CN109529035B - 近红外光富集半胱氨酸修饰的硫化铋空心球的制备方法及其在光热治疗与药物控释中的应用 - Google Patents

近红外光富集半胱氨酸修饰的硫化铋空心球的制备方法及其在光热治疗与药物控释中的应用 Download PDF

Info

Publication number
CN109529035B
CN109529035B CN201811547821.1A CN201811547821A CN109529035B CN 109529035 B CN109529035 B CN 109529035B CN 201811547821 A CN201811547821 A CN 201811547821A CN 109529035 B CN109529035 B CN 109529035B
Authority
CN
China
Prior art keywords
hollow sphere
bismuth
cysteine
infrared light
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811547821.1A
Other languages
English (en)
Other versions
CN109529035A (zh
Inventor
闫云辉
刘林霞
王佳
郭琪莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinxiang Medical University
Original Assignee
Xinxiang Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinxiang Medical University filed Critical Xinxiang Medical University
Priority to CN201811547821.1A priority Critical patent/CN109529035B/zh
Publication of CN109529035A publication Critical patent/CN109529035A/zh
Application granted granted Critical
Publication of CN109529035B publication Critical patent/CN109529035B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • A61K49/0447Physical forms of mixtures of two different X-ray contrast-enhancing agents, containing at least one X-ray contrast-enhancing agent which is a halogenated organic compound
    • A61K49/0476Particles, beads, capsules, spheres
    • A61K49/0485Nanoparticles, nanobeads, nanospheres, nanocapsules, i.e. having a size or diameter smaller than 1 micrometer
    • A61K49/049Surface-modified nanoparticles, e.g. immune-nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明公开了一种近红外光富集半胱氨酸修饰的硫化铋空心球的制备方法及其在光热治疗与药物控释中的应用,解决了现有技术中材料光热转换效率较低和难以实现光热与药物协同治疗的问题。本发明先利用聚乙烯吡咯烷酮作配位剂,在甘油/乙醇混合溶剂中制备出铋复合物前驱体微球;然后以铋复合物微球为模板,选择L‑半胱氨酸作硫源和表面修饰剂,水热合成得到L‑Cys/Bi2S3空心球,该空心球由纳米棒组成,平均粒径为250~300 nm。本发明所得到的硫化铋空心球具有明显增强的近红外光捕获能力和光热转换效应,并具有较强的药物负载和控释性能,可用于肿瘤光热消融与药物化疗的联合治疗。

Description

近红外光富集半胱氨酸修饰的硫化铋空心球的制备方法及其 在光热治疗与药物控释中的应用
技术领域
本发明属于生物医学技术和纳米材料科学领域,涉及肿瘤光热成像与光热治疗技术领域,具体涉及一种近红外光富集半胱氨酸修饰的硫化铋空心球的制备方法及其在光热治疗与药物控释中的应用。
背景技术
铋(Bi)是唯一兼具相对价廉、低毒和低放射性等特性的金属元素。由于独特的“绿色”性质,铋化合物在医药卫生与环境能源领域得到了广泛应用。Bi2S3是一种具有层状结构的窄禁带半导体材料(Eg≈1.3eV),窄能隙和大吸光率使其成为理想的近红外光吸收材料,其吸光性能取决于带宽、纳米结构、形貌与尺寸。
光热治疗(photothermal therapy,PTT)是基于光热试剂对近红外光进行吸收(NIR,λ=700~1100nm)并将其转化为热量,使肿瘤部位温度升高,从而诱导细胞凋亡或对细胞产生直接致死效应的一种微创肿瘤治疗技术。目前,肿瘤光热治疗面临的瓶颈问题是材料生物相容性差、光热转换效率低、药物负载量小与精准释放难。
空心微球具有低密度、大比表面积、大空腔容积和高流动性等特性,在催化、传感、储氢及药物控释方面有良好的应用前景。最近研究表明,纳米空心球还具有光富集效应。鉴于此,特提出本发明技术方案,构建半胱氨酸修饰的新型L-Cys/Bi2S3空心球,为实现肿瘤的高效光热消融与药物协同治疗提供技术保障。
发明内容
鉴于现有技术的不足,本发明的第一目的在于提供了一种集光热治疗与药物输送于一体的近红外光富集半胱氨酸修饰的硫化铋空心球的制备方法。
本发明的第二目的在于提供近红外光富集半胱氨酸修饰的硫化铋空心球用于制备具有光热治疗效应的药物或者用于制备光热转换器件。
本发明的第三目的在于提供近红外光富集半胱氨酸修饰的硫化铋空心球作为分子探针用于CT成像检测或者作为药物载体用于药物负载和控释,由于空心球表面修饰有L-半胱氨酸,因此具有较好的生物相容性。
本发明为实现上述目的采用如下技术方案,近红外光富集半胱氨酸修饰的硫化铋空心球的制备方法,其特征在于具体步骤为:
步骤S1:将铋盐溶于甘油与乙醇的混合溶剂中得到摩尔浓度为0.05~0.10mol/L的铋盐溶液,再将聚乙烯吡咯烷酮加入到上述混合溶液中,于140~180℃进行溶剂热反应3~6小时,反应结束后自然冷却至室温,然后经离心分离、洗涤和干燥处理制得铋复合物微球;
步骤S2:将步骤S1制得的铋复合物微球分散于蒸馏水中,再加入L-半胱氨酸后搅拌得到混合溶液,将混合溶于于140~160℃水热反应6~12小时,反应结束后自然冷却至室温,经离心分离、洗涤和干燥处理制得具有较好生物相容性的近红外光富集半胱氨酸修饰的硫化铋空心球。
进一步优选,所述铋盐为五水硝酸铋或氯化铋。
进一步优选,所述甘油与乙醇的混合溶剂中甘油与乙醇的体积比为1:1~1:1.5。
进一步优选,所述L-半胱氨酸与铋复合物的投料摩尔比为2:1~3:1。
进一步优选,所述近红外光富集半胱氨酸修饰的硫化铋空心球为单分散的、大小均匀一致的、由纳米棒堆积而成的平均粒径为250~300nm的空心球。
本发明通过上述方法制备的近红外光富集半胱氨酸修饰的硫化铋空心球用于制备具有光热治疗效应的药物或者用于制备光热转换器件。
本发明通过上述方法制备的近红外光富集半胱氨酸修饰的硫化铋空心球作为分子探针用于CT成像检测或者作为药物载体用于药物负载和控释。
进一步优选,所述药物为抗癌药物阿霉素(DOX),用于实现肿瘤光热消融与药物化疗的联合治疗。
与现有技术相比,本发明通过制备丙三醇、聚乙烯吡咯烷酮共配位的铋复合物微球,然后以此铋复合物为模板和铋源,再用L-半胱氨酸作为硫源和表面修饰剂,反应制得半胱氨酸修饰的硫化铋空心纳米球,实现了多功能多模式一体化光热诊疗。另外,本发明具有简便易行、所需设备少、制备成本低、易于工业化的特点,没有使用强酸、强碱和有毒反应原料,是一种环境友好的绿色方法。具体的有益效果和优点体现如下:
(1)硫化铋纳米材料是一种具有潜在应用价值的CT造影剂。铋元素的X-射线消光系数比碘高、用量小、毒性低。
(2)硫化铋空心球的大比表面积能增加药物分子的吸附位点,提高药物负载能力。同时大的内部空腔亦能为药物负载提供场所,进而实现药物的控制释放。
(3)硫化铋空心球的空心结构可以实现红外光在其空腔内的多重反射和散射,提高近外光的捕获率,从而提高光热转换效率。
(4)半胱氨酸通过S-Bi键合作用修饰在硫化铋表面,能够有效提高探针的生物相容性。空心球的低密度能提高其在水中的分散性和稳定性。
附图说明
图1为L-Cys/Bi2S3空心球的合成路线示意图;
图2为L-Cys/Bi2S3空心球的扫描电镜(SEM)和透射电镜(TEM)照片;
图3为L-Cys/Bi2S3空心球的X-射线衍射(XRD)图谱;
图4为纯L-半胱氨酸和L-Cys/Bi2S3空心球的傅里叶变换红外(FT-IR)图谱;
图5为L-Cys/Bi2S3空心球和实心球的紫外-可见漫反射(UV-Vis-NIR DRS)图谱;
图6为L-Cys/Bi2S3空心球和实心球的光热性能测试图(808 nm,1 W/cm2);
图7为L-Cys/Bi2S3空心球水溶液在激光照射下加热(激光开)和冷却(激光关)过程的温度变化曲线;
图8 为L-Cys/Bi2S3空心球和实心球的N2吸附-脱附曲线;
图9 为L-Cys/Bi2S3空心球和实心球负载前后DOX吸收光谱变化;
图10 为不同pH条件下L-Cys/Bi2S3/DOX释放曲线。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
(1)铋复合物微球的制备:以60 mL乙醇-甘油混合溶液(V乙醇:V甘油=1:1)作为溶剂,室温下磁力搅拌0.5小时后,加入1.4550 g Bi(NO3)3•5H2O,搅拌使硝酸铋完全溶解形成澄清溶液。然后加入0.5 g聚乙烯吡咯烷酮(PVP),继续磁力搅拌1小时得到混合溶液。将混合溶液转移至100 mL聚四氟乙烯内衬高压反应釜中,密封、置于烘箱中于160℃恒温反应3小时。最后将反应釜自然冷却到室温,离心分离收集沉淀,洗涤、干燥,得到铋复合物微球(Gly-Bi-PVP)。
(2)L-Cys/Bi2S3空心球的合成:称取0.1 g步骤(1)得到的铋复合物微球分散在10mL蒸馏水中,再加入0.242 g L-半胱氨酸(L-Cys)并磁力搅拌1小时得到混合溶液。然后将混合溶液转移至50 mL聚四氟乙烯内衬高压反应釜中,密封、置于烘箱中于150℃恒温反应8小时。最后将反应釜自然冷却到室温,离心分离收集沉淀,洗涤、干燥得到L-Cys/Bi2S3空心球。
图2是实施例1制得的L-Cys/Bi2S3样品的电镜照片。由扫描电镜照片(图2a)可以看出样品为单分散的、大小一致的空心球;透射电镜照片(图2b)进一步表明样品为空心球,直径约为250~300nm。
图3是L-Cys/Bi2S3样品的X-射线粉末衍射图谱。图中主要衍射峰位置与单斜晶型Bi2S3(JCPDS 84-0279)完全吻合,表明所合成样品为Bi2S3
图4是纯L-半胱氨酸和L-Cys/Bi2S3样品的红外图谱。如图所示,半胱氨酸的红外图谱中2552 cm-1处出现了-SH特征峰,而在L-Cys/Bi2S3样品中该峰基本消失,表明形成了-S-Bi键。在L-Cys/Bi2S3的红外图谱中1103 cm-1和1382 cm-1出现Bi-S键的特征峰,进一步证实形成了Bi2S3。另外,两个样品的红外图谱中同时出现了-COO-(1400~1600 cm-1)和-NH2(2900~3500 cm-1)的特征峰,表明L-Cys成功修饰在了Bi2S3表面。
实施例2(对比例)
L-Cys/Bi2S3实心球的制备:以30 mL乙醇-甘油混合溶液(V乙醇:V甘油=1:1)作为溶剂,室温下磁力搅拌0.5小时后,加入1.4550 g Bi(NO3)3•5H2O,搅拌使硝酸铋完全溶解形成澄清溶液A。将0.5 g L-半胱氨酸溶解在30 mL蒸馏水中形成溶液B。磁力搅拌下将B缓慢滴加到溶液A中,继续磁力搅拌1小时。将其转移至100 mL聚四氟乙烯内衬高压反应釜中,密封、置于烘箱中160℃恒温反应6小时。最后将反应釜自然冷却到室温,离心分离收集沉淀,洗涤、干燥,得到L-Cys/Bi2S3实心球。
图5为L-Cys/Bi2S3空心球和实心球样品的紫外-可见-近红外漫反射图谱。如图所示,在可见和近红外光区域,L-Cys/Bi2S3空心球比实心球有更强的光吸收能力,尤其是在808 nm附近光捕获能力最强。由此可推测,L-Cys/Bi2S3空心球是良好的光热材料。据文献报道,空心球材料增强的光捕获能力是由其空腔对光线的多重反射和散射效应所致。
图6是L-Cys/Bi2S3空心球和实心球样品的N2吸附-脱附等温线及孔径分别图。L-Cys/Bi2S3空心球和实心球的比表面积分别为46.97 m2/g和17.33 m2/g,它们的孔容积分别为0.16 cm3/g和0.06 cm3/g。L-Cys/Bi2S3空心球大的比表面积和内部空腔有利为药物吸附和储存提供较多的反应位点和较大的储存空间。
实施例3(光热性能测试)
将L-Cys/Bi2S3空心球和实心球样品分别配制成500 µg/mL的水溶液,各取2 mL置于比色皿中。将其在光功率密度为1 W/cm2的808 nm近红外光下照射,用电子传感热电偶温度计监控溶液温度变化。结果如图7所示,L-Cys/Bi2S3空心球在激光器的照射下能够快速升温,相对于L-Cys/Bi2S3实心球而言, L-Cys/Bi2S3空心球具有较高的光热转换能力。
将2 mL蒸馏水以及500 µg/mL的L-Cys/Bi2S3空心球水溶液进行10 min的激光照射,然后关闭激光自然冷却至室温,利用热电偶记录期间的温度变化,绘制升温-降温曲线并进行拟合(如图8所示),计算光热转换材料的光热转换效率。通过激光关闭冷却阶段时间常数拟合,经计算可得其光热转换效率为31.5%,表明L-Cys/Bi2S3空心球可以有效地将光能转换为热能。
实施例4(药物负载与控释)
将抗癌药阿霉素(DOX)配制成500 µg/mL的水溶液,平均分成三份,每份10 mL。一份保留,另外两份分别加入10 mg L-Cys/Bi2S3空心球和实心球样品,磁力搅拌混合均匀,室温下避光搅拌24小时。然后高速离心分离沉淀,分别测定上清液的紫外-可见吸收光谱。图9为原始阿霉素(DOX)水溶液、L-Cys/Bi2S3空心球和实心球吸附后上清液的吸收曲线。由图可知,经L-Cys/Bi2S3空心球吸附后上清液DOX最大吸收峰显著降低,表明L-Cys/Bi2S3空心球对DOX有较大的负载能力。这应归功于L-Cys/Bi2S3空心球较大的比表面积和孔容积。
在室温下,将负载DOX后的L-Cys/Bi2S3空心球分别在pH=7.4 和pH=5.0 的条件下进行药物控释实验。用紫外-可见分光光度计监控阿霉素(DOX)的浓度,图10为两种pH条件下阿霉素的缓释曲线。由图可以看出,样品具有pH值控释行为,在pH=5.0时药物释放较快。众所周知,肿瘤部位体液环境多呈弱酸性,因此,本专利合成的L-Cys/Bi2S3空心球有望作为肿瘤治疗的药物输送材料。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (3)

1.近红外光富集半胱氨酸修饰的硫化铋空心球的制备方法,其特征在于具体步骤为:
步骤S1:将铋盐溶于甘油与乙醇的混合溶剂中得到摩尔浓度为0.05~0.10mol/L的铋盐溶液,再将聚乙烯吡咯烷酮加入到上述混合溶液中,于140~180℃进行溶剂热反应3~6小时,反应结束后自然冷却至室温,然后经离心分离、洗涤和干燥处理制得铋复合物微球,所述铋盐为五水硝酸铋或氯化铋,所述甘油与乙醇的混合溶剂中甘油与乙醇的体积比为1:1~1:1.5;
步骤S2:将步骤S1制得的铋复合物微球分散于蒸馏水中,再加入L-半胱氨酸后搅拌得到混合溶液,所述L-半胱氨酸与铋复合物的投料摩尔比为2:1~3:1,将混合溶液 于140~160℃水热反应6~12小时,反应结束后自然冷却至室温,经离心分离、洗涤和干燥处理制得具有较好生物相容性的近红外光富集半胱氨酸修饰的硫化铋空心球,所述近红外光富集半胱氨酸修饰的硫化铋空心球为单分散的、大小均匀一致的且由纳米棒堆积而成的平均粒径为250~300nm的空心球。
2.根据权利要求1所述的方法制得的近红外光富集半胱氨酸修饰的硫化铋空心球用于制备具有光热治疗效应的药物或者用于制备光热转换器件。
3.根据权利要求1所述的方法制得的近红外光富集半胱氨酸修饰的硫化铋空心球在制备用于CT成像检测的分子探针或者制备用于药物负载和控释的药物载体时的应用,所述药物为抗癌药物阿霉素,用于实现肿瘤光热消融与药物化疗的联合治疗。
CN201811547821.1A 2018-12-18 2018-12-18 近红外光富集半胱氨酸修饰的硫化铋空心球的制备方法及其在光热治疗与药物控释中的应用 Active CN109529035B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811547821.1A CN109529035B (zh) 2018-12-18 2018-12-18 近红外光富集半胱氨酸修饰的硫化铋空心球的制备方法及其在光热治疗与药物控释中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811547821.1A CN109529035B (zh) 2018-12-18 2018-12-18 近红外光富集半胱氨酸修饰的硫化铋空心球的制备方法及其在光热治疗与药物控释中的应用

Publications (2)

Publication Number Publication Date
CN109529035A CN109529035A (zh) 2019-03-29
CN109529035B true CN109529035B (zh) 2021-03-05

Family

ID=65855474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811547821.1A Active CN109529035B (zh) 2018-12-18 2018-12-18 近红外光富集半胱氨酸修饰的硫化铋空心球的制备方法及其在光热治疗与药物控释中的应用

Country Status (1)

Country Link
CN (1) CN109529035B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784304B (zh) * 2022-12-01 2023-07-18 浙大宁波理工学院 一种由纳米片组成的梭状Bi2S3晶体的合成方法
CN116060632B (zh) * 2023-03-29 2023-06-02 成都中医药大学 一种铋基纳米材料及其制备方法和在制备光热转导剂中的用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513134A (zh) * 2011-11-03 2012-06-27 山东大学 一种硫化铋纳米粒子/氯氧化铋复合光催化材料及其制备方法
CN102965735A (zh) * 2012-11-16 2013-03-13 杭州师范大学 一种溶剂水热法调控硫化铋纳米棒阵列长径比的合成方法
CN105056973A (zh) * 2015-07-16 2015-11-18 南昌航空大学 化学腐蚀法原位生长制备高效的硫化铋-铁酸铋复合可见光催化剂及其应用
CN107098387A (zh) * 2017-02-24 2017-08-29 河南师范大学 一种近红外光热纳米材料硫化铋的水相制备方法
CN108529675A (zh) * 2018-05-14 2018-09-14 合肥工业大学 一种棒状硫化铋中空纳米微球及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513134A (zh) * 2011-11-03 2012-06-27 山东大学 一种硫化铋纳米粒子/氯氧化铋复合光催化材料及其制备方法
CN102965735A (zh) * 2012-11-16 2013-03-13 杭州师范大学 一种溶剂水热法调控硫化铋纳米棒阵列长径比的合成方法
CN105056973A (zh) * 2015-07-16 2015-11-18 南昌航空大学 化学腐蚀法原位生长制备高效的硫化铋-铁酸铋复合可见光催化剂及其应用
CN107098387A (zh) * 2017-02-24 2017-08-29 河南师范大学 一种近红外光热纳米材料硫化铋的水相制备方法
CN108529675A (zh) * 2018-05-14 2018-09-14 合肥工业大学 一种棒状硫化铋中空纳米微球及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Bi2S3 Flowerlike Patterns with Well-Aligned Nanorods;Bin Zhang等;《J. Phys. Chem.B》;20061231;第110卷;第8978-8985页 *
Highly porous PEGylated Bi2S3 nano-urchins as a versatile platform for in vivo triple-modal imaging, photothermal therapy and drug delivery;Zhenglin Li等;《Nanoscale》;20161231;第8卷;第16005-16016页及Electronic Supplementary Information *
L-胱氨酸辅助合成纳米片状硫化铋(英文);钟家松等;《硅酸盐学报》;20091231;第37卷(第12期);第2102-2107页 *
Template-free fabrication α- and β-Bi2O3 hollow spheres and their visible light photocatalytic activity for water purification;Yunhui Yan等;《Journal of Alloys and Compounds》;20140403;第605卷;第102-108页 *
氨基酸辅助合成多种形貌纳米材料的研究进展;李霞等;《化学通报》;20111231;第74卷(第4期);第325-332页 *

Also Published As

Publication number Publication date
CN109529035A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
CN106267204B (zh) 一种黑磷纳米片-抗肿瘤化合物的复合材料及其制备方法和应用
Wei et al. ZnCl2 enabled synthesis of highly crystalline and emissive carbon dots with exceptional capability to generate O2⋅–
Xiao et al. Hydrophilic bismuth sulfur nanoflower superstructures with an improved photothermal efficiency for ablation of cancer cells
CN108273058B (zh) 一种肿瘤靶向治疗缓释制剂及其制备方法
CN111388666B (zh) 一种二维纳米复合材料、其制备方法及其应用
Guan et al. A carbon nanomaterial derived from a nanoscale covalent organic framework for photothermal therapy in the NIR-II biowindow
CN111084882A (zh) 一种二维纳米复合材料、其制备方法及其应用
CN102552157B (zh) 表层覆盖有贵金属的壳聚糖-聚丙烯酸复合纳米微球及其制法和用途
Jiang et al. TiN nanoparticles: synthesis and application as near-infrared photothermal agents for cancer therapy
Liu et al. Smart “on-off” responsive drug delivery nanosystems for potential imaging diagnosis and targeted tumor therapy
CN109529035B (zh) 近红外光富集半胱氨酸修饰的硫化铋空心球的制备方法及其在光热治疗与药物控释中的应用
CN110101860B (zh) 铋掺杂的金属硫化物纳米花及其制备方法
Liu et al. Polypyrrole-coated flower-like Pd nanoparticles (Pd NPs@ PPy) with enhanced stability and heat conversion efficiency for cancer photothermal therapy
Fang et al. Zeolitic imidazole framework coated Au nanorods for enhanced photothermal therapy and stability
Hu et al. Fabrication of Gd 2 O (CO 3) 2· H 2 O/silica/gold hybrid particles as a bifunctional agent for MR imaging and photothermal destruction of cancer cells
Sun et al. Silicon nanowires decorated with gold nanoparticles via in situ reduction for photoacoustic imaging-guided photothermal cancer therapy
Qi et al. A facile method to synthesize small-sized and superior crystalline Cs 0.32 WO 3 nanoparticles for transparent NIR shielding coatings
CN110755614B (zh) 一种层状双氢氧化物纳米片及其制备方法和应用
Gao et al. Boosting the photothermal performance of vacancy-rich MoSe 2− x nanoflowers for photoacoustic imaging guided tumor chemo-photothermal therapy
CN114652830A (zh) 一种具有近红外二区吸收的纳米金壳颗粒的制备及其应用
CN107162011B (zh) 一种负载吲哚菁绿的锂皂石纳米颗粒icg/lap的制备方法
CN106882791B (zh) 水分散性碳纳米洋葱的制备方法及其应用
Li et al. Metal selenide nanomaterials for biomedical applications
CN109336163B (zh) 一种微波合成半导体材料CuS的制备方法
CN111467509A (zh) 一种相变纳米诊疗剂复合材料、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant