CN109486987A - 一种高密度遗传连锁图谱的快速构建方法 - Google Patents

一种高密度遗传连锁图谱的快速构建方法 Download PDF

Info

Publication number
CN109486987A
CN109486987A CN201811249400.0A CN201811249400A CN109486987A CN 109486987 A CN109486987 A CN 109486987A CN 201811249400 A CN201811249400 A CN 201811249400A CN 109486987 A CN109486987 A CN 109486987A
Authority
CN
China
Prior art keywords
dna
high density
linkage maps
genetic linkage
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811249400.0A
Other languages
English (en)
Inventor
焦云
柴春燕
舒巧云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Academy of Agricultural Sciences
Original Assignee
Ningbo Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Academy of Agricultural Sciences filed Critical Ningbo Academy of Agricultural Sciences
Priority to CN201811249400.0A priority Critical patent/CN109486987A/zh
Publication of CN109486987A publication Critical patent/CN109486987A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental Sciences (AREA)
  • Mycology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供一种快速、低成本的构建高密度遗传连锁图谱的方法,其步骤包括亲本杂交F1代种子收集、种子子叶中微量DNA多重置换扩增、简化基因组测序以及基因分型,最后基于拟测交策略使用遗传连锁图谱构建软件即可获得植物的高密度遗传连锁图谱。本发明的优点在于直接使用杂交F1代种子即可用于构建高密度遗传连锁图谱,耗时短,成本低;一方面克服了杨梅栽培品种间杂交种子萌发困难、生长发育耗时长的障碍,而且可以较低成本构建较高密度的遗传图谱。该方法为应用多年生林木作为亲本杂交以及子代种子较难萌发的群体进行遗传连锁图谱构建提供了新的思路和方法,加速了此类植物的高密度遗传图谱构建进程。

Description

一种高密度遗传连锁图谱的快速构建方法
技术领域
本发明涉及一种基于杂交F1代作图群体的高密度遗传连锁图谱快速构建方法,属于分子遗传学领域。
背景技术
杨梅(Myrica rubra Sieb.and Zucc.)是原产于我国南方的特色果树,其种质资源丰富,有2000多年的栽培历史,果实富含花色素苷,具有较高的营养价值,鲜食与加工兼宜,市场潜力巨大。据全国杨梅科研、生产协作组等有关单位的调查和整理的结果表明,我国杨梅共有305个品种,单系120个,现已定名的品种共268份(庄卫东,2001)。尽管我国有着丰富的杨梅种质资源,但是新品种的来源还仅限于自然产生的优良变异类型,通过人工杂交方式选育新品种还未见报道。究其原因,主要是由于杨梅作为多年生林木,生长发育周期较长,从种子发芽到结果通常需要8-10年时间;再者,杨梅种子具有休眠性,生理后熟机制较为复杂;在自然状态下,通常栽培品种种子发芽率比实生树的种子发芽率低很多,例如杨梅著名品种‘荸荠’和‘东魁’的种子发芽率仅为5%-27%;即便是使用低温层积、硝酸钾、硫酸、赤霉素、双氧水、热水浸种等各种处理之后,其作用效果也非常有限;另外,有些杨梅品种即使经过不同催芽处理,其种子在采收当年也基本不能萌发,要持续2-3年后部分种子才可以萌发;总之,上述原因是杨梅进行杂交育种与杂交群体构建工作进程中的重要障碍。
遗传连锁图谱以遗传标记间的重组率为基础对染色体上的遗传标记或者已知基因进行相对定位,也是进行资源研究的理论基础和依据,因此,构建遗传连锁图谱可为控制重要农艺性状基因、数量性状的位点进行定位及检测和分析服务。早期形态标记是构建遗传连锁图谱主要方法,随着分子生物学特别是分子标记技术的发展,RAPD、AFLP、SSR、SNP等分子标记方法被广泛应用于遗传连锁图谱的构建中。其中,SNP(Single nucleotidepolymorphism)具有数量多、分布广泛、稳定性好等优点,利用SNP标记进行多年生果树高密度遗传连锁图谱的构建已被广泛使用(Wang et al.,2011)。然而,遗传图谱构建的基础是分离群体,适合的亲本和适当的群体是成功和高效作图的关键。果树多数为多年生异交植物,多数自交不亲和,基因型高度复杂,有性时代太长,因而很难通过杂交获得纯系,因此,利用近交系或其他高世代群体进行遗传构图是非常困难的。近年来在林木图谱构建中发展出来拟测交策略,其原理是将两个杂合体双亲均看作回交一代群体,并将对方作为测交隐性亲本,即以亲缘关系相对较远的杂合亲本交配所得的Fl为作图群体,因亲本杂合,由于亲本杂交得到F1代群体遗传位点已经产生分离重组,可以直接选取在亲本中呈多态且在F1中以1∶1分离的位点来模拟近交系中的测交位点作图。针对杨梅而言,其在分子遗传尤其是育种领域的研究仅处于起步阶段,基础较为薄弱。就杨梅而言,由于杂交种子生理后熟机制复杂,萌发困难,耗时较长,即使利用低世代(F1代)杂交群体及拟测交策略构建遗传图谱,从亲本杂交授粉、种子收集与播种到种子萌发然后采集叶片进而提取DNA通常也需要2-3年时间,严重限制了杨梅的遗传图谱构建及其他分子遗传学相关研究工作的开展。因此,探索利用较为快捷的技术方法进行杨梅遗传图谱的构建是克服现有技术方法不足的有效途径之一。
发明内容
本发明的目的是提供一种快速的基于杂交F1作图群体的高密度遗传连锁图谱的构建方法。
为达到上述目的,本发明采用的技术方案为:
(1)杨梅栽培品种杂交授粉:
选择农艺性状、果实品质具有一定差异的杨梅栽培品种作为亲本开展杂交授粉,Myrica L.首先在(母本)杨梅雌花始花期前10天,使用硫酸纸袋将着生雌花的枝条进行套袋隔离,套袋的花序总数量需>100个;然后,在雄花盛花期收集(父本)杨梅雄花的花粉,置于4℃保存备用;待(母本)杨梅雌花盛花期时,拆开套袋一角,用毛笔蘸取少量(父本)杨梅雄花的花粉进行人工点授,授粉后将袋子上的孔用胶带再次密封隔离;最后,待果实进入膨大期将硫酸纸袋拆掉换成纱网袋并挂牌标记,可防止果实落果造成的损失;待果实完熟后直接收集所有纱网袋中杂交果实,将去除果肉后种子阴干后置于4℃冰箱保存。其中选择杨梅杂交亲本的具体条件为:1、两个亲本均为杨梅属(Myrica L.)杨梅种(Myrica rubra)内栽培品种,两者果实成熟期早晚差异大于10d以上,同时果实平均单果重差异大于8g以上;2、由于杨梅为雌雄异株植物,两个亲本中必须至少有一个可以产生花粉(作为父本)才可以形成有效杂交授粉组合。以上两个条件均需满足。
(2)杂交F1种子处理与样品收集:
种子直接使用坚果破壳器将每粒种子的硬质外壳压碎后去除;然后使用手术刀和镊子在超净工作台上小心翼翼的撕开核仁的黄褐色外皮,同时只刮取少量种子子叶部分样品(>50mg)置于2ml圆底具塞离心管内,每份子叶样品均单独存放,每份样品采集处理前后手术刀、镊子等都要用医用酒精擦拭后火焰灼烧以防止交叉污染;
(3)子叶中微量DNA的提取与纯化:
①在每份装有子叶样品的离心管内加入一粒钢珠,用液氮浸泡后置于FastPrep-96高通量样品制备仪上进行充分研磨(亲本可直接采集少许嫩叶同步进行研磨及相关DNA提取);然后,直接加入1mL 65℃预热的CTAB提取液后混匀(提取液的配方为:CTAB,4g;NaCl,16.34g,1M Tris·HCl(pH8.0),20ml;0.5M EDTA,8ml;3%PVP,2g;定容于200ml,调整pH至8.0,灭菌后即可使用),置于65℃金属浴上保持45min后加入等体积抽提混合液(氯仿:乙醇:异戊醇=20:4:1,体积比),震荡混匀;
②12000rpm离心10min,小心吸取上层水相于干净离心管中,加入等体积抽提混合液后震荡混匀,12000rpm离心10min,再次小心吸取上层水相于干净离心管中;然后加入等体积的异丙醇,混匀,室温静置40min,12000rpm离心10min,去上清液,加入500μL 70%乙醇,涡旋震荡,12000rpm离心10min,去上清液,吸取残留液体并晾干DNA沉淀,加入50μL TE溶液溶解(TE溶液的配方为:10mmol/L Tris·Cl,1mmol/L EDTA,pH 8.0);
③使用微量DNA纯化试剂盒MicroDNA Clean-Up Kit(OMEGA)纯化上述DNA粗提液;具体操作步骤如下:DNA粗提液加0.5倍体积的Buffer P3和等体积无水乙醇,室温下充分混匀;混合液在10000rpm离心1min条件下通过DNA吸附柱;弃去过滤液,将吸附柱放回原管,加入700μL SPW后10000rpm离心1min,弃过滤液后再次加入700μL SPW清洗吸附柱;将吸附柱放回原管,13000rpm离心2min以彻底去除各种残留液体;最后将吸附柱套入1.5ml离心管中加入20μL ddH2O,13000rpm离心2min洗脱吸附柱中DNA,重复洗脱1次;取2~5μl在1.0%的琼脂糖凝胶上检测,置于-80℃冰箱保存备用;
(4)微量DNA多重置换扩增:
①样品加热变性及引物与质粒退火反应:ddH2O 4.4μl,10×phi29 DNA聚合酶缓冲液1.0μl,随机引物(100μM)2.5μl(序列为:NNNNNN,经硫代磷酸化修饰),DNA模板样品(1μg/ml)1.0μl,95℃加热3分钟,然后置于冰上15分钟。
②扩增反应:在上述反应液中加入dNTP(10mM)0.5μl,100X BSA 0.1μl,Phi29 DNA聚合酶(10U/μl)0.5μl,最终反应体系为:10.0μl,30℃温育过夜。
③热失活phi29 DNA聚合酶:65℃,10分钟。
④经多重置换扩增后的DNA样品分别取2μl在1.0%的琼脂糖凝胶上检测其质量及浓度;
(5)真假杂种鉴定:
上述扩增后的DNA分别取20ng并使用2×TransStart FastPfu Fly PCR SuperMix(-dye)试剂盒进行PCR扩增,引物为MRU155(F:GATCTGATGGTCTAGAACGCAC;R:GTTTGAAAGCTTCTTTCCCTGGTG)和my0972(F:GGAATCATCGAAGCCAGAAAA;R:TAAACAAAGAAATGCCAGAGGAAAG),均已添加荧光标识;反应程序为94℃预变性5min,94℃(30s)/58℃(30s)/72℃(30s)35个循环,最后72℃延伸10min;PCR扩增结果在ABI3730或ABI3130遗传分析仪上鉴定其片段大小(bp),最后对父、母本及杂交群体进行对比分析,若后代群体扩增出条带大小与父母本完全一致即为真杂种,扩增出其他片段大小的后代均为假杂种,可直接剔除。
(6)DNA的简化基因组测序与数据处理:
将通过鉴定后的真杂种DNA委托生物技术公司使用二代测序平台Illumina Hiseq2500上机测序,测序模式为Paired-end,2*150bp;采用简化基因组测序方法,即dd-RAD(Double digest restriction associated DNA);测序数据量要求每个子代个体>600M,亲本个体>6G。然后,将测序获得的原始序列数据使用Stacks软件子程序process_radtags进行样本划分与质控,然后分别使用子程序ustacks及cstacks将子代个体与两个亲本中所出现的stacks综合编入,形成一个含有双亲中所有基因座位的目录;再由子Sstacks程序对子代个体中出现的基因座位与双亲中出现的基因座位进行一对一搜索和概率计算,定义出每一个基因座位上的等位基因,最后由子genotypes对每个位点的基因型进行分型矩阵构建,并输出CP类型的joinmap可识别的文件*.loc。
(7)高密度遗传连锁图谱绘制:
将Stacks软件最后生成的*.loc矩阵文件直接导入Joinmap 5.0,设定LOD最大值为10,最小值为2,用kosambi函数将重组率转化为遗传距离(cM),检测水平为1.0%,图谱使用Joinmap 5.0内置Mapchart插件进行展示。
本发明首次直接使用杨梅杂交种子子叶开展遗传图谱的构建,克服了杨梅杂交种子萌发困难和生长周期长的障碍,减少了杂交子代材料培育的工作量及时间,进而简化了遗传图谱构建流程。此外,以杂交F1为作图群体按“拟测交”的策略建图,符合多年生异交植物本身生长特性;再者,直接提取种子子叶中微量DNA并进行多重置换扩增,即可满足常规简化基因组测序技术样品量需求,不必借助于成本较高的微量DNA简化基因组测序技术,从而降低了样品的测序成本。应用本发明方法从杨梅杂交授粉到群体种子收集及构建图谱,仅需要4个月的时间。该方法特别适用于多年生雌雄异株林木遗传图谱的构建。因而该方法在多年生林木分子育种领域具有良好的应用前景。
与现有技术相比,本发明的有益效果为:
(1)本发明仅需要收集杂交群体种子即可开始构建遗传连锁图谱,有效克服了多年生林木杂交后代生长周期长的缺陷,可在较短时间内完成高密度遗传连锁图谱构建,效果可靠;另外,本发明可最大限度利用杂交群体资源,省去了后期杂交后代栽培养护;同时,针对亲本亲和力较低、杂交困难以及子代萌发困难的树种,可避免后期子代相关栽培技术措施不当导致的杂交群体个体数量损失。本方法可广泛用于今后的多年生异交植物遗传连锁图谱构建等相关研究。
(2)本发明将直接提取杂交群体种子子叶中微量DNA进行多重置换扩增,借以提升DNA总量;其主要扩增环节依赖phi29 DNA聚合酶,该酶对于模板有很强的模板结合能力,能连续扩增100kb的DNA模板而不从模板上解离,同时这种酶具有3’-5’外切酶活性,可以保证扩增的高保真性,扩增效果稳定可靠。种子子叶中微量DNA经多重置换扩增后可完全满足常规简化基因组测序技术样品量需求,不必借助于高成本的微量DNA简化基因组测序技术,从而较大幅度降低了基因组测序成本。
附图说明
图1为部分样品微量DNA多重置换扩增琼脂糖凝胶电泳效果图(A,多重置换扩增前的原始DNA电泳效果;B,经过多重置换扩增后的DNA电泳效果;图A和图B同一泳道内均为同一样品DNA)。
图2为采用本方法构建得到的杨梅高密度遗传图谱LGl-LG11号连锁群。
下面结合附图对本发明的实施方式做进一步说明。
具体实施方式
实施例1
杨梅高密度遗传连锁图谱构建快速构建的应用,其步骤包括:
(1)杨梅品种间杂交授粉:
选择农艺性状、果实品质具有较大差异的杨梅栽培品种早熟优株‘BQCX’(♀)和晚熟大果型品种‘东魁’(♂)作为亲本开展杂交授粉;首先,在早熟优株‘BQCX’上选择花序进行套袋(硫酸纸袋)隔离(2016年3月1),花序数量为102个;在2016年3月11日,在东魁杨梅园采集雄性突变花序并收集其花粉;然后在3月13日对早熟优株‘BQCX’进行点授杂交;4月30日,将所有果实套袋全部更换为网纱袋,以利于通风透光;6月4日果实成熟时收集所有套袋内的杂交果实,共计162颗果实;待果实果肉部分完熟后将其剔除,保留种核阴干后置于4℃冰箱保存。
(2)杂交F1种子处理与样品收集:
将种子直接使用坚果破壳器将每粒种子的硬质外壳压碎后去除,然后使用手术刀和镊子在超净工作台上小心翼翼的撕开核仁的黄褐色外皮,同时只刮取少量种子子叶部分样品约150mg置于2ml圆底具塞离心管内,每份子叶样品均单独存放,并标注名称;由于部分种子内部已发生败育或发霉,可直接丢弃;最终,可顺利采集子叶样品的种子共计122粒;每份样品采集处理前后手术刀、镊子等都要用医用酒精擦拭后火焰灼烧以防止交叉污染;
(3)子叶中微量DNA的提取与纯化:
①在每份装有子叶样品的离心管内加入一粒钢珠,用液氮浸泡后置于FastPrep-96高通量样品制备仪上进行充分研磨;然后,直接加入1mL 65℃预热的CTAB提取液后混匀(提取液的配方为:CTAB,4g;NaCl,16.34g,1M Tris·HCl(pH8.0),20ml;0.5M EDTA,8ml;3%PVP,2g;定容于200ml,调整pH至8.0,灭菌后即可使用),置于65℃金属浴上保持45min后加入等体积抽提混合液(氯仿:乙醇:异戊醇=20:4:1,体积比),震荡混匀;
②12000rpm离心10min,小心吸取上层水相于干净离心管中,加入等体积抽提混合液后震荡混匀,12000rpm离心10min,再次小心吸取上层水相于干净离心管中;然后加入等体积的异丙醇,混匀,室温静置40min,12000rpm离心10min,去上清液,加入500μL 70%乙醇,涡旋震荡,12000rpm离心10min,去上清液,吸取残留液体并晾干DNA沉淀,加入50μL TE溶液溶解(TE溶液的配方为:10mmol/L Tris·Cl,1mmol/L EDTA,pH 8.0);
③使用微量DNA纯化试剂盒Micro DNA Clean-Up Kit(OMEGA)纯化上述DNA粗提液;具体操作步骤如下:每份子叶DNA粗提液加0.5倍体积的Buffer P3和等体积无水乙醇,室温下充分混匀;混合液在10000rpm离心1min条件下通过DNA吸附柱;弃去过滤液,将吸附柱放回原管,加入700μL SPW后10000rpm离心1min,弃过滤液后再次加入700μL SPW清洗吸附柱;将吸附柱放回原管,13000rpm离心2min以彻底去除各种残留液体;最后将吸附柱套入1.5ml离心管中加入20μL ddH2O,13000rpm离心2min洗脱吸附柱中DNA,重复洗脱1次;
另外,直接采集亲本‘BQCX’(♀)和‘东魁’(♂)植株嫩叶300mg按照上述①-③同步进行相关处理即可。
分别取上述样品DNA提取液2μl在1.0%的琼脂糖凝胶上检测DNA提取和纯化效果,最后置于-80℃冰箱保存备用;
(4)微量DNA多重置换扩增:
①样品加热变性及引物与质粒退火反应:ddH2O 4.4μl,10×phi29 DNA聚合酶缓冲液1.0μl,随机引物(100μM)2.5μl(序列为:NNNNNN,经硫代磷酸化修饰),子叶DNA模板样品(1μg/ml)2.0μl,95℃加热3分钟,然后置于冰上15分钟。
②扩增反应:在上述反应液中加入dNTP(10mM)0.5μl,100X BSA 0.1μl,Phi29 DNA聚合酶(10U/μl)0.5μl,最终反应体系为:10.0μl,30℃温育过夜。
③热失活phi29 DNA聚合酶:65℃,10分钟。
④经多重置换扩增后的DNA样品分别取2μl在1.0%的琼脂糖凝胶上检测其质量及浓度,如图1所示;
(5)真假杂种鉴定:
上述扩增后的子叶DNA样品分别取20ng并使用2×TransStart FastPfu Fly PCRSuperMix(-dye)试剂盒进行PCR扩增,引物为MRU155(F:GATCTGATGGTCTAGAACGCAC;R:GTTTGAAAGCTTCTTTCCCTGGTG)和my0972(F:GGAATCATCGAAGCCAGAAAA;R:TAAACAAAGAAATGCCAGAGGAAAG),上述引物分别添加FAM和HEX荧光标识;反应程序为94℃预变性5min,94℃(30s)/58℃(30s)/72℃(30s)35个循环,最后72℃延伸10min;PCR扩增结果在ABI3730遗传分析仪上鉴定其片段大小(bp),结果见表1(“√”表示为真杂种F1,“x”则表示为假杂种F1,)。
1使用SSR分子标记扩增鉴定杨梅F1真假杂种
由表1可知,在MRU11位点,‘BQCX’的基因型为110/116,‘东魁’的基因型为116/116;而在my0972位点,‘BQCX’的基因型为204/216,‘东魁’的基因型为234/234;若杂种F1扩增出与亲本‘BQCX’和‘东魁’不一致的片段均为假杂种,例如No.5、No.8和No.10等共计41个,将其直接剔除,其余81个则为真杂交F1。
(6)DNA的简化基因组测序与数据处理:
将通过鉴定后的真杂种DNA原液(平均每份总量约为500ng)委托生物技术公司使用二代测序平台Illumina Hiseq 2500上机测序,测序模式为Paired-end,2*150bp;采用简化基因组测序方法,即dd-RAD(Double digest restriction associated DNA);测序数据量平均每个子代个体>1.5G,亲本个体>6.5G;获得测序数据后进行如下操作:
将测序获得的原始序列数据使用Stacks 1.47软件子程序process_radtags进行样本划分与质控,然后分别使用子程序ustacks及cstacks将子代个体与两个亲本中所出现的stacks综合编入,形成一个含有双亲中所有基因座位的目录;再由子Sstacks程序对子代个体中出现的基因座位与双亲中出现的基因座位进行一对一搜索和概率计算,定义出每一个基因座位上的等位基因,最后由子genotypes对每个位点的基因型进行分型矩阵构建,并输出CP类型的joinmap可识别的文件*.loc。
①基于LINUX平台的CENTOS 7.5操作系统环境,使用软件Stacks 1.47(http://catchenlab.life.illinois.edu/stacks/)子程序process_radtags进行样本分离与质控(碱基质量值为Q30);
②分别使用子程序ustacks和cstacks进行处理,前者根据序列相似性找出SNP变异位点,后者将变异位点进行汇总(主要参数:-m 3,-M 3);
③通过genotype程序将变异位点整理,最终获得含有18,264个位点的基因分型矩阵,并导出为loc文件;
(7)高密度遗传连锁图谱绘制:
将Stacks软件最后生成的*.loc矩阵文件直接导入Joinmap 5.0,设定LOD最大值为10,最小值为2,根据最大似然法计算重组率,用kosambi函数将重组率转化为遗传距离(cM),图谱使用Joinmap 5.0内置Mapchart插件进行展示。共1,543个SNP标记上图,获得了11条杨梅连锁群,总图距为4551.462cM,平均图距2.95cM。
从以上实施例可以看出,使用F1群体可以快速构建杨梅高密度遗传连锁图谱,该技术在林木分子育种领域将具有良好的应用价值和推广前景。

Claims (8)

1.一种高密度遗传连锁图谱的快速构建方法,其特征在于,该方法包括下述步骤:
A、栽培品种杂交授粉:始花期前将母本的雌花花序隔离,父本的花粉授到母本的雌花上继续隔离,待杂交果实成熟后收集杂交F1种子;
B、杂交F1种子处理与样品收集:杂交F1种子破壁后取种子子叶部分作为样品;
C、提取与纯化子叶中的微量DNA;
D、多重置换扩增方法处理子叶中的微量DNA,获得多个扩增后的DNA样品;
E、真假杂种鉴定:对扩增后的DNA样品进行PCR扩增,PCR扩增结果在遗传分析仪上鉴定其片段大小,最后对父、母本及杂交群体进行对比分析,若后代群体扩增出条带大小与父母本完全一致即为真杂种,扩增出其他片段大小的后代均为假杂种,直接剔除;
F、通过鉴定后的真杂种DNA进行测序,绘制高密度遗传连锁图谱。
2.根据权利要求1所述的高密度遗传连锁图谱的快速构建方法,其特征在于,步骤A具体为:在母本雌花始花期前进行套袋隔离,套袋的花序总数量>100个;然后在雄花盛花期收集父本雄花的花粉,冷藏保存备用;待母本雌花盛花期时,进行人工点授,授粉后雌花再次密封隔离;待果实完熟后收集所有杂交果实,去除果肉,杂交F1种子阴干后冷藏保存。
3.根据权利要求2所述的高密度遗传连锁图谱的快速构建方法,其特征在于,步骤A中待果实进入膨大期将纸袋拆掉换成纱网袋并挂牌标记。
4.根据权利要求2所述的高密度遗传连锁图谱的快速构建方法,其特征在于,步骤B具体为:使用坚果破壳器将每粒种子的硬质外壳压碎后去除;然后使用手术刀和镊子在超净工作台上撕开核仁的外皮,同时只刮取>50mg的种子子叶部分样品置于离心管内,每份子叶样品均单独存放。
5.根据权利要求4所述的高密度遗传连锁图谱的快速构建方法,其特征在于,步骤C具体为:C1、在每份装有子叶样品的离心管内加入一粒钢珠,用液氮浸泡后充分研磨;然后,直接加入CTAB提取液后混匀,金属浴后加入等体积抽提混合液,震荡混匀;
C2、离心,吸取上层水相于干净离心管中,加入等体积抽提混合液后震荡混匀,离心,再次吸取上层水相于干净离心管中;然后加入等体积的异丙醇,混匀,室温静置,离心,去上清液,加入70%乙醇,震荡,离心,去上清液,吸取残留液体并晾干DNA沉淀,加入TE溶液溶解;
C3、使用微量DNA纯化试剂盒纯化上述DNA粗提液;具体操作步骤如下:DNA粗提液加0.5倍体积的Buffer P3和等体积无水乙醇,室温下充分混匀;混合液在离心条件下通过DNA吸附柱;弃去过滤液,将吸附柱放回原管,加入SPW后离心,弃过滤液后再次加入SPW清洗吸附柱;将吸附柱放回原管,离心以彻底去除各种残留液体;最后将吸附柱套入离心管中加入ddH2O,离心洗脱吸附柱中DNA,重复洗脱1次;取2~5μl在1.0%的琼脂糖凝胶上检测,置于-80℃冰箱保存备用,亲本直接采集少许嫩叶同步进行研磨及DNA提取。
6.根据权利要求5所述的高密度遗传连锁图谱的快速构建方法,其特征在于,步骤D具体为:D1、样品加热变性及引物与质粒退火反应:ddH2O 4.4μl,10×phi29DNA聚合酶缓冲液1.0μl,随机引物(100μM)2.5μl,引物序列为:NNNNNN,经硫代磷酸化修饰,DNA模板样品(1μg/ml)1.0μl,95℃加热3分钟,然后置于冰上15分钟;
D2、扩增反应:在上述反应液中加入dNTP(10mM)0.5μl,100X BSA 0.1μl,Phi29 DNA聚合酶(10U/μl)0.5μl,最终反应体系为:10.0μl,30℃温育过夜;
D3、热失活phi29DNA聚合酶:65℃,10分钟;
D4、经多重置换扩增后的DNA样品分别取2μl在1.0%的琼脂糖凝胶上检测其质量及浓度。
7.根据权利要求6所述的高密度遗传连锁图谱的快速构建方法,其特征在于,步骤E具体为:将扩增后的DNA分别取20ng,并使用2×TransStart FastPfu Fly PCR SuperMix试剂盒进行PCR扩增,引物为MRU155,序列为F:GATCTGATGGTCTAGAACGCAC;R:GTTTGAAAGCTTCTTTCCCTGGTG,以及my0972序列为F:GGAATCATCGAAGCCAGAAAA;R:TAAACAAAGAAATGCCAGAGGAAAG,均已添加荧光标识;反应程序为94℃预变性5min,94℃(30s)/58℃(30s)/72℃(30s)35个循环,最后72℃延伸10min;PCR扩增结果在遗传分析仪上鉴定其片段大小,最后对父本、母本及杂交群体进行对比分析,若后代群体扩增出条带大小与父母本完全一致即为真杂种,扩增出其他片段大小的后代均为假杂种,直接剔除。
8.根据权利要求7所述的高密度遗传连锁图谱的快速构建方法,其特征在于,步骤F具体为:将通过鉴定后的真杂种DNA测序,采用简化基因组测序方法;测序数据量要求每个子代个体>600M,亲本个体>6G,然后,将测序获得的原始序列数据使用Stacks软件子程序process_radtags进行样本划分与质控,然后分别使用子程序ustacks及cstacks将子代个体与两个亲本中所出现的stacks综合编入,形成一个含有双亲中所有基因座位的目录;再由子Sstacks程序对子代个体中出现的基因座位与双亲中出现的基因座位进行一对一搜索和概率计算,定义出每一个基因座位上的等位基因,最后由子genotypes对每个位点的基因型进行分型矩阵构建,并输出CP类型的joinmap可识别的文件*.loc,将Stacks软件最后生成的*.loc矩阵文件直接导入Joinmap 5.0,设定LOD最大值为10,最小值为2,用kosambi函数将重组率转化为遗传距离cM,检测水平为1.0%,完成高密度遗传连锁图谱构建。
CN201811249400.0A 2018-10-25 2018-10-25 一种高密度遗传连锁图谱的快速构建方法 Pending CN109486987A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811249400.0A CN109486987A (zh) 2018-10-25 2018-10-25 一种高密度遗传连锁图谱的快速构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811249400.0A CN109486987A (zh) 2018-10-25 2018-10-25 一种高密度遗传连锁图谱的快速构建方法

Publications (1)

Publication Number Publication Date
CN109486987A true CN109486987A (zh) 2019-03-19

Family

ID=65691885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811249400.0A Pending CN109486987A (zh) 2018-10-25 2018-10-25 一种高密度遗传连锁图谱的快速构建方法

Country Status (1)

Country Link
CN (1) CN109486987A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481407A (zh) * 2020-12-16 2021-03-12 重庆文理学院 龙眼snp分子标记及其在遗传图谱构建、单果重性状定位中的应用
CN113692999A (zh) * 2021-09-29 2021-11-26 中国科学院南海海洋研究所 一种基于香港牡蛎和熊本牡蛎种间杂交家系的高密度遗传连锁图谱快速构建方法
CN114107548A (zh) * 2021-12-07 2022-03-01 浙江省农业科学院 一种用于检测杨梅果实颜色的kasp分子标记及其应用
CN114457178A (zh) * 2021-12-07 2022-05-10 浙江省农业科学院 用于预测杨梅果实可溶性固形物的kasp分子标记及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703586A (zh) * 2012-05-18 2012-10-03 北京林业大学 梅花ssr遗传图谱的构建方法
CN106755404A (zh) * 2016-12-22 2017-05-31 中国科学院昆明植物研究所 一种构建竹类植物遗传图谱的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703586A (zh) * 2012-05-18 2012-10-03 北京林业大学 梅花ssr遗传图谱的构建方法
CN106755404A (zh) * 2016-12-22 2017-05-31 中国科学院昆明植物研究所 一种构建竹类植物遗传图谱的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
刘维瑜等: "多重置换扩增-一种新的全基因组扩增技术", 《国际遗传学杂志》 *
杨英军等编著: "《园艺植物生物技术原理与方法》", 31 December 2007, 中国农业出版社 *
沈禹彤: "杨梅新品系选育与杨梅在余姚滨海地适应性试验研究", 《中国优秀硕士学位论文全文数据库 农业科技辑》 *
湖南省林业厅编: "《湖南林业重大科技成果汇编》", 31 January 2007, 湖南科学技术出版社 *
贾慧敏: "杨梅全基因组测序和雌雄性别控制遗传分析", 《中国博士学位论文全文数据库 农业科技辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481407A (zh) * 2020-12-16 2021-03-12 重庆文理学院 龙眼snp分子标记及其在遗传图谱构建、单果重性状定位中的应用
CN112481407B (zh) * 2020-12-16 2022-01-11 重庆文理学院 龙眼snp分子标记及其在遗传图谱构建、单果重性状定位中的应用
CN113692999A (zh) * 2021-09-29 2021-11-26 中国科学院南海海洋研究所 一种基于香港牡蛎和熊本牡蛎种间杂交家系的高密度遗传连锁图谱快速构建方法
CN114107548A (zh) * 2021-12-07 2022-03-01 浙江省农业科学院 一种用于检测杨梅果实颜色的kasp分子标记及其应用
CN114457178A (zh) * 2021-12-07 2022-05-10 浙江省农业科学院 用于预测杨梅果实可溶性固形物的kasp分子标记及其应用
CN114457178B (zh) * 2021-12-07 2023-08-08 浙江省农业科学院 用于预测杨梅果实可溶性固形物的kasp分子标记及其应用
CN114107548B (zh) * 2021-12-07 2023-11-28 浙江省农业科学院 一种用于检测杨梅果实颜色的kasp分子标记及其应用

Similar Documents

Publication Publication Date Title
CN109486987A (zh) 一种高密度遗传连锁图谱的快速构建方法
CN108504773B (zh) 甘蓝型油菜粒重和角果长度主效qtl位点的分子标记及其应用
CN109929945A (zh) 甘蓝型油菜开花期和成熟期主效QTL位点的分子标记BrSF2604引物及其应用
CN113637787B (zh) 一种与油茶单果质量相关的dna片段及其应用
CN107937397A (zh) 与番茄雄性不育基因紧密连锁的snp分子标记及其获得方法和应用
CN113637786A (zh) 与油茶种子油脂中亚油酸含量相关的dna片段、snp分子标记及其应用
CN106755413B (zh) 水稻氮素吸收利用位点qNUE6及其分子标记方法
CN109797238B (zh) 两种基于抗蔓枯病连锁基因开发的用于甜瓜蔓枯病抗性鉴定的分子标记及其用途
CN109735650B (zh) 四种基于单核苷酸多态性的甜瓜抗蔓枯病分子标记及用途
CN107619875B (zh) 一种用于鉴定西瓜果实形状的插入缺失标记位点、引物及应用
CN113584204B (zh) 与油茶种子出仁率相关的dna片段、其紧密连锁的snp分子标记及其应用
CN113430298B (zh) 与油茶种子油中亚麻酸含量相关的dna片段、其紧密连锁的snp分子标记及其应用
CN105671039B (zh) 大豆始花期主效QTL的分子标记indel15-1及其应用
CN110004242A (zh) 甘蓝型油菜开花期和成熟期主效QTL位点的分子标记BrSF0239引物及其应用
CN113584203B (zh) 与油茶单果质量相关的dna片段、其紧密连锁的snp分子标记及其应用
CN106399538B (zh) 与桃树矮化基因紧密连锁的snp标记的应用
CN113278723B (zh) 合成芥菜中导入的白菜基因组片段或遗传多样性分析的组合物及应用
CN111394502B (zh) 鉴定大豆RN型CMS恢复基因的InDel标记及方法
CN109197569B (zh) 一种提高水稻三系不育系柱头外露率的分子育种方法
CN106191276B (zh) 一种利用dna分子标记快速区分柱型苹果苗木的方法
CN105925708B (zh) 早期鉴定甜瓜ms5型雄性不育的分子标记BSA10及其应用
CN110106270A (zh) 一种与甜瓜黄色种皮共分离的分子标记及其应用
CN106048025B (zh) 与甜瓜雄性不育ms5基因紧密连锁的分子标记BSA3-2及其应用
CN113430297B (zh) 与油茶种子油中软脂酸含量相关的dna片段、其紧密连锁的snp分子标记及其应用
CN109825619A (zh) 与水稻稻瘟病抗性基因Pigm紧密连锁的分子标记R060939

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190319