表层,同时激光冲击强化诱导形成残余压应力层,从而获得高性能的梯度纳米材料。
3.如权利要求2所述的一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法,其特征在于,步骤(4)中,设定行间和列间光斑搭接率为50%。
4.如权利要求2所述的一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法,其特征在于,所述步骤(5)中,所述步骤(5)中涂敷的化合物纳米粉末层厚度为0.5-1mm,化合物纳米粉末的平均颗粒尺度为30-150nm。
CN201810520763.7A 2018-05-28 2018-05-28 一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法 Active CN108531911B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810520763.7A CN108531911B (zh) 2018-05-28 2018-05-28 一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法
US16/492,574 US11342099B2 (en) 2018-05-28 2018-08-06 Laser shock peening method for improving the corrosion resistance of sintered Nd—Fe—B magnet
PCT/CN2018/098901 WO2019227664A1 (zh) 2018-05-28 2018-08-06 一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810520763.7A CN108531911B (zh) 2018-05-28 2018-05-28 一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法

Publications (2)

Publication Number Publication Date
CN108531911A CN108531911A (zh) 2018-09-14
CN108531911B true CN108531911B (zh) 2019-11-26

Family

ID=63472902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810520763.7A Active CN108531911B (zh) 2018-05-28 2018-05-28 一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法

Country Status (3)

Country Link
US (1) US11342099B2 (zh)
CN (1) CN108531911B (zh)
WO (1) WO2019227664A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110136949B (zh) * 2019-04-23 2022-03-25 江西理工大学 一种耐腐蚀烧结钕铁硼磁体表面处理方法
CN112899684B (zh) * 2020-08-21 2023-02-03 天津京磁电子元件制造有限公司 钕铁硼磁体电镀铜镍工艺
CN112458275A (zh) * 2020-12-01 2021-03-09 潍坊九天强磁有限公司 一种钕铁硼磁体表面处理的方法
CN115101323B (zh) * 2022-07-13 2023-10-24 西安西工大思强科技股份有限公司 一种提高烧结钕铁硼磁体内禀矫顽力的超声波冲击方法
CN118471363A (zh) * 2024-04-30 2024-08-09 西南交通大学 一种激光冲击强化锆合金耐电化学腐蚀性能的预测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728042A (zh) * 2008-10-16 2010-06-09 北京中科三环高技术股份有限公司 一种永磁材料的表面处理技术
CN103170630A (zh) * 2013-04-19 2013-06-26 安徽工业大学 各向异性钕铁硼粘结磁体的成型方法和装置
CN103646776A (zh) * 2013-12-03 2014-03-19 江苏大学 基于塑性约束的烧结钕铁硼磁体的机械表面改性方法
CN103668178B (zh) * 2013-12-03 2016-08-17 江苏大学 一种提高烧结钕铁硼磁体耐腐蚀性能的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290802A (ja) * 1986-06-09 1987-12-17 Seiko Instr & Electronics Ltd 永久磁石
JPH0752684B2 (ja) * 1986-12-11 1995-06-05 住友特殊金属株式会社 耐食性永久磁石
CN1056133A (zh) * 1991-06-01 1991-11-13 东北工学院 钕铁硼合金电镀锌的方法
CN1058053A (zh) * 1991-06-01 1992-01-22 东北工学院 钕铁硼合金电镀光亮镍的方法
EP2366187A1 (en) * 2008-12-01 2011-09-21 Zhejiang University Sintered nd-fe-b permanent magnet with high coercivity for high temperature applications
CN102560445B (zh) * 2012-02-17 2014-02-19 湖南航天工业总公司 烧结钕铁硼化学复合镀镍磷工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728042A (zh) * 2008-10-16 2010-06-09 北京中科三环高技术股份有限公司 一种永磁材料的表面处理技术
CN103170630A (zh) * 2013-04-19 2013-06-26 安徽工业大学 各向异性钕铁硼粘结磁体的成型方法和装置
CN103646776A (zh) * 2013-12-03 2014-03-19 江苏大学 基于塑性约束的烧结钕铁硼磁体的机械表面改性方法
CN103646776B (zh) * 2013-12-03 2015-11-18 江苏大学 基于塑性约束的烧结钕铁硼磁体的机械表面改性方法
CN103668178B (zh) * 2013-12-03 2016-08-17 江苏大学 一种提高烧结钕铁硼磁体耐腐蚀性能的方法

Also Published As

Publication number Publication date
US20210407711A1 (en) 2021-12-30
CN108531911A (zh) 2018-09-14
US11342099B2 (en) 2022-05-24
WO2019227664A1 (zh) 2019-12-05

Similar Documents

Publication Publication Date Title
CN108531911B (zh) 一种提高烧结钕铁硼磁体耐蚀性能的激光冲击强化方法
Liu et al. Electrochemical corrosion behavior of nanocrystalline materials—a review
Song et al. Improved corrosion resistance in simulated concrete pore solution of surface nanocrystallized rebar fabricated by wire-brushing
CN103409758B (zh) 泵类壳体及叶片微细裂纹激光强化延寿方法
Zhou et al. Effects of Ni addition on corrosion behaviors of laser cladded FeSiBNi coating in 3.5% NaCl solution
Zhang et al. Electrochemical corrosion properties of the surface layer produced by supersonic fine-particles bombarding on low-carbon steel
CN102397835B (zh) 一种采用纳米陶瓷对钕铁硼永磁材料的表面处理方法
CN108754488A (zh) 一种具有高性能熔覆层q&p钢的制备方法
CN110556243B (zh) 一种钕铁硼表面渗镝方法
CN105256264A (zh) 一种锆合金包壳材料表面纳米结构的制备方法
Fan et al. New passivating method to galvanized Zn coatings on steel substrate
Li et al. Effect of Laser Shock Processing and Aluminizing on Microstructure and High‐Temperature Creep Properties of 321 Stainless Steel for Solar Thermal Power Generation
CN101373651A (zh) 湿法喷砂式钕铁硼永磁材料的表面前处理方法
CN102321862A (zh) 基于纳米技术在低碳钢板表面制备硼铁合金化处理方法
Mohamed et al. Improving the corrosion behavior of ductile cast iron in sulphuric acid by heat treatment
Hongchuan et al. Corrosion resistance and magnetostrictive properties of (Tb0. 3Dy0. 7) Fe2 alloy modified by nitrogen ion implantation
Haibo et al. Surface modification of (Tb, Dy) Fe2 alloy by nitrogen ion implantation
CN102453890B (zh) 一种永磁体的锆酸盐表面处理技术
Yi et al. A Magnetic Properties and Corrosion Resistance of Fe-Si Alloy Coating Prepared on Mild Steel
Brostow et al. Mechanical finishing and ion beams application to cold working tool steels: consequences for scratch resistance
Dupont et al. Effects of pulsed laser ablation with various patterns on non-oriented electrical steels magnetic properties
Tao et al. Influence of Warm Predeformation Temperature on the Corrosion Property of Type 304 Austenitic Stainless Steel
Li et al. Effect of residual stress and microstructures on 316 stainless steel treated by LSP
CN101967537A (zh) 65Mn钢电火花脉冲放电表面强化工艺
Xiong et al. Microstructure evolution and microhardness of ultrafine-grained high carbon steel during multiple laser shock processing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191029

Address after: 225300 new energy industry park, Jiulong Town, Hailing District, Jiangsu, Taizhou

Applicant after: Taizhou Haixin Energy Research Institute Co., Ltd.

Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301

Applicant before: jiangsu university

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant