CN109503642A - 一种高稳定介孔锆基有机骨架材料及其制备方法 - Google Patents

一种高稳定介孔锆基有机骨架材料及其制备方法 Download PDF

Info

Publication number
CN109503642A
CN109503642A CN201811627988.9A CN201811627988A CN109503642A CN 109503642 A CN109503642 A CN 109503642A CN 201811627988 A CN201811627988 A CN 201811627988A CN 109503642 A CN109503642 A CN 109503642A
Authority
CN
China
Prior art keywords
organic framework
framework material
base organic
zirconium base
high stable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811627988.9A
Other languages
English (en)
Other versions
CN109503642B (zh
Inventor
薛东旭
李洪昕
郭新爱
白俊峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201811627988.9A priority Critical patent/CN109503642B/zh
Publication of CN109503642A publication Critical patent/CN109503642A/zh
Application granted granted Critical
Publication of CN109503642B publication Critical patent/CN109503642B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种高稳定介孔锆基有机骨架材料及其制备方法,该材料的分子式为[Zr63‑O)43‑OH)4(OH)4(H2O)4(C16H11N3O4)4],其属于立方晶系,Im‑3m空间群,晶胞参数:α=β=γ=90°,晶胞体积为该材料是以四氯化锆、4,4′‑(4H‑1,2,4‑三氮唑)‑3,5‑二苯甲酸为原料,三氟乙酸为模板剂,通过溶剂热反应制备得到。本发明介孔锆基有机骨架材料具有优异的水稳定性以及酸碱稳定性,大的比表面积和介孔结构,在氢气、甲烷等能源气体的吸附存储以及温室气体二氧化碳的捕获等领域具有广泛的应用前景。

Description

一种高稳定介孔锆基有机骨架材料及其制备方法
技术领域
本发明属于金属有机骨架材料技术领域,具体涉及一种高稳定介孔锆基有机骨架材料及其制备方法。
背景技术
金属有机骨架材料是一类新型的固体多孔材料。它是由金属离子或金属簇与有机配体通过配位键自组装而形成的三维网状结构。金属有机骨架材料结构丰富多变,并在能源气体的吸附储存、碳捕获与转化、异相催化等领域都显示出潜在的应用前景,因此近二十年来受到众多研究工作者的广泛关注。截至目前,数以万计的金属有机骨架材料已被报道出来,然而具有高稳定性能的尤其是介孔材料却为数不多。
锆基有机骨架化合物是近年来发展起来的一种新兴的金属有机骨架材料。由于中心金属离子锆的高价态、高电荷密度和强极化性,四价锆与有机配体中的羧基氧原子之间具有很强的亲和力。四价锆属于硬酸,羧酸配体属于硬碱,根据软硬酸碱理论可知,二者形成的金属有机骨架化合物稳定性较好,因此该类材料的结构与制备受到多个研究课题组的重视。
发明内容
本发明的目的是提供一种高稳定介孔锆基有机骨架材料,并为该材料提供一种制备方法和应用。
针对上述目的,本发明所采用的介孔锆基有机骨架材料的框架分子式为[Zr63-O)43-OH)4(OH)4(H2O)4(C16H11N3O4)4],其属于立方晶系,Im-3m空间群,晶胞参数α=β=γ=90°,晶胞体积为
上述的介孔锆基有机骨架材料的制备方法为:将四氯化锆、4,4′-(4H-1,2,4-三氮唑)-3,5-二苯甲酸加入N,N-二甲基甲酰胺、三氟乙酸,待溶液澄清后,在密闭条件下115~125℃加热36~60小时,冷却至常温,得到高稳定介孔锆基有机骨架材料。
上述制备方法中,优选所述四氯化锆与4,4′-(4H-1,2,4-三氮唑)-3,5-二苯甲酸、三氟乙酸的摩尔比为1:0.5~1:14~17.5。
上述制备方法中,进一步优选在密闭条件下120℃加热48小时。
本发明的有益效果如下:
本发明以四氯化锆为金属盐,4,4′-(4H-1,2,4-三氮唑)-3,5-二苯甲酸为有机配体,三氟乙酸为模板剂,通过溶剂热反应,制备得到介孔锆基有机骨架材料。本发明介孔锆基有机骨架材料具有优异的水稳定性以及酸碱稳定性,将该材料浸泡在水中、pH=3与pH=11的溶液中24h后,对其进行粉末X射线衍射以及N2吸附等温线测试,结果表明其结构依然保持完整;该材料具有大的比表面积,为3144m2g-1,孔体积为1.87cm3g-1,在该结构中存在四种孔,其中三种孔属于介孔,最大的孔是小斜方截半立方体,是由24个锆簇与48个有机配体组成,其尺寸达到这种高稳定的介孔锆基有机骨架材料在氢气、甲烷等能源气体的吸附存储以及温室气体二氧化碳的捕获等领域具有广泛的应用前景。
附图说明
图1是本发明介孔锆基有机骨架材料的结构示意图。
图2是本发明介孔锆基有机骨架材料的拓扑示意图。
图3是本发明介孔锆基有机骨架材料的瓦片示意图。
图4是本发明介孔锆基有机骨架材料的粉末X射线衍射图。
图5是本发明介孔锆基有机骨架材料水稳定性的粉末X射线衍射图。
图6是本发明介孔锆基有机骨架材料的热分析图。
图7是本发明介孔锆基有机骨架材料酸碱稳定性的粉末X射线衍射图。
图8是本发明介孔锆基有机骨架材料的气体吸附等温线图。
图9是本发明介孔锆基有机骨架材料的孔径分布图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
将15.2mg(0.06525mmol)四氯化锆、13.5mg(0.0435mmol)4,4′-(4H-1,2,4-三氮唑)-3,5-二苯甲酸、3.0mL N,N-二甲基甲酰胺、70μL(0.9415mmol)三氟乙酸加入20mL玻璃闪烁瓶中,室温下超声震荡至澄清,在120℃烘箱内加热48小时后冷却至常温,生成大量无色多面体晶体,即锆基有机骨架材料(记为化合物1)。
通过单晶X射线衍射对所得材料结构进行表征,该材料的框架分子式为[Zr63-O)43-OH)4(OH)4(H2O)4(C16H11N3O4)4],属于立方晶系,Im-3m空间群,晶胞参数α=β=γ为90°,晶胞体积为在晶体结构中,无机部分的分子构筑单元为六核锆簇[Zr63-O)43-OH)4]。其中,六个锆离子呈现八面体构型,八面体的八个三角形面分别被四个μ3-O和四个μ3-OH所占据,八面体赤道平面的上方及下方分别与八个不同的弯曲型配体的羧基配位,八面体赤道平面上是四个锆,每个锆被一个末端羟基和一个水分子所占据。在六核锆簇中,每个锆均属于八配位,对于赤道平面上的四个锆,每个锆与四个(μ3-O)或(μ3-OH)中的氧、两个配体的两个羧基氧、一个羟基氧以及一个水分子中的氧连接;而对于另外两个八配位的锆,每个锆所连接的八个原子的来源则与赤道平面上的四个锆有所不同,对于其中每一个锆而言,所连接的八个氧原子构成类扭曲四方反棱柱,其中一个四边形的四个顶点是来自四个配体中的四个羧基氧,另外四个顶点是来自四个(μ3-O)或(μ3-OH)中的氧。有机部分的分子构筑单元是弯曲型配体4,4′-(4H-1,2,4-三氮唑)-3,5-二苯甲酸,其分子式为C16H11N3O4。每一个弯曲型配体连接两个六核锆簇,可以简化为一个连接棒,每一个六核锆簇连接八个弯曲型配体,可以简化为一个长方体,由此形成一个8-连接的具有bon拓扑的三维网状结构(见图1和图2)。在该结构中存在四种多面体笼子,从大到小分别为小斜方截半立方体、立方八面体,四方反棱柱和扭曲八面体(见图3)。
图4表明,所得材料用二氯甲烷和正己烷溶剂交换后的粉末X射线衍射图中衍射峰的位置与利用单晶结构解析所得结构数据来模拟的粉末X射线衍射图中衍射峰的位置完全吻合,这说明利用X射线衍射仪所测定的单晶结构可以很好的描述材料结构,同时也说明本发明可以制备得到大量纯相的锆基有机骨架材料,用二氯甲烷与正己烷交换后的化合物结构保持完整,为纯相。
对上述得到的锆基有机骨架材料进行水热稳定性以及酸碱稳定性研究:将样品浸泡在水中,一定时间后对浸泡的样品进行粉末X射线衍射测试,图5表明样品在水中浸泡54h后依然为纯相,表明其具有良好的水稳定性;对样品进行热分析测试,图6表明所得样品在温度达到400℃以上时,框架才开始发生坍塌,表明其具有较好的热稳定性;将样品分别浸泡在pH=3与pH=11的溶液中,24h后对其进行粉末X射线衍射测试,图7表明在pH=3与pH=11的溶液中浸泡24h后样品依然为纯相,表明其具有较好的酸碱稳定性。
为了确认上述得到的锆基有机骨架材料的多孔性,分别在77K与87K下,对该样品进行了N2与Ar吸附等温线的测试,得到了典型的“IV”型曲线(见图8),证明其是介孔材料,对N2的吸附量达到1207cm3g-1,BET比表面积为3144m2g-1,孔体积为1.87cm3g-1。从图9中可知,样品中存在四种孔,其尺寸从大到小依次为

Claims (4)

1.一种高稳定介孔锆基有机骨架材料,其特征在于:该材料的框架分子式为[Zr63-O)43-OH)4(OH)4(H2O)4(C16H11N3O4)4],其属于立方晶系,Im-3m空间群,晶胞参数α=β=γ=90°,晶胞体积为
2.一种权利要求1所述的高稳定介孔锆基有机骨架材料的制备方法,其特征在于:将四氯化锆、4,4′-(4H-1,2,4-三氮唑)-3,5-二苯甲酸加入N,N-二甲基甲酰胺、三氟乙酸,待溶液澄清后,在密闭条件下115~125℃加热36~60小时,冷却至常温,得到高稳定介孔锆基有机骨架材料。
3.根据权利要求2所述的高稳定介孔锆基有机骨架材料的制备方法,其特征在于:所述四氯化锆与4,4′-(4H-1,2,4-三氮唑)-3,5-二苯甲酸、三氟乙酸的摩尔比为1:0.5~1:14~17.5。
4.根据权利要求2所述的高稳定介孔锆基有机骨架材料的制备方法,其特征在于:在密闭条件下120℃加热48小时。
CN201811627988.9A 2018-12-28 2018-12-28 一种高稳定介孔锆基有机骨架材料及其制备方法 Expired - Fee Related CN109503642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811627988.9A CN109503642B (zh) 2018-12-28 2018-12-28 一种高稳定介孔锆基有机骨架材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811627988.9A CN109503642B (zh) 2018-12-28 2018-12-28 一种高稳定介孔锆基有机骨架材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109503642A true CN109503642A (zh) 2019-03-22
CN109503642B CN109503642B (zh) 2020-12-22

Family

ID=65755699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811627988.9A Expired - Fee Related CN109503642B (zh) 2018-12-28 2018-12-28 一种高稳定介孔锆基有机骨架材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109503642B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110065989A (zh) * 2019-06-04 2019-07-30 温州大学 一种利用微孔结构的金属有机骨架材uio-67衍生物吸附水中有机染料的方法
CN113398998A (zh) * 2021-07-06 2021-09-17 辽宁大学 Zr-MOF@CdS光催化剂及其制备方法和在光催化水分解制氢中的应用
CN113512203A (zh) * 2021-07-06 2021-10-19 江苏师范大学 一种手性光敏金属有机框架材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104628751A (zh) * 2015-02-05 2015-05-20 云南师范大学 一种发光多孔配位聚合物及其制备方法和应用
CN104961772A (zh) * 2015-05-29 2015-10-07 西北大学 一种用于co2吸附分离的金属有机框架材料的制备方法
CN105837831A (zh) * 2016-04-20 2016-08-10 郑州轻工业学院 一种微孔钴配位聚合物、其制备方法及应用
CN111187418A (zh) * 2018-11-15 2020-05-22 中国科学院大连化学物理研究所 锆基有机框架化合物及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104628751A (zh) * 2015-02-05 2015-05-20 云南师范大学 一种发光多孔配位聚合物及其制备方法和应用
CN104961772A (zh) * 2015-05-29 2015-10-07 西北大学 一种用于co2吸附分离的金属有机框架材料的制备方法
CN105837831A (zh) * 2016-04-20 2016-08-10 郑州轻工业学院 一种微孔钴配位聚合物、其制备方法及应用
CN111187418A (zh) * 2018-11-15 2020-05-22 中国科学院大连化学物理研究所 锆基有机框架化合物及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIANG KAN等,: "Two Stable Zn-Cluster-Based Metal−Organic Frameworks with Breathing Behavior: Synthesis, Structure, and Adsorption Properties", 《INORG. CHEM.》 *
SHENGYAN WANG等,: "3D lanthanide metal–organic frameworks constructed from lanthanide formate skeletons and 3,5-bis(40-carboxy-phenyl)-1,2,4-triazole connectors: synthesis, structure and luminescence", 《RSC ADV.》 *
YUN-WU LI等,: "Bottom-up assembly of a porous MOF based on nanosized nonanuclear zinc precursors for highly selective gas adsorption", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110065989A (zh) * 2019-06-04 2019-07-30 温州大学 一种利用微孔结构的金属有机骨架材uio-67衍生物吸附水中有机染料的方法
CN110065989B (zh) * 2019-06-04 2021-07-06 温州大学 一种利用微孔结构的金属有机骨架材uio-67衍生物吸附水中有机染料的方法
CN113398998A (zh) * 2021-07-06 2021-09-17 辽宁大学 Zr-MOF@CdS光催化剂及其制备方法和在光催化水分解制氢中的应用
CN113512203A (zh) * 2021-07-06 2021-10-19 江苏师范大学 一种手性光敏金属有机框架材料的制备方法
CN113398998B (zh) * 2021-07-06 2022-07-19 辽宁大学 Zr-MOF@CdS光催化剂及其制备方法和在光催化水分解制氢中的应用
CN113512203B (zh) * 2021-07-06 2022-07-29 江苏师范大学 一种手性光敏金属有机框架材料的制备方法

Also Published As

Publication number Publication date
CN109503642B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
An et al. Construction of covalent organic frameworks with crown ether struts
CN109503642A (zh) 一种高稳定介孔锆基有机骨架材料及其制备方法
Hu et al. Designing a bifunctional Brønsted acid–base heterogeneous catalyst through precise installation of ligands on metal–organic frameworks
Dietzel et al. Base‐induced formation of two magnesium metal‐organic framework compounds with a bifunctional tetratopic ligand
Maity et al. Porous Metal‐Organic Polyhedral Framework containing Cuboctahedron Cages as SBUs with High Affinity for H2 and CO2 Sorption: A Heterogeneous Catalyst for Chemical Fixation of CO2
CN104629080B (zh) 一种基于纤维素硬模板合成zif‑8气凝胶的方法
CN104193768B (zh) 一种中微双孔hkust-1材料及其制备方法和应用
CN107286185A (zh) 一种镉金属有机骨架材料及其制备方法
CN101830857B (zh) 一种方钠石型微孔配位聚合物材料及其制备方法和应用
Sharma et al. Strategies for designing metal–organic frameworks with superprotonic conductivity
CN105646185A (zh) 一种钙金属-有机配位聚合物及其制备方法
Chen et al. A Zirconium Macrocyclic Metal–Organic Framework with Predesigned Shape‐Persistent Apertures
CN108774323A (zh) 一种基于四齿羧酸配体的Zr的金属有机骨架材料和制备方法及其应用
Pang et al. Tuning the Structure of Fe-Tetracarboxylate Frameworks through Linker-Symmetry Reduction
Jiang et al. Three-Component Transformation of CO2, Propargyl Alcohols and Secondary Amines into β-Oxopropylcarbamates Promoted by a Noble Metal-Free Metal–Organic Framework Catalyst
CN101550168B (zh) 基于1,2,3-丙三酸的微孔配位聚合物材料及其制备方法与应用
Qian et al. Sorption comparison of two indium–organic framework isomers with syn–anti configurations
Liu et al. Water-Etched Approach to Hierarchically Porous Metal–Organic Frameworks with High Stability
Li et al. Facile Synthesis of Hierarchical Micro‐mesoporous HKUST‐1 Using Organic Silane Surfactant as a Novel Template
CN101428755A (zh) 异金属储氢多孔材料和制备方法及其应用
CN106243137A (zh) 1,2,4,5‑四甲基苯双三唑镉配合物单晶与应用
CN115490872B (zh) 一种钍铀异核金属有机框架材料及其制备方法与应用
CN106188109A (zh) 1,4‑二溴‑2,5‑二亚甲基双三唑二维镉配合物单晶与应用
CN105732674A (zh) 一种新型一维功能配合物及制备方法
CN118561926A (zh) 一种光热转换钴配合物晶体材料及其制备方法与用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201222