CN109502574A - 一种二硫化钼纳米花-还原氧化石墨烯材料的制备及应用 - Google Patents

一种二硫化钼纳米花-还原氧化石墨烯材料的制备及应用 Download PDF

Info

Publication number
CN109502574A
CN109502574A CN201811622160.4A CN201811622160A CN109502574A CN 109502574 A CN109502574 A CN 109502574A CN 201811622160 A CN201811622160 A CN 201811622160A CN 109502574 A CN109502574 A CN 109502574A
Authority
CN
China
Prior art keywords
molybdenum disulfide
nano flower
disulfide nano
graphene oxide
redox graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811622160.4A
Other languages
English (en)
Inventor
岳红彦
宋姗姗
郭欣睿
高鑫
张宏杰
关恩昊
王钊
王婉秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201811622160.4A priority Critical patent/CN109502574A/zh
Publication of CN109502574A publication Critical patent/CN109502574A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3441Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3464Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide
    • C03C17/347Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide comprising a sulfide or oxysulfide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/112Deposition methods from solutions or suspensions by spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种二硫化钼纳米花‑还原氧化石墨烯材料的制备及应用,涉及一种复合材料的制备及应用。本发明是要解决现有材料在生物传感器中检测多巴胺和尿酸时灵敏度低和检测限高的问题。本发明制备方法如下:一、水热合成法制备二硫化钼纳米花;二、自动喷涂法制备二硫化钼纳米花‑氧化石墨烯;三、热还原法制备二硫化钼纳米花‑还原氧化石墨烯。本发明制备的一种二硫化钼纳米花‑还原氧化石墨烯材料具有比表面积大和电导性良好等优点,可用于同时检测多巴胺和尿酸。

Description

一种二硫化钼纳米花-还原氧化石墨烯材料的制备及应用
技术领域
本发明涉及一种复合材料的制备方法及应用。
背景技术
二硫化钼纳米花具有良好的生物相容性、电催化性能和较多的活性位点,被认为在电化学生物传感器领域具备巨大潜力。氧化还原石墨烯是典型的石墨烯材料,具备独特的分子识别能力、优异的生物相容性、大的比表面积、良好化学稳定性和高催化效率,被作为良好的生物传感材料广泛研究。
多巴胺(dopamine, DA)是一种分布在下丘脑和脑垂体腺中的关键神经传导递质,在调节运动、认知、情感和内分泌等发挥着重要作用。DA失调将会导致神经学疾病,使人失去控制肌肉的能力,造成无意识震颤、阿兹海默症甚至帕金森疾病。同时,由于DA控制大脑的情欲,能影响一个人对事物的欢愉感受,DA缺乏会引发心理学疾病,如抑郁症、精神分裂症等。因此,精确检测人体血液中DA浓度显得尤为重要。尿酸(uric acid,UA)是人体代谢的主要产物,人体内长期尿酸过量会引发痛风,所以精确检测体液中尿酸浓度,对身体健康有重要的作用。目前用电化学方法检测多巴胺和尿酸存在灵敏度低和检测限高的问题。
发明内容
本发明是要解决目前对于多巴胺和尿酸的检测存在灵敏度较低和检测限较高的技术问题,通过水热合成法制备二硫化钼纳米花,然后与去离子水中超声分散的氧化石墨烯悬浮液混合,通过喷涂法和热还原法制备了一种新型的二硫化钼纳米花-还原氧化石墨烯材料。
本发明一种二硫化钼纳米花-还原氧化石墨烯材料的制备及应用,是按以下步骤进行的:
一、水热合成法制备二硫化钼纳米花
(1)将仲钼酸铵和硫脲溶于去离子水中,以400r/min~500r/min的转速磁力搅拌4min~6min,得到水热溶液,所述去离子水的体积为75mL,仲钼酸铵的浓度为0.9mol/L~1.1mol/L,硫脲与仲钼酸铵的摩尔浓度比为30:1;
(2)将步骤一(1)中得到的水热溶液倒入反应釜中,在温度180℃~200℃保温22h~24h,然后取出冷却至室温,打开反应釜后用去离子水和乙醇将沉淀物清洗干净,并于60℃~80℃干燥1h~2h,即得到二硫化钼纳米花,所述反应釜的容积规格为100 mL;
二、自动喷涂法制备二硫化钼纳米花-氧化石墨烯
(1)取10mg~15mg氧化石墨烯溶于去离子水中超声分散2~3小时,得到氧化石墨烯悬浮液;
(2)将二硫化钼纳米花加入到氧化石墨烯悬浮液,搅拌均匀,得到二硫化钼纳米花-氧化石墨烯混合溶液,所述二硫化钼纳米花加入质量与步骤二(1)中氧化石墨烯质量比为1:1;
(3)将步骤二(2)中的混合溶液通过自动喷涂设备喷涂到清洗干净的ITO导电玻璃表面,得到二硫化钼纳米花-氧化石墨烯材料,构建二硫化钼纳米花-氧化石墨烯材料修饰ITO电极,所述ITO导电玻璃的规格为17 cm×25cm;
三、热还原法制备二硫化钼纳米花-还原氧化石墨烯
将步骤二(3)中的二硫化钼纳米花-氧化石墨烯材料在氩气保护下热处理1小时,得到二硫化钼-还原氧化石墨烯材料,构建二硫化钼纳米花-还原氧化石墨烯材料修饰ITO电极,所述氩气流速为400sccm~500 sccm,热处理温度为500℃。
本发明的优点:
(1)本发明方法通过水热法合成了二硫化钼纳米花,同时结合还原氧化石墨烯,制备了新型的二硫化钼纳米花-还原氧化石墨烯材料;
(2)本发明的二硫化钼纳米花-还原氧化石墨烯材料修饰电极能发挥二硫化钼纳米花的比表面积大和还原氧化石墨烯电导性优良的优势,可使电化学检测多巴胺和尿酸的灵敏度分别达到2.29μA/μmol/L和1.88μA/μmol/L,检测限分别达到0.12μmol/L 和0.14μmol/L。
附图说明:
图1是试验一制备的二硫化钼纳米花的扫描电镜照片;
图2是试验一制备的二硫化钼纳米花-还原氧化石墨烯材料的扫描电镜照片;
图3是试验一制备的二硫化钼纳米花-还原氧化石墨烯材料的拉曼图谱;
图4是试验二得到的未添加任何生物分子的10次空扫差分脉冲曲线图;
图5是试验二得到的不同浓度多巴胺的差分脉冲曲线图;
图6是试验二得到的多巴胺浓度与电流的线性拟合图;
图7是试验二得到的不同浓度尿酸的差分脉冲曲线图;
图8是试验二得到的尿酸浓度与电流的线性拟合图。
具体实施方式:
具体实施方式一:本实施方式中一种二硫化钼纳米花-还原氧化石墨烯材料的制备及应用是按以下步骤进行的:
一、水热合成法制备二硫化钼纳米花
(1)将仲钼酸铵和硫脲溶于去离子水中,以400r/min~500r/min的转速磁力搅拌4min~6min,得到水热溶液,所述去离子水的体积为75mL,仲钼酸铵的浓度为0.9mol/L~1.1mol/L,硫脲与仲钼酸铵的摩尔浓度比为30:1;
(2)将步骤一(1)中得到的水热溶液倒入反应釜中,在温度180℃~200℃保温22h~24h,然后取出冷却至室温,打开反应釜后用去离子水和乙醇将沉淀物清洗干净,并于60℃~80℃干燥1h~2h,即得到二硫化钼纳米花,所述反应釜的容积规格为100 mL;
二、自动喷涂法制备二硫化钼纳米花-氧化石墨烯
(1)取10mg~15mg氧化石墨烯溶于去离子水中超声分散2~3小时,得到氧化石墨烯悬浮液;
(2)将二硫化钼纳米花加入到氧化石墨烯悬浮液,搅拌均匀,得到二硫化钼纳米花-氧化石墨烯混合溶液,所述二硫化钼纳米花加入质量与步骤二(1)中氧化石墨烯质量比为1:1;
(3)将步骤二(2)中的混合溶液通过自动喷涂设备喷涂到清洗干净的ITO导电玻璃表面,得到二硫化钼纳米花-氧化石墨烯材料,构建二硫化钼纳米花-氧化石墨烯材料修饰ITO电极,所述ITO导电玻璃的规格为17 cm×25cm;
三、热还原法制备二硫化钼纳米花-还原氧化石墨烯
将步骤二(3)中的二硫化钼纳米花-氧化石墨烯材料在氩气保护下热处理1小时,得到二硫化钼-还原氧化石墨烯材料,构建二硫化钼纳米花-还原氧化石墨烯材料修饰ITO电极,所述氩气流速为400sccm~500 sccm,热处理温度为500℃;
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一(1)中仲钼酸铵的浓度为0.95 mol/L ~1.05 mol/L,其它与具体实施方式一相同;
具体实施方式三:本实施方式与具体实施方式一至二不同的是:步骤一(2)中将步骤一(1)得到的水热溶液倒入反应釜中,在温度190℃~200℃保温23h~24h,其它与具体实施方式一至二相同;
具体实施方式四:本实施方式与具体实施方式一至三不同的是:步骤二(1)取10mg~13mg氧化石墨烯溶于去离子水中超声分散2~2.5小时,其它与具体实施方式一至三相同。
采用下述试验验证本发明效果:
试验一:本试验的一种二硫化钼-还原氧化石墨烯材料的制备是按以下方法实现:
一、水热合成法制备二硫化钼纳米花
(1)将仲钼酸铵和硫脲溶于去离子水中,以450r/min的转速磁力搅拌5min,得到水热溶液,所述去离子水的体积为75mL,仲钼酸铵的浓度为1.0mol/L,硫脲与仲钼酸铵的摩尔浓度比为30:1;
(2)将步骤一(1)中得到的水热溶液倒入反应釜中,在温度180℃保温24h,然后取出冷却至室温,打开反应釜后用去离子水和乙醇将沉淀物清洗干净,并于80℃干燥2h,即得到二硫化钼纳米花,所述反应釜的容积规格为100 mL;
二、自动喷涂法制备二硫化钼纳米花-氧化石墨烯
(1)取10mg氧化石墨烯溶于去离子水中超声分散3小时,得到氧化石墨烯悬浮液;
(2)将二硫化钼纳米花加入到氧化石墨烯悬浮液,搅拌均匀,得到二硫化钼纳米花-氧化石墨烯混合溶液,所述二硫化钼纳米花加入质量与步骤二(1)中氧化石墨烯质量比为1:1;
(3)将步骤二(2)中的混合溶液通过自动喷涂设备喷涂到清洗干净的ITO导电玻璃表面,得到二硫化钼纳米花-氧化石墨烯材料,构建二硫化钼纳米花-氧化石墨烯材料修饰ITO电极,所述ITO导电玻璃的规格为25cm×17cm;
三、热还原法制备二硫化钼纳米花-还原氧化石墨烯
将步骤二(3)中的二硫化钼纳米花-氧化石墨烯材料在氩气保护下热处理1小时,得到二硫化钼-还原氧化石墨烯材料,构建二硫化钼纳米花/还原氧化石墨烯材料修饰ITO电极,其中所述氩气流速为500 sccm,热处理温度为500℃。
图1是试验一制备的二硫化钼纳米花的扫描电镜照片,从图中可以看出二硫化钼纳米花的直径约为1μm,纳米花是有无数的纳米片组成的。
图2是试验一制备的二硫化钼纳米花-还原氧化石墨烯材料的扫描电镜照片,从图中可以看出,包覆在二硫化钼纳米花表面的石墨烯具有大量的褶皱结构,这使得复合材料具有较多的活性位点,有效改善复合材料的性能且石墨烯接近透明,依稀可以分辨出MoS2纳米花的花状结构。
图3是试验一制备的二硫化钼纳米花-还原氧化石墨烯材料的拉曼图谱。在380cm-1和400 cm-1附近的两个显著峰依次对应MoS2两种振动模式。在1345 cm-1、1585 cm-1、2670 cm-1附近的三个拉曼峰分别对应石墨烯的D带、G带和2D带。证实了复合材料由MoS2和石墨烯构成。
试验二:二硫化钼纳米花-还原氧化石墨烯材料修饰ITO电极作为工作电极的检测试验,具体操作如下:
将二硫化钼纳米花-还原氧化石墨烯材料修饰ITO电极作为工作电极,银/氯化银作为参比电极,铂丝作为对电极,采用传统的三电极系统,通过脉冲伏安方法测试(电位增量50mV,脉冲高度4mV,扫描速率8mV/s)首先检测10次未添加任何物质的电流响应用于计算检测限,然后获得该材料对不同多巴胺和尿酸浓度的电流响应,尿酸的浓度依次为0μmol/L、5μmol/L、10μmol/L、20μmol/L、40μmol/L、60μmol/L;所述二硫化钼纳米花-还原氧化石墨烯材料是试验一制备的。
图4是试验二得到的未添加任何生物分子的10次空扫差分脉冲曲线图;根据公式(LOD为检测限,Sb为10次空扫测得电流信号的标准偏差,m为灵敏度)可计算检测限,本实验10次空扫的标准偏差为0.09。
图5是试验二得到的不同浓度多巴胺的差分脉冲曲线图。可以看出,随着多巴胺浓度的增加,电流氧化峰值随之增加。
图6是试验二得到的多巴胺浓度与电流的线性拟合图。多巴胺浓度变化与电流呈线性关系,多巴胺在5μmol/L~60μmol/L浓度范围内得到的直线斜率即检测多巴胺的灵敏度,即2.29μA/μmol/L,计算可得该电极对多巴胺的检测限达到了0.12μmol/L。
图7是试验二得到的不同浓度尿酸的差分脉冲曲线图。可以看出,随着尿酸浓度的增加,电流氧化峰值随之增加。
图8是试验二得到的尿酸浓度与电流的线性拟合图。尿酸浓度变化与电流呈线性关系,尿酸在5μmol/L~60μmol/L浓度范围内得到的直线斜率即检测尿酸的灵敏度,即1.88μA/μmol/L,计算可得该电极对尿酸的检测限达到了0.14μmol/L。

Claims (2)

1.一种二硫化钼纳米花-还原氧化石墨烯材料的制备及应用,其特征在于二硫化钼纳米花-还原氧化石墨烯材料的制备是按以下步骤进行的:
一、水热合成法制备二硫化钼纳米花
(1)将仲钼酸铵和硫脲溶于去离子水中,以400r/min~500r/min的转速磁力搅拌4min~6min,得到水热溶液,所述去离子水的体积为75mL,仲钼酸铵的浓度为0.9mol/L~1.1mol/L,硫脲与仲钼酸铵的摩尔浓度比为30:1;
(2)将步骤一(1)中得到的水热溶液倒入反应釜中,在温度180℃~200℃保温22h~24h,然后取出冷却至室温,打开反应釜后用去离子水和乙醇将沉淀物清洗干净,并于60℃~80℃干燥1h~2h,即得到二硫化钼纳米花,所述反应釜的容积规格为100 mL;
二、自动喷涂法制备二硫化钼纳米花-氧化石墨烯
(1)取10mg~15mg氧化石墨烯溶于去离子水中超声分散2~3小时,得到氧化石墨烯悬浮液;
(2)将二硫化钼纳米花加入到氧化石墨烯悬浮液,搅拌均匀,得到二硫化钼纳米花-氧化石墨烯混合溶液,所述二硫化钼纳米花加入质量与步骤二(1)中氧化石墨烯质量比为1:1;
(3)将步骤二(2)中的混合溶液通过自动喷涂设备喷涂到清洗干净的ITO导电玻璃表面,得到二硫化钼纳米花-氧化石墨烯材料,构建二硫化钼纳米花-氧化石墨烯材料修饰ITO电极,所述ITO导电玻璃的规格为17 cm×25cm;
三、热还原法制备二硫化钼纳米花-还原氧化石墨烯
将步骤二(3)中的二硫化钼纳米花-氧化石墨烯材料在氩气保护下热处理1小时,得到二硫化钼-还原氧化石墨烯材料,构建二硫化钼纳米花-还原氧化石墨烯材料修饰ITO电极,所述氩气流速为400sccm~500 sccm,热处理温度为500℃。
2.一种二硫化钼纳米花-还原氧化石墨烯材料的制备及应用,其特征在于二硫化钼-还原氧化石墨烯材料被用于修饰ITO导电玻璃构建二硫化钼纳米花-还原氧化石墨烯材料修饰ITO电极,该电极用于电化学检测多巴胺和尿酸。
CN201811622160.4A 2018-12-28 2018-12-28 一种二硫化钼纳米花-还原氧化石墨烯材料的制备及应用 Pending CN109502574A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811622160.4A CN109502574A (zh) 2018-12-28 2018-12-28 一种二硫化钼纳米花-还原氧化石墨烯材料的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811622160.4A CN109502574A (zh) 2018-12-28 2018-12-28 一种二硫化钼纳米花-还原氧化石墨烯材料的制备及应用

Publications (1)

Publication Number Publication Date
CN109502574A true CN109502574A (zh) 2019-03-22

Family

ID=65756642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811622160.4A Pending CN109502574A (zh) 2018-12-28 2018-12-28 一种二硫化钼纳米花-还原氧化石墨烯材料的制备及应用

Country Status (1)

Country Link
CN (1) CN109502574A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110583691A (zh) * 2019-09-19 2019-12-20 南京工业大学 还原性氧化石墨烯-二硫化钼-银的三元复合抗菌材料及其制备方法和应用
CN110836918A (zh) * 2019-11-28 2020-02-25 段烁 一种电极合成材料及其制配方法
CN111122661A (zh) * 2020-01-08 2020-05-08 湖北大学 一种基于MoO3纳米带修饰石墨烯的室温FET型氢气敏感元件的制备方法及应用
CN113247949A (zh) * 2021-04-30 2021-08-13 哈尔滨理工大学 一种三维玫瑰状硫化钒纳米片球-还原氧化石墨烯复合材料的制备及应用
CN113735461A (zh) * 2021-09-22 2021-12-03 西南交通大学 一种快速qcm湿度传感器及其应用和湿度传感器的制备方法
CN115112737A (zh) * 2022-06-27 2022-09-27 天津大学 基于氮掺杂还原氧化石墨烯复合二硫化钨纳米片电化学传感器制备和应用
CN115784307A (zh) * 2022-09-08 2023-03-14 哈尔滨理工大学 基于铂或石墨烯改性二维花瓣片状二硫化钼敏感材料的制备方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107902920A (zh) * 2017-06-07 2018-04-13 哈尔滨理工大学 一种二硫化钼‑石墨烯复合纳米片的制备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107902920A (zh) * 2017-06-07 2018-04-13 哈尔滨理工大学 一种二硫化钼‑石墨烯复合纳米片的制备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. PRAMODA等: ""Superior Performance of a MoS2-RGO Composite and a Borocarbonitride in the Electrochemical Detection of Dopamine,Uric Acid and Adenine"", 《ELECTROANALYSIS》 *
马清璇: ""纳米二硫化钼的制备及电化学析氢性能研究"", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技I辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110583691A (zh) * 2019-09-19 2019-12-20 南京工业大学 还原性氧化石墨烯-二硫化钼-银的三元复合抗菌材料及其制备方法和应用
CN110836918A (zh) * 2019-11-28 2020-02-25 段烁 一种电极合成材料及其制配方法
CN111122661A (zh) * 2020-01-08 2020-05-08 湖北大学 一种基于MoO3纳米带修饰石墨烯的室温FET型氢气敏感元件的制备方法及应用
CN113247949A (zh) * 2021-04-30 2021-08-13 哈尔滨理工大学 一种三维玫瑰状硫化钒纳米片球-还原氧化石墨烯复合材料的制备及应用
CN113735461A (zh) * 2021-09-22 2021-12-03 西南交通大学 一种快速qcm湿度传感器及其应用和湿度传感器的制备方法
CN113735461B (zh) * 2021-09-22 2022-03-25 西南交通大学 一种快速qcm湿度传感器及其应用和湿度传感器的制备方法
CN115112737A (zh) * 2022-06-27 2022-09-27 天津大学 基于氮掺杂还原氧化石墨烯复合二硫化钨纳米片电化学传感器制备和应用
CN115112737B (zh) * 2022-06-27 2024-05-07 天津大学 基于氮掺杂还原氧化石墨烯复合二硫化钨纳米片电化学传感器制备和应用
CN115784307A (zh) * 2022-09-08 2023-03-14 哈尔滨理工大学 基于铂或石墨烯改性二维花瓣片状二硫化钼敏感材料的制备方法及应用
CN115784307B (zh) * 2022-09-08 2023-12-26 哈尔滨理工大学 基于铂或石墨烯改性二维花瓣片状二硫化钼敏感材料的制备方法及应用

Similar Documents

Publication Publication Date Title
CN109502574A (zh) 一种二硫化钼纳米花-还原氧化石墨烯材料的制备及应用
Marzouk Improved electrodeposited iridium oxide pH sensor fabricated on etched titanium substrates
Motaghi et al. Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: Application to real sample analysis
van de Velde et al. Solid contact potassium selective electrodes for biomedical applications–a review
Veder et al. Elimination of undesirable water layers in solid-contact polymeric ion-selective electrodes
Bodade et al. Bioelectrode based chitosan-nano copper oxide for application to lipase biosensor
Ryu et al. Electrochemical sensors for nitrogen species: A review
Lindfors et al. Polyaniline nanoparticle-based solid-contact silicone rubber ion-selective electrodes for ultratrace measurements
Zuaznabar-Gardona et al. A wide-range solid state potentiometric pH sensor based on poly-dopamine coated carbon nano-onion electrodes
Babaei et al. Highly sensitive simultaneous determination of L-dopa and paracetamol using a glassy carbon electrode modified with a composite of nickel hydroxide nanoparticles/multi-walled carbon nanotubes
CN107037102B (zh) 一种纳米复合材料及其制备方法、应用
Barman et al. Simultaneous electrochemical detection of dopamine and epinephrine in the presence of ascorbic acid and uric acid using a AgNPs–penicillamine–Au electrode
CN105628764A (zh) 一种检测尿酸的电化学传感器及其制备和应用
Norouzi et al. Application of new advanced electrochemical methods combine with nano-based materials sensor in drugs analysis
Taheri et al. Sensitive and selective determination of Cu2+ at d-penicillamine functionalized nano-cellulose modified pencil graphite electrode
Reddaiah et al. Electrochemical detection of dopamine at poly (solochrome cyanine)/Pd nanoparticles doped modified carbon paste electrode and simultaneous resolution in the presence of ascorbic acid and uric acid: a voltammetric method
Liu et al. Research on nonenzymatic electrochemical sensor using HO-BiONO3 nanocomposites for glucose detection
Urbanowicz et al. A miniaturized solid-contact potentiometric multisensor platform for determination of ionic profiles in human saliva
Taei et al. New modified multiwalled carbon nanotubes paste electrode for electrocatalytic oxidation and determination of warfarin in biological and pharmaceutical samples
Alizadeh et al. Graphite/Ag/AgCl nanocomposite as a new and highly efficient electrocatalyst for selective electroxidation of oxalic acid and its assay in real samples
Babaei et al. A multi-walled carbon nano-tube and nickel hydroxide nano-particle composite-modified glassy carbon electrode as a new sensor for the sensitive simultaneous determination of ascorbic acid, dopamine and uric acid
Moghadam et al. Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles
Ansari et al. Electrochemical sensing platform based on ZrO2/BiVO4 nanocomposite for gastro-prokinetic drug in human blood serum
Hamidi et al. Fabrication of bulk-modified carbon paste electrode containing α-PW12O403− polyanion supported on modified silica gel: Preparation, electrochemistry and electrocatalysis
Sivakumar et al. Flower-like NiCo2O4 nanoflake surface covered on carbon nanolayer for high-performance electro-oxidation of non-enzymatic glucose biosensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190322

WD01 Invention patent application deemed withdrawn after publication