CN109521071B - 一种苯并咪唑类农药噻菌灵的电化学传感检测方法 - Google Patents

一种苯并咪唑类农药噻菌灵的电化学传感检测方法 Download PDF

Info

Publication number
CN109521071B
CN109521071B CN201811551894.8A CN201811551894A CN109521071B CN 109521071 B CN109521071 B CN 109521071B CN 201811551894 A CN201811551894 A CN 201811551894A CN 109521071 B CN109521071 B CN 109521071B
Authority
CN
China
Prior art keywords
electrode
thiabendazole
mos
solution
probenazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811551894.8A
Other languages
English (en)
Other versions
CN109521071A (zh
Inventor
廖晓宁
程富粮
黄志文
项园
周颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU NOON CROP SCIENCE Co.,Ltd.
Original Assignee
Jiangxi Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Agricultural University filed Critical Jiangxi Agricultural University
Priority to CN201811551894.8A priority Critical patent/CN109521071B/zh
Publication of CN109521071A publication Critical patent/CN109521071A/zh
Application granted granted Critical
Publication of CN109521071B publication Critical patent/CN109521071B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • G01N27/4168Oxidation-reduction potential, e.g. for chlorination of water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种苯并咪唑类农药噻菌灵的电化学传感检测方法,首先对基底工作电极抛光处理,在工作电极上制备CNTs/MoS2修饰电极,利用噻菌灵氧化还原峰值电流与噻菌灵浓度关系建立噻菌灵检测标准工作曲线,通过噻菌灵检测标准工作曲线测量未知浓度噻菌灵,制备简单,操作便捷,检测快速,重复性和重现性好,抗干扰能力强,可用于蔬菜、水果、水样等实际样品中噻菌灵定量快速检测。

Description

一种苯并咪唑类农药噻菌灵的电化学传感检测方法
技术领域
本发明涉及食品安全检测技术领域,尤其涉及一种苯并咪唑类农药噻菌灵的电化学传感检测方法。
背景技术
噻菌灵(thiabendazole,TBZ),化学名称为2-(1,3-噻唑-4-萘)苯并咪唑(C10H7N3S,相对分子质量201),商品名称为特克多,纯品为白色结晶固体,无臭、无味,在水、酸、碱性溶液中均稳定,是最早市场化的苯并咪唑类药物,广泛应用于果蔬的防腐保鲜和农作物生长期的病害防治等。噻菌灵主要侵害人体的肝脏、肾脏、骨髓和神经系统,为确保消费者健康,建立一种快速、高灵敏检测TBZ的方法至关重要。
常用的TBZ检测分析方法包括荧光分光光度法、高效液相色谱法(HPLC)、气质联用法(GC-MS)、液质联用法(LC-GS)及表面增强拉曼光谱法(SERS),荧光分光光度法的优点是灵敏度高、选择性高、专一性强,但荧光的光强并不高,所以呈线性情况不很理想,反应荧光持续的时间较短,荧光的发散方向不集中,易受某些离子的干扰影响,荧光会湮灭,试验速度必须要快;高效液相色谱可以较好的定量,但是仪器设备昂贵、耗时长,而且不能用于现场快速检测;气质联用、液质联用、表面增强拉曼光谱法具有较好的灵敏度,但对仪器设备的要求较高,适用性不强,推广起来具有一定困难。
发明内容
本发明所解决的技术问题在于提供一种苯并咪唑类农药噻菌灵的电化学传感检测方法,以解决上述背景技术中的缺点。
本发明所解决的技术问题采用以下技术方案来实现:
一种苯并咪唑类农药噻菌灵的电化学传感检测方法,具体步骤如下:
步骤1)对基底工作电极抛光处理
步骤1.1)打磨工作电极,首先采用氧化铝抛光粉将工作电极打磨成镜面,再将打磨成镜面的工作电极分别在蒸馏水中、无水乙醇中、蒸馏水中依次超声清洗5min,以彻底去除吸附在工作电极表面上的氧化铝粉末和其它污染物,随后在冷空气中吹干;
步骤1.2)判断电极打磨合格,将步骤1.1)中吹干的工作电极、参比电极、对电极三电极体系置于电化学探针溶液中,利用循环伏安法扫描,并与理论标准谱对照两峰之间的电位差,在规定范围内即电极打磨合格;
步骤2)基于CNTs/MoS2修饰电极的制备
制备MoS2分散液,将MoS2晶体溶于含丁基锂的己烷溶液,充满氩气,2天后过滤,再用己烷洗掉多余的锂离子和有机试剂,而后在去离子水中超声1h,形成浓度为3mg/mL的MoS2分散液;
取8mL的3mg/mL MoS2分散液超声5min后,再通过移液枪移取5μL超声后的MoS2分散液滴涂于清洁后的步骤1)的工作电极表面,并烘干,待水分蒸发,在工作电极表面形成一层均匀的MoS2膜;
将CNTs粉末溶于去离子水中超声1h,形成浓度为1mg/mL的CNTs分散液;
同样,取8mL的1mg/mL CNTs分散液超声5min后,再用移液枪移取5μL超声后的CNTs分散液滴涂于形成有MoS2膜的工作电极表面,并烘干,待水分蒸发,获得CNTs/MoS2修饰电极;
步骤3)建立噻菌灵检测标准工作曲线
步骤3.1)在电解池中配置不参与化学反应且导电的溶液作为电解质溶液;向电解质溶液中通入惰性气体,以防止电解质溶液中气体干扰;
步骤3.2)将噻菌灵溶于一定体积可溶解且不与噻菌灵发生作用的溶剂中,配成噻菌灵标准母液;
步骤3.3)将步骤2)获得的CNTs/MoS2修饰电极、参比电极及对电极,置于步骤3.1)经惰性气体处理的电解质溶液中,而后向电解质溶液中加入不同体积一定浓度的步骤3.2)制备的噻菌灵标准母液,搅拌均匀,静置后采用方波伏安法对不同浓度的噻菌灵标准母液进行检测分析,以获得不同浓度的噻菌灵氧化峰电流,而后以噻菌灵标准母液浓度为横坐标,噻菌灵氧化峰电流为纵坐标,建立噻菌灵检测标准工作曲线;
步骤4)实际样品中噻菌灵定量快速检测
在一定体积含有未知噻菌灵浓度的待测溶液中加入电解质溶液,并调节实验参数条件,而后将CNTs/MoS2修饰电极、参比电极、对电极浸没在待测溶液中,静置后采用方波伏安法测定氧化峰电流值,最后根据步骤3)建立的噻菌灵检测标准工作曲线,即得实际样品中的未知噻菌灵浓度。
在本发明中,步骤1.1)中,采用0.05μm氧化铝抛光粉将玻碳电极打磨成镜面。
在本发明中,步骤1.2)中,工作电极为玻碳电极、石墨电极、金电极或铂电极其中一种,参比电极为饱和甘汞电极或银/氯化银电极,对电极为在检测电路中不发生氧化还原反应的不活泼金属中任意一种。
在本发明中,对电极为铂、金或钨。
在本发明中,步骤1.2)中,电化学探针溶液为5mL含有0.1mol/L KCl的5mmol/L[Fe(CN)6]3-/4-溶液或含有0.1mol/L KCl的5mmol/L[Ru(NH3)6]2+/3+溶液。
在本发明中,步骤2)中,MoS2晶体为少层或单层,CNTs粉末为多层、单层或功能化碳纳米管。
在本发明中,步骤3.1)中,电解质溶液为磷酸盐缓冲溶液或伯瑞坦-罗宾森缓冲溶液;惰性气体为氮气、氦气或氖气。
在本发明中,步骤3.1)中,缓冲溶液为0.05mol/L的磷酸、硼酸和醋酸混合溶液。
在本发明中,步骤3.2)中,将噻菌灵溶于8mL的溶剂中,配成浓度为0.1mol/L的噻菌灵标准母液,溶剂为甲醇、乙醇、乙腈和二甲亚砜中的一种或多种。
在本发明中,步骤3.3)中,参比电极为饱和甘汞电极或银/氯化银电极,对电极为在检测电路中不发生氧化还原反应的不活泼金属中任意一种。
有益效果:本发明以碳纳米管/二硫化钼(CNTs/MoS2)修饰电极为工作电极,通过检测修饰电极与噻菌灵电催化反应的氧化电流强度判断噻菌灵浓度,利用噻菌灵氧化还原峰值电流与噻菌灵浓度关系建立噻菌灵检测标准工作曲线,通过噻菌灵检测标准工作曲线测量未知浓度噻菌灵,制备简单,操作便捷,检测快速,重复性和重现性好,抗干扰能力强,可用于蔬菜、水果、水样等实际样品中噻菌灵定量快速检测。
附图说明
图1为本发明实施例中CNTs/MoS2修饰电极、MoS2修饰电极和未修饰的基底工作电极在含有50μmol/mL的噻菌灵的缓冲溶液中的方波伏安曲线图。
图2~4为本发明实施例中CNTs/MoS2修饰电极在含有不同浓度噻菌灵的缓冲溶液中的方波伏安曲线图和噻菌灵检测标准工作曲线。
图5为本发明实施例中CNTs/MoS2修饰电极的抗干扰能力图。
图6为本发明实施例中CNTs/MoS2修饰电极的重复性图。
图7为本发明实施例中CNTs/MoS2修饰电极的再现性图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白清晰,下面结合具体实施例,进一步阐述本发明。
一种苯并咪唑类农药噻菌灵的电化学传感检测方法,具体步骤如下:
步骤1)对基底玻碳电极(GCE)的抛光处理
步骤1.1)电极打磨,首先采用0.05μm氧化铝抛光粉将玻碳电极打磨成镜面,再将打磨成镜面的玻碳电极分别在蒸馏水中、无水乙醇中、蒸馏水中依次超声清洗5min,以彻底去除吸附在玻碳电极表面上的氧化铝粉末和其它污染物,随后在冷空气中吹干;
步骤1.2)判断电极打磨合格,将步骤1.1)中吹干的玻碳电极、饱和甘汞参比电极、铂对电极三电极体系置于5mL含有0.1mol/L KCl的5mmol/L[Fe(CN)6]3-/4-溶液中,利用循环伏安法(CV)扫描,并与理论标准谱对照两峰之间的电位差(△Ep=56mV),在规定范围内(100mV以下)即电极打磨合格;
步骤2)基于CNTs/MoS2修饰电极的制备
制备MoS2分散液,将MoS2晶体溶于含丁基锂的己烷溶液,充满氩气,2天后过滤,再用己烷洗掉多余的锂离子和有机试剂,而后在去离子水中超声1h,形成浓度为3mg/mL的MoS2分散液;
取8mL的3mg/mL MoS2分散液超声5min后,再通过移液枪移取5μL的MoS2分散液滴涂于清洁后的步骤1)的玻碳电极表面,并在红外灯下烘干,待水分蒸发,在玻碳电极表面形成一层均匀的MoS2膜;
将CNTs粉末溶于去离子水中超声1h,形成浓度为1mg/mL的CNTs分散液;
同样,取8mL的1mg/mL CNTs分散液超声5min后,再用移液枪移取5μL的CNTs分散液滴涂于形成有MoS2膜的玻碳电极表面,并在红外灯下烘干,待水分蒸发,获得CNTs/MoS2修饰电极;
步骤3)建立噻菌灵检测标准工作曲线
步骤3.1)在电解池中配置不参与化学反应且导电浓度为0.05mol/L的磷酸、硼酸和醋酸混合溶液,再用0.2mol/L的氢氧化钠溶液调至不同pH,优化后得BR缓冲溶液,选取pH为1.6的最佳pH备用;向BR缓冲溶液中通入氮气,以防止BR缓冲溶液中气体干扰;
步骤3.2)将0.483g噻菌灵溶于8mL的无水乙醇中,配成浓度为0.1mol/L的噻菌灵标准母液;
步骤3.3)将步骤2)获得的CNTs/MoS2修饰电极、饱和甘汞参比电极及铂对电极,置于5mL步骤3.1)经惰性气体处理的0.05mol/L BR缓冲溶液中,而后向BR缓冲溶液中加入不同体积一定浓度的步骤3.2)制备的噻菌灵标准母液,搅拌均匀,静置后采用方波伏安(SWV)法对浓度为0.1μmol/L~4μmol/L、4μmol/L~1000μmol/L范围内的噻菌灵标准母液进行检测分析,可获得不同浓度的噻菌灵氧化峰电流,以浓度为横坐标,氧化峰电流为纵坐标,建立噻菌灵检测标准工作曲线,CNTs/MoS2修饰电极对噻菌灵均具有良好的线性关系(R1 2=0.9919,R2 2=0.9955),如图2~4所示,对含有不同浓度噻菌灵的0.05mol/L BR(pH 1.6)标准溶液中的方波伏安曲线图,由图4可知其检测限低至0.04μmol/L,完全符合国际上限量标准;
噻菌灵的电化学响应,在含有50.0μmol/L的噻菌灵浓度为0.05mol/L BR(pH 1.6)标准溶液中,CNTs/MoS2修饰电极对噻菌灵在1.36V处有一不可逆氧化峰,表明该修饰电极对噻菌灵具有良好的电催化氧化活性;且与空白电极相比,CNTs/MoS2修饰电极对噻菌灵的电化学响应较为明显;
电化学传感器检测噻菌灵的抗干扰评估,制备的CNTs/MoS2修饰电极具有很强的抗干扰能力,乙醇、KCl、Fe2(SO4)3、葡萄糖、L-亮氨酸、维生素C和农药多菌灵、阿克泰及异丙隆对噻菌灵的电化学信号无明显影响,即检测无明显干扰,如图5所示;
电化学传感器检测噻菌灵的重复性评估,用同一根CNTs/MoS2修饰电极在最优的条件下对浓度为2.0μmol/L的噻菌灵溶液平行测定6次,测定峰值电流大小相对标准偏差(RSD)为0.76%,说明该CNTs/MoS2修饰电极具有良好的重复性,如图6所示;
电化学传感器检测噻菌灵的再现性评估,用六根CNTs/MoS2修饰电极在最优的条件下对50.0μmol/L的噻菌灵溶液平行各测定一次,测定峰值电流大小相对标准偏差(RSD)为1.96%,说明该CNTs/MoS2修饰电极具有良好的再现性,如图7所示;
步骤4)实际样品中噻菌灵定量快速检测
将已知噻菌灵浓度加入至含有未知噻菌灵浓度的实际样品中(包括直接使用含有未知噻菌灵浓度的实际样品作对照),调节pH等实验参数条件为标准曲线建立条件,而后将步骤2)制备的CNTs/MoS2修饰电极、参比电极及对电极,置于5mL经惰性气体处理的BR缓冲溶液中,静置1min后,采用方波伏安法平行测量3-6次,求得平均氧化峰电流值,最后根据步骤3)建立的噻菌灵检测标准工作曲线,减去已知噻菌灵浓度得到实际样品中未知噻菌灵浓度(包括直接测定得到未知噻菌灵浓度),计算变异系数和回收率,并结合两种处理得到的未知噻菌灵浓度,评估此方法的精确度和准确度;具体在一定体积含有未知噻菌灵的自来水、梨汁和空心菜汁待测溶液中加入BR缓冲溶液并调节pH为1.6,搅拌均匀,以CNTs/MoS2修饰电极为工作电极、饱和甘汞电极为参比电极、铂为对电极浸没在待测溶液中,静置1min后采用方波伏安法测定并计算出未知浓度的待测溶液中噻菌灵的浓度,方波伏安法条件为:电压扫描范围1.1~1.6V,电位增量0.002V,振幅为0.003V,脉冲频率为10Hz,多次重复试验的变异系数分别为1.02%、2.64%、2.53%,CNTs/MoS2修饰电极具有高的精确度,可用于实际样品的检测分析,制备简单,操作便捷,检测快速,重复性和重现性好,抗干扰能力强,可用于蔬菜、水果、水样等实际样品中噻菌灵定量快速检测。

Claims (10)

1.一种苯并咪唑类农药噻菌灵的电化学传感检测方法,其特征在于,具体步骤如下:
步骤1)对基底工作电极抛光处理
步骤1.1)打磨工作电极,首先采用氧化铝抛光粉将工作电极打磨成镜面,再将打磨成镜面的工作电极分别在蒸馏水中、无水乙醇中、蒸馏水中依次超声清洗,以彻底去除吸附在工作电极表面上的氧化铝粉末和其它污染物,随后在冷空气中吹干;
步骤1.2)判断电极打磨合格,将步骤1.1)中吹干的工作电极、参比电极、对电极三电极体系置于电化学探针溶液中,利用循环伏安法扫描,并与理论标准谱对照两峰之间的电位差,在电位差规定范围内即电极打磨合格;
步骤2)基于CNTs/MoS2修饰电极的制备
制备MoS2分散液,将MoS2晶体溶于含丁基锂的己烷溶液,充满氩气,48h后过滤,再用己烷洗掉多余的锂离子和有机试剂,而后在去离子水中超声1h,形成浓度为3mg/mL的MoS2分散液;
取8mL的3mg/mL MoS2分散液超声后,再通过移液枪移取5μL超声后的MoS2分散液滴涂于清洁后的步骤1)的工作电极表面,并烘干,待水分蒸发,在工作电极表面形成一层均匀的MoS2膜;
将CNTs粉末溶于去离子水中超声1h,形成浓度为1mg/mL的CNTs分散液;
同样,取8mL的1mg/mL CNTs分散液超声后,再用移液枪移取5μL超声后的CNTs分散液滴涂于形成有MoS2膜的工作电极表面,并烘干,待水分蒸发,获得CNTs/MoS2修饰电极;
步骤3)建立噻菌灵检测标准工作曲线
步骤3.1)在电解池中配置不参与化学反应且导电的溶液作为电解质溶液;向电解质溶液中通入惰性气体;
步骤3.2)将噻菌灵溶于一定体积可溶解且不与噻菌灵发生作用的溶剂中,配成噻菌灵标准母液;
步骤3.3)将步骤2)获得的CNTs/MoS2修饰电极、参比电极及对电极,置于步骤3.1)经惰性气体处理的电解质溶液中,而后向电解质溶液中加入不同体积一定浓度的步骤3.2)制备的噻菌灵标准母液,搅拌均匀,静置后采用方波伏安法对不同浓度的噻菌灵标准母液进行检测分析,以获得不同浓度的噻菌灵氧化峰电流,而后以噻菌灵标准母液浓度为横坐标,噻菌灵氧化峰电流为纵坐标,建立噻菌灵检测标准工作曲线;
步骤4)实际样品中噻菌灵定量快速检测
在一定体积含有未知噻菌灵浓度的待测溶液中加入电解质溶液,并调节实验参数条件,而后将CNTs/MoS2修饰电极、参比电极、对电极浸没在待测溶液中,静置后采用方波伏安法测定氧化峰电流值,最后根据步骤3)建立的噻菌灵检测标准工作曲线,即得实际样品中的未知噻菌灵浓度。
2.根据权利要求1所述的一种苯并咪唑类农药噻菌灵的电化学传感检测方法,其特征在于,步骤1.1)中,采用0.05μm氧化铝抛光粉将玻碳电极打磨成镜面。
3.根据权利要求1所述的一种苯并咪唑类农药噻菌灵的电化学传感检测方法,其特征在于,步骤1.2)中,工作电极为玻碳电极、石墨电极、金电极或铂电极其中一种,参比电极为饱和甘汞电极或银/氯化银电极,对电极为在检测电路中不发生氧化还原反应的不活泼金属中任意一种。
4.根据权利要求3所述的一种苯并咪唑类农药噻菌灵的电化学传感检测方法,其特征在于,对电极为铂、金或钨。
5.根据权利要求1所述的一种苯并咪唑类农药噻菌灵的电化学传感检测方法,其特征在于,步骤1.2)中,电化学探针溶液为5mL含有0.1mol/L KCl的5mmol/L [Fe(CN)6]3-/4-溶液或含有0.1mol/L KCl的5mmol/L[Ru(NH3)6]2+/3+溶液。
6.根据权利要求1所述的一种苯并咪唑类农药噻菌灵的电化学传感检测方法,其特征在于,步骤2)中,MoS2晶体为少层或单层,CNTs粉末为多层、单层或功能化碳纳米管。
7.根据权利要求1所述的一种苯并咪唑类农药噻菌灵的电化学传感检测方法,其特征在于,步骤3.1)中,电解质溶液为磷酸盐缓冲溶液或伯瑞坦-罗宾森缓冲溶液;惰性气体为氮气、氦气或氖气。
8.根据权利要求7所述的一种苯并咪唑类农药噻菌灵的电化学传感检测方法,其特征在于,缓冲溶液为0.05mol/L的磷酸、硼酸和醋酸混合溶液。
9.根据权利要求1所述的一种苯并咪唑类农药噻菌灵的电化学传感检测方法,其特征在于,步骤3.2)中,将噻菌灵溶于8mL的溶剂中,配成浓度为0.1mol/L的噻菌灵标准母液,溶剂为甲醇、乙醇、乙腈和二甲亚砜中的一种或多种。
10.根据权利要求1所述的一种苯并咪唑类农药噻菌灵的电化学传感检测方法,其特征在于,步骤3.3)中,参比电极为饱和甘汞电极或银/氯化银电极,对电极为在检测电路中不发生氧化还原反应的不活泼金属中任意一种。
CN201811551894.8A 2018-12-18 2018-12-18 一种苯并咪唑类农药噻菌灵的电化学传感检测方法 Active CN109521071B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811551894.8A CN109521071B (zh) 2018-12-18 2018-12-18 一种苯并咪唑类农药噻菌灵的电化学传感检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811551894.8A CN109521071B (zh) 2018-12-18 2018-12-18 一种苯并咪唑类农药噻菌灵的电化学传感检测方法

Publications (2)

Publication Number Publication Date
CN109521071A CN109521071A (zh) 2019-03-26
CN109521071B true CN109521071B (zh) 2020-09-11

Family

ID=65796125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811551894.8A Active CN109521071B (zh) 2018-12-18 2018-12-18 一种苯并咪唑类农药噻菌灵的电化学传感检测方法

Country Status (1)

Country Link
CN (1) CN109521071B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899805B (zh) * 2021-09-10 2022-10-11 江西农业大学 一种检测噻菌灵的电化学传感器及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004775A (zh) * 2015-07-08 2015-10-28 青岛大学 二硫化物点/纳米片复合物dna电化学探针的制备方法
CN105606677A (zh) * 2016-03-09 2016-05-25 山东理工大学 一种银纳米花杂化的硫化钼多壁碳纳米管传感器的制备方法及应用
CN106198694A (zh) * 2016-06-28 2016-12-07 青岛大学 一种基于裸玻碳电极检测盐酸阿霉素的比率双信号电化学传感器
CN106770548A (zh) * 2016-12-07 2017-05-31 扬州大学 硫化钼多壁碳纳米管金修饰玻碳电极
CN108181371A (zh) * 2017-12-14 2018-06-19 江西农业大学 简单快速检测食品中赭曲霉毒素a的电化传感分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004775A (zh) * 2015-07-08 2015-10-28 青岛大学 二硫化物点/纳米片复合物dna电化学探针的制备方法
CN105606677A (zh) * 2016-03-09 2016-05-25 山东理工大学 一种银纳米花杂化的硫化钼多壁碳纳米管传感器的制备方法及应用
CN106198694A (zh) * 2016-06-28 2016-12-07 青岛大学 一种基于裸玻碳电极检测盐酸阿霉素的比率双信号电化学传感器
CN106770548A (zh) * 2016-12-07 2017-05-31 扬州大学 硫化钼多壁碳纳米管金修饰玻碳电极
CN108181371A (zh) * 2017-12-14 2018-06-19 江西农业大学 简单快速检测食品中赭曲霉毒素a的电化传感分析方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Facile Synthesis of MoS2@CNT as an Effective Catalyst for Hydrogen Production in Microbial Electrolysis Cells;Heyang Yuan 等;《ChemElectroChem》;20140805;第1卷;第1828–1833页 *
Modification of carbon paste electrodes with recrystallized zeolite for simultaneous quantification of thiram and carbendazim in food samples and an agricultural formulation;Elizabete M. Maximiano 等;《Electrochimica Acta》;20171026;第259卷;第66-76页 *
MoS2-CNT Porous 3D Network for Enhanced Oxygen Reduction Reaction;Cheesung Lee 等;《ChemSusChem》;20180718;第11卷(第17期);第2960-2966页 *
基于新型纳米复合材料的电化学葡萄糖及过氧化氢生物传感器研究;林玉萍;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20180715(第07期);第1-55页 *

Also Published As

Publication number Publication date
CN109521071A (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
Ensafi et al. Simultaneous determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly (p-xylenolsulfonephthalein) modified glassy carbon electrode
Sun et al. Simultaneous determination of epinephrine and ascorbic acid at the electrochemical sensor of triazole SAM modified gold electrode
Yan et al. Phenylboronic acid-functionalized vertically ordered mesoporous silica films for selective electrochemical determination of fluoride ion in tap water
Chandrashekar et al. Simultaneous determination of epinephrine, ascorbic acid and folic acid using TX-100 modified carbon paste electrode: A cyclic voltammetric study
CN112051312B (zh) 一种食品中百草枯的电化学传感检测方法及其修饰电极
CN105842321B (zh) 氧化铜纳米针/氮掺杂石墨烯复合材料的非酶葡萄糖电化学传感器的制备方法
Pournaghi‐Azar et al. Amperometric determination of ascorbic acid in real samples using an aluminum electrode, modified with nickel hexacyanoferrate films by simple electroless dipping method
Babaei et al. A sensor for simultaneous determination of dopamine and morphine in biological samples using a multi-walled carbon nanotube/chitosan composite modified glassy carbon electrode
CN108181371B (zh) 简单快速检测食品中赭曲霉毒素a的电化传感分析方法
Munoz et al. ‘One-step’simplified electrochemical sensing of TATP based on its acid treatment
Rashedi et al. Determination of Alfuzosin by hybrid of ionic liquid-graphene nano-composite film using coulometric FFT linear sweep voltammetry
Eskiköy et al. Electrochemical oxidation of atorvastatin and its adsorptive stripping determination in pharmaceutical dosage forms and biological fluids
Dogan et al. Electrochemical behavior of carvedilol and its adsorptive stripping determination in dosage forms and biological fluids
Lv et al. A facile, inexpensive and green electrochemical sensor for sensitive detection of imidacloprid residue in rice using activated electrodes
Piech et al. Sensitive and fast determination of papaverine by adsorptive stripping voltammetry on renewable mercury film electrode
CN109521071B (zh) 一种苯并咪唑类农药噻菌灵的电化学传感检测方法
Zhang et al. A novel self-assembly voltammetric sensor for malachite green based on ethylenediamine and graphene oxide
Ivoilova et al. Study of Different Carbonaceous Materials as Modifiers of Screen‐printed Carbon Electrodes for the Triazid as Potential Antiviral Drug
Norouzi et al. Ultrasensitive flow-injection electrochemical method using fast fourier transform square-wave voltammetry for detection of vitamin B1
CN107490609A (zh) 基于介孔二氧化硅膜的啶虫脒适配体电化学传感器
Zarei et al. Electrochemical determination of riboflavin by an ionic liquid modified carbon paste electrode as a sensitive sensor
Pinar Electrooxidation and Low-tech Determination of Pantoprazole on a Disposable Pencil Graphite Electrode by the use of Cationic Surfactant.
CN113899805B (zh) 一种检测噻菌灵的电化学传感器及其制备方法和应用
Zhou et al. Study on the electrochemical properties of maltol at a carbon paste electrode and its analytical application
Martínez‐Paredes et al. Lead Sensor Using Gold Nanostructured Screen‐Printed Carbon Electrodes as Transducers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211229

Address after: 221000 north of Xujia Expressway in Xuzhou Industrial Park, Jiangsu Province

Patentee after: JIANGSU NOON CROP SCIENCE Co.,Ltd.

Address before: No. 1101, Zhimin Avenue, Changbei Economic and Technological Development Zone, Nanchang City, Jiangxi Province

Patentee before: JIANGXI AGRICULTURAL University