CN109499591B - 一种可磁性回收的类光芬顿催化剂的制备方法及其应用 - Google Patents

一种可磁性回收的类光芬顿催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN109499591B
CN109499591B CN201811360304.3A CN201811360304A CN109499591B CN 109499591 B CN109499591 B CN 109499591B CN 201811360304 A CN201811360304 A CN 201811360304A CN 109499591 B CN109499591 B CN 109499591B
Authority
CN
China
Prior art keywords
reaction
catalyst
fenton
photo
bafe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811360304.3A
Other languages
English (en)
Other versions
CN109499591A (zh
Inventor
徐远国
葛飞跃
谢萌
黄树全
贺敏强
许晖
李华明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201811360304.3A priority Critical patent/CN109499591B/zh
Publication of CN109499591A publication Critical patent/CN109499591A/zh
Application granted granted Critical
Publication of CN109499591B publication Critical patent/CN109499591B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1806Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • B01J35/33
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

本发明属于光催化材料制备技术与应用领域,具体涉及一种可磁性回收的类光芬顿催化剂的制备与应用;具体步骤为:称取六水合氯化铁和二水合氯化钡加入蒸馏水中,再加入KOH,搅拌,然后转移至反应釜,放于烘箱中进行反应,冷却,经洗涤、烘干得钡铁氧体;放在坩埚中,并置于陶瓷纤维马弗炉中进行煅烧反应,反应结束经自然冷却得到钡铁氧体;再称取十二水磷酸三钠和硝酸银分别分散于蒸馏水中,在水浴条件下,往硝酸银溶液中加入钡铁氧体,搅拌,再加入磷酸三钠溶液,搅拌;经洗涤并烘干后得到复合催化剂,即为可磁性回收的类光芬顿催化剂;本发明不需要外加H2O2,得到的复合催化剂催化效率高,并且可磁性回收再利用。

Description

一种可磁性回收的类光芬顿催化剂的制备方法及其应用
技术领域
本发明属于光催化材料制备技术与应用领域,具体涉及一种可磁性回收的类光芬顿催化剂的制备方法与应用。
背景技术
随着人口增长及社会的发展,环境污染日益严重,目前环境污染主要分为海洋污染、空气污染、水体污染等。地球上水资源丰富,但是水体污染已影响水的有效利用,危害人体健康、破坏生态环境等,如果不开发循环性好、稳定性高、有效回收的新型催化剂解决水体污染、再过几十年人类将面临非常严峻的水资源危机。其中作为水体污染物之一的双酚A(BPA),广泛使用的化学品。它常用于制造塑料制品,如环氧树脂、聚碳酸酯树脂。由于其相对高的溶解度和低挥发性,BPA很容易在废水处理厂的废水中甚至是饮用水中检测到。由于其异种雌激素活性,被归为内分泌干扰物,因此BPA释放到环境中对生态甚至人类构成威胁。因此,有必要从水环境中消除BPA以防止其负面后果。
迄今为止,已经提出了许多方法来从水中去除BPA,包括吸附,过滤和化学氧化。虽然已经证明几种材料作为吸收剂和过滤剂可以去除BPA,但BPA的污染仅仅从水相转变为固相,并且其毒性仍然存在。生物降解虽然能够分解BPA,但需要相对长的时间和复杂的设施。相反,化学氧化(例如,高级氧化过程(AOP))是降解BPA的有效且快速的方法。AOP通常包括超氧自由基(·O2 )、羟基(·OH)和硫酸根自由基(SO4 ·-)。最近涉及AOPs降解BPA的工作也受到了很多关注,因为它具有对酚类降解效率高的优点。然而,传统的AOP过程需要加入H2O2,诱发形成芬顿过程。从而导致成本增加、能耗也随之增加。
磷酸银(Ag3PO4)具有2.45eV的合适带隙,并且可以吸收较大范围波长的光,已经广泛研究用于分解水产氧气和有机污染物的降解。另外,已经发现Ag3PO4在PO4 3-离子和Ag+之间具有内置的电场,这有助于e-/h+分离。并且,Ag3PO4表面富集电子促进多电子还原形成H2O2。尽管如此,表面形成的H2O2自分解形成超氧自由基和羟基自由基比较困难。同时,Ag3PO4具有稳定性不高、Ag+易被还原为Ag单质、容易失活、回收困难以及成本高等缺点,限制了Ag3PO4的实际应用。为解决这些问题,研究者将其与其它半导体材料进行复合,如Ag3PO4/Bi2WO6、Ag3PO4/Bi2MoO6复合材料等,利用两者匹配的能带使光生电子-空穴对快速分离,延长光生载流子的寿命,提高光催化活性和光催化稳定性,但是这些材料仍然没有较好的解决其回收困难的问题。
发明内容
针对现有技术的不足,本发明旨在解决上述问题之一;本发明提供一种操作简单,利用BaFe12O19材料具有特殊催化分解H2O2性能,形成原位光芬顿过程有效地分解H2O2生成·O2 -和·OH自由基并用于BPA的降解,不需要外加H2O2促进光-芬顿反应发生,可绿色回收,有效降解BPA的磷酸银新型复合光催化剂。使其降解性能有效提升,且便于催化剂回收利用。
为了实现以上目的,本发明的具体步骤如下:
(1)钡铁氧体(BaFe12O19)的制备:称取六水合氯化铁(FeCl3·6H2O)和二水合氯化钡(BaCl2·2H2O),分散于蒸馏水中,加入氢氧化钾(KOH),搅拌,然后转移至反应釜,放于烘箱中进行反应;反应结束后冷却至室温,经洗涤、烘干得钡铁氧体(BaFe12O19)前驱体;将前驱体材料放在坩埚中,并置于陶瓷纤维马弗炉中,在空气气氛中以一定的升温速率程序升至一定温度进行反应,反应结束经自然冷却得到BaFe12O19
(2)BaFe12O19/Ag3PO4复合催化剂的制备,称取十二水磷酸三钠(Na3PO4·12H2O)和硝酸银(AgNO3)分别分散于蒸馏水中,得到磷酸三钠溶液和硝酸银溶液,在一定的水浴温度下,往硝酸银溶液中加入BaFe12O19,搅拌;然后再加入磷酸三钠溶液,搅拌;经洗涤并烘干后得到BaFe12O19/Ag3PO4复合催化剂,即为可磁性回收的类光芬顿催化剂。
步骤(1)所述六水合氯化铁、二水合氯化钡、蒸馏水和KOH的用量比为0.3~0.6g:0.03~0.06g:10-50mL:2-6g。
步骤(1)所述搅拌的时间为0.5-2h。
步骤(1)所述烘箱中进行反应的温度为150-200℃,反应的时间为18-30h。
步骤(1)所述一定的升温速率为1-5℃/min。
步骤(1)所述一定的温度为700-900℃,反应时间为1-5h。
步骤(2)所述十二水磷酸三钠、硝酸银、蒸馏水和BaFe12O19的用量比为1-3g:0.3-0.5g:10-50mL:0-147mg。
步骤(2)所述一定的水浴温度为30-90℃。
步骤(2)所述搅拌的时间均为0.5-2h,搅拌的速率均为200-400r/min。
本发明制备的BaFe12O19/Ag3PO4复合催化剂在可见光照射下光催化降解BPA;
降解BPA的性能测试:
(1)空白对照组(不添加催化剂)测试步骤:取70mL BPA(20mg/L)水溶液加入反应瓶,将反应瓶置于光催化反应器中,在暗反应条件下,搅拌30min使反应体系达到吸附-脱附平衡。暗反应结束后取第一个液体样品且打开光源(300W的氙灯λ>400nm),开灯反应后,每隔5min取一个液体样品,离心后取上层清液置于石英比色皿中通过紫外可见分光光度计检测其在227nm处的吸光度,记录数据。整个反应过程中温度保持30℃。
(2)样品催化剂测试步骤:称取70mg所得样品光催化剂置于光反应瓶中,再加入70mL BPA(20mg/L)水溶液,超声分散后将反应瓶置于光催化反应器中,在暗反应条件下,搅拌30min使反应体系达到吸附-脱附平衡。暗反应结束后取第一个液体样品且打开光源(300W的氙灯λ>400nm),开灯反应后,每隔5min取一个液体样品,离心后取上层清液置于石英比色皿中通过紫外可见分光光度计检测其在227nm处的吸光度,记录数据。整个反应过程中温度保持30℃。
本发明的有益效果:
本发明与现有的磁性催化剂相比,具有明显优势:制备过程简单易操作,光催化反应过程中能够发生原位芬顿反应,分解体系自身产生的H2O2,不需要外加H2O2,并实现节约能源的目的。催化剂可磁性回收再利用,该复合催化剂可在30s内从溶液中快速分离出来,并且在可见光照射下光催化降解BPA性能比单体约提升80.7%。
附图说明
图1为本发明制备的BaFe12O19、Ag3PO4和BaFe12O19/Ag3PO4的XRD谱图;其中a为实施例1所制备的BaFe12O19,b为实施例5所制备的15%BaFe12O19/Ag3PO4,c为实施例4所制备的10%BaFe12O19/Ag3PO4,d为实施例3所制备的5%BaFe12O19/Ag3PO4,e为实施例2所制备的1%BaFe12O19/Ag3PO4,f为实施例1所制备的Ag3PO4的XRD谱图。
图2中A为实施例1制备的Ag3PO4的扫描电镜图;B为实施例1制备的BaFe12O19的扫描电镜图;C为实施例4所制备的10%BaFe12O19/Ag3PO4复合催化剂1μm状态下的扫描电镜图;D为实施例4所制备的10%BaFe12O19/Ag3PO4复合催化剂100nm状态下的扫描电镜图。
图3为实施例4所制备的10%BaFe12O19/Ag3PO4复合催化剂的元素分布图(SEM-mapping),其中A是10%BaFe12O19/Ag3PO4复合催化剂的SEM图,B是A图中银元素的分布图、C是A图中磷元素的分布图、D是A图中氧元素的分布图、E是A图中钡元素的分布图和F是A图中铁元素的分布图。由于专利中图像不能带有色彩,所以不同元素图只能显示灰白状;
图4中(A)为实施例1所制备的BaFe12O19单体材料和实施例4所制备的10%BaFe12O19/Ag3PO4复合催化剂的磁滞回线(VSM)图;(B)为实施例4所制备的10%BaFe12O19/Ag3PO4复合催化剂的磁分离图。
图5为本发明制备的BaFe12O19、Ag3PO4和BaFe12O19/Ag3PO4的降解BPA活性图;其中a为空白对照组,b为实施例1所制备的BaFe12O19,c为实施例1所制备的Ag3PO4,d为实施例2所制备的1%BaFe12O19/Ag3PO4,e为实施例3所制备的5%BaFe12O19/Ag3PO4,f为实施例5所制备的15%BaFe12O19/Ag3PO4,g为实施例4所制备的10%BaFe12O19/Ag3PO4
具体实施方式
以下结合本发明的实施例,进一步说明本发明的技术方案,但是本发明的保护范围不仅限于此。
实施例1:
(1)钡铁氧体材料的制备,称取0.4g FeCl3·6H2O和0.04g BaCl2·2H2O,分散于20mL的蒸馏水中,加入4g的KOH并搅拌0.5h。然后将其转移至反应釜并放于烘箱升温至200℃,保持24h后冷却至室温并洗涤、烘干得BaFe12O19前驱体;将前驱体材料放在坩埚中,并置于陶瓷纤维马弗炉中,在空气气氛中以3℃/min的升温速率程序升温到800℃,保持3h后自然冷却得到BaFe12O19
(2)BaFe12O19/Ag3PO4复合催化剂的制备,称取2.0g的Na3PO4·12H2O和0.4g AgNO3分别加入到20mL的蒸馏水中溶解,得到Na3PO4溶液和AgNO3溶液;在60℃的水浴条件下,将AgNO3溶液以300r/min的搅拌速率搅拌1h,然后再加入Na3PO4溶液,以300r/min搅拌1h;所得产物用蒸馏水和无水乙醇洗涤之后干燥,得到Ag3PO4催化剂;
使用制备的BaFe12O19在可见光照射下光催化降解BPA,其降解效果为:30min降解效果达17.8%。
使用制备的Ag3PO4在可见光照射下光催化降解BPA,其降解效果为:30min降解效果达45%。
实施例2:
(1)钡铁氧体材料的制备,称取0.4g FeCl3·6H2O和0.04g BaCl2·2H2O,分散于20mL的蒸馏水中,加入4g的KOH并搅拌0.5h。然后将其转移至反应釜并放于烘箱升温至200℃,保持24h后冷却至室温并洗涤、烘干得BaFe12O19前驱体;将前驱体材料放在坩埚中,并置于陶瓷纤维马弗炉中,在空气气氛中以3℃/min的升温速率程序升温到800℃,保持3h后自然冷却得到BaFe12O19
(2)BaFe12O19/Ag3PO4复合催化剂的制备,称取2.0g的Na3PO4·12H2O和0.4g AgNO3分别加入20mL的蒸馏水中溶解,得到Na3PO4溶液和AgNO3溶液;在60℃的水浴条件下,将9.8mg的BaFe12O19加入至AgNO3溶液,以300r/min的搅拌速率搅拌1h,然后再加入Na3PO4溶液,以300r/min搅拌1h;所得产物用蒸馏水和无水乙醇洗涤之后干燥,得到BaFe12O19/Ag3PO4复合催化剂,记为1%BaFe12O19/Ag3PO4(以银离子全部转化Ag3PO4为参照标准,加入BaFe12O19的质量将计算为产物Ag3PO4质量的1%)。
使用制备的1%BaFe12O19/Ag3PO4复合催化剂在可见光照射下光催化降解BPA,其降解效果为:30min降解效果达54%。
实施例3:
(1)钡铁氧体材料的制备,称取0.4g FeCl3·6H2O和0.04g BaCl2·2H2O,分散于20mL的蒸馏水中,加入4g的KOH并搅拌0.5h。然后将其转移反应釜放于烘箱升温至200℃,保持24h后冷却至室温并洗涤、烘干得BaFe12O19前驱体;将前驱体材料放在坩埚中,并置于陶瓷纤维马弗炉中,在空气气氛中以3℃/min的升温速率程序升温到800℃,保持3h后自然冷却得到BaFe12O19
(2)BaFe12O19/Ag3PO4复合催化剂的制备,称取2.0g的Na3PO4·12H2O和0.4g AgNO3分别加入20mL的蒸馏水中溶解,得到Na3PO4溶液和AgNO3溶液;在60℃的水浴条件下,将49mg的BaFe12O19加入到AgNO3溶液,以300r/min的搅拌速率搅拌1h,然后再加入Na3PO4溶液,以300r/min搅拌1h;所得产物用蒸馏水和无水乙醇洗涤之后干燥,得到BaFe12O19/Ag3PO4复合催化剂,记为5%BaFe12O19/Ag3PO4(以银离子全部转化Ag3PO4为参照标准,加入BaFe12O19的质量将计算为产物Ag3PO4质量的5%)。
使用制备的5%BaFe12O19/Ag3PO4复合催化剂在可见光照射下光催化降解BPA,其降解效果为:30min降解效果达66%。
实施例4:
(1)钡铁氧体材料的制备,称取0.4g FeCl3·6H2O和0.04g BaCl2·2H2O,分散于20mL的蒸馏水中,加入4g的KOH并搅拌0.5h。然后将其转移至反应釜并放于烘箱升温至200℃,保持24h后冷却至室温并洗涤、烘干得BaFe12O19前驱体;将前驱体材料放在坩埚中,并置于陶瓷纤维马弗炉中,在空气气氛中以3℃/min的升温速率程序升温到800℃,保持3h后自然冷却得到BaFe12O19
(2)BaFe12O19/Ag3PO4复合催化剂的制备,称取2.0g的Na3PO4·12H2O和0.4g AgNO3分别加入20mL的蒸馏水中溶解,得到Na3PO4溶液和AgNO3溶液;在60℃的水浴条件下,将98mg的BaFe12O19加入AgNO3溶液,以300r/min的搅拌速率搅拌1h,然后再加入Na3PO4溶液,以300r/min搅拌1h;所得产物用蒸馏水和无水乙醇洗涤之后干燥,得到BaFe12O19/Ag3PO4复合催化剂,记为10%BaFe12O19/Ag3PO4(以银离子全部转化Ag3PO4为参照标准,加入BaFe12O19的质量将计算为产物Ag3PO4质量的10%)。
使用制备的10%BaFe12O19/Ag3PO4复合催化剂在可见光照射下光催化降解BPA,其降解效果为:30min降解效果达81.3%。
实施例5:
(1)钡铁氧体材料的制备,称取0.4g FeCl3·6H2O和0.04g BaCl2·2H2O,分散于20mL的蒸馏水中,加入4g的KOH并搅拌0.5h。然后将其转移至反应釜并放于烘箱升温至200℃,保持24h后冷却至室温并洗涤、烘干得BaFe12O19前驱体;将前驱体材料放在坩埚中,并置于陶瓷纤维马弗炉中,在空气气氛中以3℃/min的升温速率程序升温到800℃,保持3h后自然冷却得到BaFe12O19
(2)BaFe12O19/Ag3PO4复合催化剂的制备,称取2.0g的Na3PO4·12H2O和0.4g AgNO3分别加入20mL的蒸馏水中溶解,得到Na3PO4溶液和AgNO3溶液;在60℃的水浴条件下,将147mg的BaFe12O19加入到AgNO3溶液,以300r/min的搅拌速率搅拌1h,然后再加入Na3PO4溶液,以300r/min搅拌1h;所得产物用蒸馏水和无水乙醇洗涤之后干燥,得到BaFe12O19/Ag3PO4复合催化剂,记为15%BaFe12O19/Ag3PO4(以银离子全部转化Ag3PO4为参照标准,加入BaFe12O19的质量将计算为产物Ag3PO4质量的15%)。
使用制备的15%BaFe12O19/Ag3PO4复合催化剂在可见光照射下光催化降解BPA,其降解效果为:30min降解效果达79.8%。
实施列6:
(1)钡铁氧体材料的制备,具体操作步骤如下:称取0.3g FeCl3·6H2O和0.03gBaCl2·2H2O,分散于10mL的蒸馏水中,加入2g的KOH并搅拌1h;然后将其转移反应釜放于烘箱升温至150℃,保持30h后冷却至室温并洗涤、烘干得BaFe12O19前驱体;将前驱体材料放在坩埚中,并置于陶瓷纤维马弗炉中,在空气气氛中以1℃/min的升温速率程序升温到700℃,保持5h后自然冷却得到BaFe12O19
(2)BaFe12O19/Ag3PO4复合催化剂的制备,称取1.0g的Na3PO4·12H2O和0.3g AgNO3分别加入10mL的蒸馏水中溶解,得到Na3PO4溶液和AgNO3溶液;在30℃的水浴条件下,将98mg的BaFe12O19加入到AgNO3溶液,以200r/min的搅拌速率搅拌2h,然后再加入Na3PO4溶液,以200r/min搅拌0.5h;所得产物用蒸馏水和无水乙醇洗涤之后干燥,得到BaFe12O19/Ag3PO4复合催化剂。记为10%BaFe12O19/Ag3PO4(以银离子全部转化Ag3PO4为参照标准,加入BaFe12O19的质量将计算为产物Ag3PO4质量的10%)。
使用制备的10%BaFe12O19/Ag3PO4复合催化剂在可见光照射下光催化降解BPA,其降解效果为:30min降解效果达65%。
实施例7:
(1)钡铁氧体材料的制备,称取0.6g FeCl3·6H2O和0.06g BaCl2·2H2O,分散于50mL的蒸馏水中,加入6g的KOH并搅拌2h;然后将其转移至反应釜,放于烘箱升温至180℃,保持18h后冷却至室温,经洗涤、烘干得BaFe12O19前驱体;将前驱体材料放在坩埚中,并置于陶瓷纤维马弗炉中,在空气气氛中以5℃/min的升温速率程序升温到900℃,保持1h后自然冷却得到BaFe12O19
(2)BaFe12O19/Ag3PO4复合催化剂的制备,称取3.0g的Na3PO4·12H2O和0.5g AgNO3分别加入20mL的蒸馏水中溶解,得到Na3PO4溶液和AgNO3溶液;在90℃的水浴条件下,将98mg的BaFe12O19加入至AgNO3溶液,以400r/min的搅拌速率搅拌0.5h,然后再加入Na3PO4溶液,以400r/min搅拌1.5h;所得产物用蒸馏水和无水乙醇洗涤之后干燥,得到BaFe12O19/Ag3PO4复合催化剂。记为10%BaFe12O19/Ag3PO4(以银离子全部转化Ag3PO4为参照标准,加入BaFe12O19的质量将计算为产物Ag3PO4质量的10%)。
使用制备的10%BaFe12O19/Ag3PO4复合催化剂在可见光照射下光催化降解BPA,其降解效果为:30min降解效果达71%。
可磁性回收的类光芬顿催化剂的XRD、SEM、SEM-mapping、VSM表征如图1、2、3、4、5所示。
图1:从图XRD图谱中可知所制备的材料在从XRD图中可以观察到单体Ag3PO4在2θ=20.8°、29.7°、33.3°、36.5°、47.8°、52.7°、55.0°、57.3°、61.6°和73.8°处有明显的特征峰,分别对应的是Ag3PO4(JCPDS NO.84-0510)的(110)、(200)、(210)、(211)、(310)、(222)、(320)、(321)、(400)和(332)晶面,同时BaFe12O19也与标准卡片JCPDS No.07-0276中显示峰一致,说明材料成功制备。BaFe12O19/Ag3PO4复合光催化材料的XRD谱图与单体Ag3PO4的谱图一致,说明BaFe12O19和Ag3PO4的复合不是晶格掺杂。
从图2的SEM图分析发现,片状材料BaFe12O19和颗粒状的Ag3PO4原位复合过后,构建了一种界面接触的微观结构的材料并且Ag3PO4颗粒尺寸也减小,并证明材料成功制备。
图3为实施例4所制备的10%BaFe12O19/Ag3PO4复合催化剂的元素分布图(SEM-mapping),其中A是10%BaFe12O19/Ag3PO4复合催化剂的SEM图,B是A图中银元素的分布图,呈现出红色、C是A图中磷元素的分布图,呈现出棕色、D是A图中氧元素的分布图,呈现出紫色、E是A图中钡元素的分布图和F是A图中铁元素的分布图,分别呈现出黄色和绿色。由于专利中图像不能带有色彩,所以不同元素图只能显示灰白状;
从SEM-mapping图分析结果中发现,所制备的复合材料中P、O、Ag、Fe、Ba元素均匀分布在复合材料中。
图4:VSM分析结果中发现,所制备材料在具有良好的磁性,且在外部磁场作用下很容易的从反应底物中分离出来,同时也进一步证明了复合材料的制备成功。
图5:从降解BPA活性图分析结果中发现,开灯反应后,随着时间变化,不同时间溶液中BPA的浓度(C)与未反应的初始浓度(C0)比值变化可得出,所制备的10%BaFe12O19/Ag3PO4复合催化剂活性最佳,比单体Ag3PO4活性约提升80.7%。
说明:以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案;因此,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但是本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围内。

Claims (8)

1.一种可磁性回收的类光芬顿催化剂的制备方法,其特征在于,包括如下步骤:
(1)称取六水合氯化铁和二水合氯化钡,分散于蒸馏水中,加入氢氧化钾,搅拌,转移至反应釜后,放于烘箱中进行反应;反应结束后冷却至室温,经洗涤、烘干得钡铁氧体前驱体;将钡铁氧体前驱体放在坩埚中,然后置于陶瓷纤维马弗炉中,在空气气氛中以一定的升温速率程序升至一定温度进行反应,反应结束后经自然冷却得到钡铁氧体;
(2)称取十二水磷酸三钠和硝酸银分别分散于的蒸馏水中,得到磷酸三钠溶液和硝酸银溶液,在一定的水浴温度下,在硝酸银溶液中加入钡铁氧体,搅拌;然后再加入磷酸三钠溶液,搅拌;经洗涤并烘干后得到BaFe12O19/Ag3PO4复合催化剂,即为可磁性回收的类光芬顿催化剂。
2. 根据权利要求1所述的一种可磁性回收的类光芬顿催化剂的制备方法,其特征在于,步骤(1)所述六水合氯化铁、二水合氯化钡、蒸馏水和KOH的用量比为0.3~0.6 g:0.03~0.06 g:10~50 mL:2~6 g。
3. 根据权利要求1所述的一种可磁性回收的类光芬顿催化剂的制备方法,其特征在于,步骤(1)所述搅拌的时间为0.5~2 h。
4. 根据权利要求1所述的一种可磁性回收的类光芬顿催化剂的制备方法,其特征在于,步骤(1)所述烘箱中进行反应的温度为150~200 ℃,反应的时间为18~30 h。
5. 根据权利要求1所述的一种可磁性回收的类光芬顿催化剂的制备方法,其特征在于,步骤(2)所述十二水磷酸三钠、硝酸银、蒸馏水和钡铁氧体的用量比为1~3 g:0.3~0.5g:10~50mL:0~147 mg。
6.根据权利要求1所述的一种可磁性回收的类光芬顿催化剂的制备方法,其特征在于,步骤(2)所述一定的水浴温度为30~90℃。
7. 根据权利要求1所述的一种可磁性回收的类光芬顿催化剂的制备方法,其特征在于,步骤(2)所述搅拌的时间均为0.5~2 h,搅拌的速率均为200~400 r/min。
8.根据权利要求1~7任一项所述的方法制备的催化剂应用于可见光照射下光催化降解双酚A。
CN201811360304.3A 2018-11-15 2018-11-15 一种可磁性回收的类光芬顿催化剂的制备方法及其应用 Active CN109499591B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811360304.3A CN109499591B (zh) 2018-11-15 2018-11-15 一种可磁性回收的类光芬顿催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811360304.3A CN109499591B (zh) 2018-11-15 2018-11-15 一种可磁性回收的类光芬顿催化剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN109499591A CN109499591A (zh) 2019-03-22
CN109499591B true CN109499591B (zh) 2021-02-12

Family

ID=65748663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811360304.3A Active CN109499591B (zh) 2018-11-15 2018-11-15 一种可磁性回收的类光芬顿催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109499591B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112573636B (zh) * 2020-12-10 2021-11-05 湖南大学 一种利用铁锰氧体-金纳米催化剂处理有机污染物的方法
CN114602518A (zh) * 2022-04-14 2022-06-10 六盘水师范学院 一种自组装三维BiOI/BaFe12O19磁性光催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200959A (zh) * 1998-04-10 1998-12-09 中国科学院感光化学研究所 可磁分离的光催化剂及其制法
CN105688957A (zh) * 2016-04-01 2016-06-22 南京大学 具有可见光催化活性的CNTs-Ag3PO4催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200959A (zh) * 1998-04-10 1998-12-09 中国科学院感光化学研究所 可磁分离的光催化剂及其制法
CN105688957A (zh) * 2016-04-01 2016-06-22 南京大学 具有可见光催化活性的CNTs-Ag3PO4催化剂及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Catalytic activity of the barium hexaferrite with H2O2/visible light irradiation for degradation of methylene blue;C.Valero Luna,et al;《Catalysis Today》;20151001;第266卷;第110-119页 *
Novel magnetic BaFe12O19/g-C3N4 composites with enhanced thermocatalytic and photo-Fenton activity under visible-light;Hefei Wang,et al;《Journal of Alloys and Compounds》;20170314;第710卷;第510-518页 *
One-step synthesis of single phase micro-sized BaFe12O19 hexaplates via a modified hydrothermal approach;Liangliang Cao,et al;《Materials Chemistry and Physics》;20160916;第184卷;第241-249页 *
RGO/BaFe12O19/Fe3O4 nanocomposite as microwave absorbent with lamellar structures and improved polarization interfaces;Shangqing Jiao,et al;《Materials Research Bulletin》;20180808;第108卷;第89-95页 *
TiO_2/BaFe_(12)O_(19)磁性催化剂的表征及其光催化性能研究;储金宇等;《中国矿业大学学报》;20090115(第01期);第101-105页 *

Also Published As

Publication number Publication date
CN109499591A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
Boutra et al. Magnetically separable MnFe2O4/TA/ZnO nanocomposites for photocatalytic degradation of Congo Red under visible light
Pang et al. Rapid Cr (VI) reduction in aqueous solution using a novel microwave-based treatment with MoS2-MnFe2O4 composite
Zhu et al. Efficient degradation of rhodamine B by magnetically separable ZnS–ZnFe2O4 composite with the synergistic effect from persulfate
Bayat et al. A magnetic ZnFe2O4/ZnO/perlite nanocomposite for photocatalytic degradation of organic pollutants under LED visible light irradiation
CN105540733A (zh) 一种TiO2-还原石墨烯复合材料及其制备方法和在人工海水体系中的应用
CN107362813A (zh) 一种硫化镉/碘氧化铋异质结光催化剂的制备方法和用途
CN108620097A (zh) 一种碘化银/溴氧化铋异质结光催化剂的制法和用途
Wang et al. ZnIn2S4/CoFe2O4 pn junction-decorated biochar as magnetic recyclable nanocomposite for efficient photocatalytic degradation of ciprofloxacin under simulated sunlight
CN111617770A (zh) 一种银量子点磁性氧化锌光催化材料及制备方法
CN108906090B (zh) 一种具有p-n异质结的光催化复合材料及其制备方法和应用
CN109499591B (zh) 一种可磁性回收的类光芬顿催化剂的制备方法及其应用
CN108579786A (zh) Fe3O4@g-C3N4/RGO复合光催化剂及制备方法
Pei et al. A one-pot hydrothermal synthesis of Eu/BiVO4 enhanced visible-light-driven photocatalyst for degradation of tetracycline
Zhang et al. Synergistic degradation of organic pollutants on CoFe2O4/rGO nanocomposites by peroxymonosulfate activation under LED irradiation
Zhou et al. Synthesis of novel BiOBr/Bio-veins composite for photocatalytic degradation of pollutants under visible-light
CN113398974A (zh) 一种Fe掺杂g-C3N4光催化剂及其制备方法和应用
Wu et al. Retracted: Visible‐light‐driven mitigation of antibiotic oxytetracycline and disinfection of Escherichia coli using magnetic recyclable Ag‐modified zinc ferrite/diatomite ternary hybrid material
Zarei et al. gC 3 N 4 quantum dot decorated MoS 2/Fe 3 O 4 as a novel recoverable catalyst for photodegradation of organic pollutant under visible light
CN108483556A (zh) 一种降解抗生素的方法
CN104138762A (zh) 一种立方结构CuCr2O4可见光光催化剂的制备方法与应用
CN106540719B (zh) 铋系氧化物负载多过渡金属复合氢氧化物可见光光催化材料及其制备方法
Jiang et al. Magnetic recyclable ZnO/SrFe12O19 photocatalyst for effective photodegradation of rhodamine B under simulated sunlight
Lu et al. Low content Ni-doped BiFeO3 with efficient photo-Fenton degradation of tetracycline
Wu et al. Retracted: The Fabrication of Magnetically Recyclable La-Doped TiO2/Calcium Ferrite/Diatomite Composite for Visible-Light-Driven Degradation of Antibiotic and Disinfection of Bacteria
CN111346675A (zh) 一种酸敏控制型PAA@Ag/AgCl/CN复合光催化剂的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant