CN109483179B - 高强钢卷管加工工艺 - Google Patents

高强钢卷管加工工艺 Download PDF

Info

Publication number
CN109483179B
CN109483179B CN201910001593.6A CN201910001593A CN109483179B CN 109483179 B CN109483179 B CN 109483179B CN 201910001593 A CN201910001593 A CN 201910001593A CN 109483179 B CN109483179 B CN 109483179B
Authority
CN
China
Prior art keywords
pipe
displacement
plate
roll
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910001593.6A
Other languages
English (en)
Other versions
CN109483179A (zh
Inventor
高用城
宋凤明
温东辉
郑勇
任俊禄
杨阿娜
李自刚
王永远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
CCCC Tianjin Dredging Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
CCCC Tianjin Dredging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd, CCCC Tianjin Dredging Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN201910001593.6A priority Critical patent/CN109483179B/zh
Publication of CN109483179A publication Critical patent/CN109483179A/zh
Application granted granted Critical
Publication of CN109483179B publication Critical patent/CN109483179B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/14Bending sheet metal along straight lines, e.g. to form simple curves by passing between rollers

Abstract

本发明涉及一种高强钢卷管加工工艺,依次包括如下步骤:下料、铣边开坡口、预弯、三辊式卷板机辊弯、直缝焊、环焊;在进行卷板机辊弯前,先测量钢板回弹量,再根据钢板回弹量计算出实际成管时的卷管直径及卷管成形时上工作辊的总下调位移量,并确定上工作辊的道次位移量,通过数次卷板完成卷管加工;上工作辊的道次位移量逐次递减,首道次位移量占总下调位移量50%以上,前三道次总位移量完成总下调位移量的90%以上,至少在倒数第三道次时上工作辊位移基本到位。本发明可有效控制工作辊位移量,从而用合适尺寸的高强度钢板在卷板机上制备出平直度良好的疏浚管,且卷板结束时管体缝隙不超过3mm,无需辊圆即可焊接,管体椭圆度≤2mm。

Description

高强钢卷管加工工艺
技术领域
本发明属于钢板冷加工技术领域,特别是涉及一种高强钢卷管加工工艺,
背景技术
在航道清淤、围海造陆等疏浚工程领域,大量泥砂通过疏浚管道输送到较远的地方。疏浚浆体中一方面大量的泥砂颗粒对管体内壁造成磨损破坏,同时液体介质由于具有一定的酸碱度对管体材料产生腐蚀破坏,加上二者的交互作用,使得疏浚管道产生严重的磨蚀失效。特别是在海水浆体疏浚过程中,输送管道(16mm壁厚)的使用寿命一般为3-5年,工况苛刻的条件下甚至8个月即可磨穿。
为了提高疏浚管道的使用寿命、降低使用成本,强度更高、耐磨蚀性能更好的钢铁材料逐渐取代低强度的普碳钢(例如Q235B、Q345B)应用到浆体疏浚管的制作。但由于新的磨蚀钢强度更高,屈服强度一般在1250MPa以上,远超过普碳钢强度;采用常规的卷管工艺,存在椭圆度差、卷管后两侧间隙大等问题,制约了高强度磨蚀钢在疏浚管道上的应用。
疏浚管的口径(内径)一般在700mm以上,主要规格包括800、850、900、1000、1100、1200mm,甚至1400mm。疏浚管一般采用JCOE或者三辊式卷板机加工疏浚管。三辊式卷板机制管,先加工成1.5-2.0m的短管,再通过环焊拼接成长度为6m的输送管。要求管体椭圆度≤3mm(相互垂直的两个位置直径差,椭圆度越小代表管体越接近圆形,质量越好),对口错边量≤1.5mm(卷管后管口两侧偏离量)。
普碳钢板强度低,回弹很小,一般约5-8°,卷板制管时不存在筒体间隙过大问题;而制作屈服强度1250MPa以上的新型浆体疏浚管时,由于钢板强度高,回弹量大,卷板机辊弯后的筒体仍存在较大的缝隙,甚至在80mm以上,即使经再次反复补充辊弯后仍有较大的缝隙(筒体缝隙是指卷制的钢管在卸载后从卷板机上取下自由放置在水平地面时管体的开口间隙。理想状态下卷管后钢板的两边相互接触成为一个筒体,没有间隙;实际上由于钢板的反弹,总是会存在一定的间隙)。直缝焊时通常采用外力强行将缝隙两端挤压到一起以完成焊接,这将导致外力卸载后焊缝处存在极大的拉应力,甚至超过焊缝强度引发焊缝当场开裂。同时钢管的椭圆度也难以保证,甚至超过40mm,需要经过多道次辊圆以提高椭圆精度。由于焊缝处应力过大,在辊圆过程中易导致焊缝开裂,所以采用现有的制管工艺难以完成高强度耐磨蚀钢的卷管加工。
国内外就大口径钢管的制管加工提出了一些专利。专利公布号CN1864917A公开的专利“高强度结构钢管的制造方法”涉及小口径的薄壁钢管,采用罗拉成型工艺,主要用于大桥护栏,仅适用于屈服强度不超过500MPa的低强度钢板;专利公布号CN1898042A公开的专利“UOE钢管的制造方法及其制造装置”虽然涉及大口径厚壁管的制作,但其采用UOE工艺,且钢板屈服强度均在800MPa以下。此外也有采用HFW工艺制作钢管,如专利公布号CN102784812A公开的专利“矿浆输送管道用X65钢级HFW钢管的制造方法”,该方法采用HFW制管工艺,且钢板强度约450MPa。专利号KR101040971(B1)公开的专利“A CORRUGATEDSTEEL PIPE MANUFACTUR METHOD”介绍了一种波纹管的制作加工,钢板强度较低,且为小口径薄壁管。
此外,也有一些文献资料介绍了三辊式卷板机制管过程中工作辊位移量的调整控制。如“三辊滚弯机的成型半径与位移量的分析计算”(湖北工业大学学报,22(4):20-22)、“大型船用卷板机卷板成形过程的数值模拟”(锻压技术,36(5):76-80)。但这些已有的文献资料并没有考虑钢板回弹的影响,或者没有给出回弹情况下位移量的控制手段。所涉及的钢种多为普通的Q235、Q345级别钢种。
综上所述,目前的三辊式卷管工艺适用于屈服强度不超过450MPa普碳钢板,且在卷板过程中没有考虑钢板的回弹问题;少量文献所涉及的回弹量控制主要通过建立数学模型实现,过程复杂且精度不高,难以应用于实际的卷管加工。对于屈服强度在1250MPa以上的超高强度耐磨蚀钢板,尚无有效的卷管工艺。
发明内容
针对现有技术存在的问题,本发明提供了一种高强钢卷管加工工艺,采用该工艺可以在卷板机上完成屈服强度1250MPa以上超高强钢板的卷管加工,所制备的大口径疏浚钢管平直度良好,椭圆度在2mm以内,满足浆体疏浚用钢管的加工要求。
本发明是这样实现的,一种高强钢卷管加工工艺,其特征在于,依次包括如下步骤:
下料、铣边开坡口、预弯、三辊式卷板机辊弯、直缝焊、环焊;
在进行卷板机辊弯前,先测量钢板回弹量,再根据钢板回弹量计算出实际成管时的卷管直径及卷管成形时上工作辊的总下调位移量,并确定上工作辊的道次位移量,通过数次卷板完成卷管加工;
根据几何原理计算三辊式卷板机卷管成形时上工作辊的总下调位移量S公式为:
S=(Rmin+r2+t)*(1-cosθ) (1)
式中:
Figure BDA0001933915020000031
a为两支撑辊间距之半(mm),R为所欲制作钢管的半径(mm),r1、r2为支撑辊半径(mm),t为钢板厚度(mm);
由于钢板回弹,实际卷管的直径应适当缩小,定义实际成管时的卷管半径为Rmin,计算实际成管时的卷管半径Rmin公式如下:
Figure BDA0001933915020000032
式中:α为钢板回弹量;一般回弹量随着折弯角度的增加而有所减小,但幅度不大。
将式(2)带入式(1)即可求出回弹情况下三辊式卷板机上工作辊的总下调位移量S。
在上述技术方案中,优选的,所述上工作辊的道次位移量逐次递减。要求上工作辊的位移量尽量分配在前面几个道次中,通常钢板经过5-8个道次(每卷取一次记为1个道次)实现初步成管,要求在初始的3-5个道次中上工作辊完成大部分的位移量,后续几个道次作为管体椭圆度的修正,从而进一步保证管体椭圆度精度。
在上述技术方案中,优选的,所述上工作辊的首道次位移量占总下调位移量50%以上,前三道次总位移量完成总下调位移量的90%以上,至少在倒数第三道次时上工作辊位移基本到位,后续道次仅为提高椭圆度精度而进行。
在上述技术方案中,优选的,所述钢板回弹量根据钢板在180℃冷弯试验下测量获得,冷弯直径(15-30)t即可,但不可大于钢管直径或超出钢板冷弯性能要求,钢板的冷弯性能用冷弯直径与钢板厚度的比值衡量。
在上述技术方案中,优选的,所述卷板机功率根据钢板性能、制管规格及卷板机的设备参数计算得出,保证卷板加工不超过设备能力,且该方法根据钢板特性、卷管规格并结合卷板机的设备参数,可以有效控制工作辊的位移量,从而用合适尺寸的高强度钢板在卷板机上制备出平直度良好的疏浚管。
与现有技术相比,本发明具有的优点和积极效果是:
1、本发明提出了基于钢板回弹量控制卷板机工作辊位移量的卷管方法及工作辊位移量计算公式,从而在卷板时准确设定上工作辊位移量,提高卷管质量,可满足屈服强度在1250MPa以上、壁厚14-22mm的大口径疏浚用钢管制作;
2、本发明提出的卷管方法根据钢板的回弹量精确计算实际卷板时工作辊的位移量,可将卷制的筒体缝隙控制在3mm以内,有效缩短了卷板结束时管体两侧的缝隙,在无需外力的自由状态下可直接进行直缝焊接,大幅度降低了焊缝位置的拉应力,减少了焊缝开裂的缝隙,解决了超高强度钢板制作疏浚管的难题;
3、本发明所涉及的卷管方法加工的钢管具有良好的平直度及椭圆度,减少了卷板道次及辊圆道次,降低了后续辊圆的难度及辊圆工作量,提高了生产效率;
4、本发明的方法简单易行,在对设备不作调整、不增加改造费用的条件下提高了制管质量和制管效率,降低了制管加工成本,无需辊圆即可焊接,最终成品钢管的椭圆度在2mm以内,提高了制管效率及质量。
附图说明
图1是本发明的实施例提供的三辊式卷板机卷管示意图。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
一种高强钢卷管加工工艺,依次包括如下步骤:
下料、铣边开坡口、预弯、三辊式卷板机辊弯、直缝焊、环焊;
在进行卷板机辊弯前,先测量钢板回弹量,再根据钢板回弹量计算出实际成管时的卷管直径及卷管成形时上工作辊的总下调位移量,并确定上工作辊的道次位移量,通过数次卷板完成卷管加工;
根据几何原理计算三辊式卷板机卷管成形时上工作辊的总下调位移量S公式为:
S=(Rmin+r2+t)*(1-cosθ) (1)
式中:
Figure BDA0001933915020000041
a为两支撑辊间距之半(mm),R为所欲制作钢管的半径(mm),r1、r2为支撑辊半径(mm),t为钢板厚度(mm);
由于钢板回弹,实际卷管的直径应适当缩小,定义实际成管时的卷管半径为Rmin,计算实际成管时的卷管半径Rmin公式如下:
Figure BDA0001933915020000042
式中:α为钢板回弹量;一般回弹量随着折弯角度的增加而有所减小,但幅度不大。
将式(2)带入式(1)即可求出回弹情况下三辊式卷板机上工作辊的总下调位移量S。
作为优选的实施例,上工作辊的道次位移量逐次递减。要求上工作辊的位移量尽量分配在前面几个道次中,通常钢板经过5-8个道次(每卷取一次记为1个道次)实现初步成管,要求在初始的3-5个道次中上工作辊完成大部分的位移量,后续几个道次作为管体椭圆度的修正,从而进一步保证管体椭圆度精度。
作为优选的实施例,上工作辊的首道次位移量占总下调位移量50%以上,前三道次总位移量完成总下调位移量的90%以上,至少在倒数第三道次时上工作辊位移基本到位,后续道次仅为提高椭圆度精度而进行。
作为优选的实施例,钢板回弹量根据钢板在180℃冷弯试验下测量获得,冷弯直径(15-30)t即可,但不可大于钢管直径或超出钢板冷弯性能要求,钢板的冷弯性能用冷弯直径与钢板厚度的比值衡量。
作为优选的实施例,卷板机功率根据钢板性能、制管规格及卷板机的设备参数计算得出(功率的计算较为常见,如“对称式三辊卷板机的受力及驱动功率计算分析,锻压技术,32(7)”,在此不再赘述),保证卷板加工不超过设备能力,且该方法根据钢板特性、卷管规格并结合卷板机的设备参数,可以有效控制工作辊的位移量,从而用合适尺寸的高强度钢板在卷板机上制备出平直度良好的疏浚管。
实施例1:
采用屈服强度1250MPa的15mm厚钢板制作管内径850mm钢管。三辊式卷板机工作辊及支撑辊直径均为400mm,支撑辊间距800mm。根据公式1、2计算出考虑12°回弹时工作辊的总下调位移量为148.4mm,具体见表1所示,而不考虑回弹时工作辊的位移量只有140.4mm,调整上工作辊的位移量是控制卷管时管体直径的方法,更大的工作辊位移量能够获得直径更小的管体。
表1高强钢板制作850mm直径钢管的工作辊位移量
Figure BDA0001933915020000051
考虑即使经过反复卷板,钢板仍存在少许回弹,将计算出的工作辊总下调位移量148.4mm取整为149mm计算工作辊实际位移量,共分6个道次完成卷板成管。具体卷板时上工作辊位移量分配如表2所示。
表2卷板位移量道次分配
Figure BDA0001933915020000061
经过6道次卷管,在卸载后钢板回弹,管体直径达到制管要求,卸载后筒体缝隙只有1.6mm,远低于常规制管时近40mm的缝隙宽度,常规工艺卷板筒体间隙39.8mm,焊接后的管体椭圆度≤2mm。
实施例2:
采用屈服强度1360MPa的16mm厚高强钢板制作管内径800mm的钢管。三辊式卷板机工作辊直径550mm,支撑辊直径450mm,支撑辊间距700mm。根据公式1、2计算考虑18°回弹量工作辊的总下调位移量为111.6mm,具体见表3所示。
表3高强钢板制作800mm直径钢管的工作辊位移量
Figure BDA0001933915020000062
考虑即使经过反复卷板,钢板仍存在少许回弹,将计算出的工作辊总下调位移量111.6mm取整为112mm为工作辊实际位移量,共分7道次完成卷板成管,上工作辊道次位移量分配如表4所示。
表4卷板位移量道次分配
Figure BDA0001933915020000071
经过7道次卷管,在卸载后钢板回弹,管体直径达到制管要求,卸载后筒体缝隙只有2.2mm,远低于常规制管时近52mm的缝隙宽度,常规工艺卷板筒体间隙51.6mm,焊接后的管体椭圆度≤2mm。
实施例3:
采用屈服强度1360MPa的20mm厚高强钢板制作管内径900mm的钢管。三辊式卷板机工作辊直径550mm,支撑辊直径450mm,支撑辊间距700mm。根据公式1、2计算考虑20°回弹量工作辊的总下调位移量为102.3mm,具体见表5所示。
表5高强钢板制作900mm直径钢管的工作辊位移量
Figure BDA0001933915020000072
考虑即使经过反复卷板,钢板仍存在少许回弹,将计算出的工作辊总下调位移量102.3mm取整为103mm为工作辊实际位移量,共分8道次完成卷板成管,上工作辊道次位移量分配如表6所示。
表6卷板位移量道次分配
Figure BDA0001933915020000073
经过8道次卷管,在卸载后钢板回弹,管体直径达到制管要求,卸载后筒体缝隙只有2.4mm,远低于常规制管时64mm的缝隙宽度,常规工艺卷板筒体间隙64mm,焊接后的管体椭圆度≤2mm。
采用本发明涉及的卷管工艺能够精确控制卷板机工作辊的下调位移量,充分考虑了钢板回弹对卷管后筒体间隙的影响。卷板后筒体间隙在3mm以内,特别适合强度超高、回弹大的大口径厚壁钢管的卷板加工。成品钢管具有良好的平直度,椭圆度也在2mm以内,满足疏浚管道的制管要求。同时焊缝应力低,提高了焊缝质量及管体开裂风险。
此外,本方法也可以推广应用到其它制管方式中,根据回弹量选择合适的压头直径,减轻高强钢板回弹对制管质量的影响,提高制管效率。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换,而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的范围。

Claims (2)

1.一种高强钢卷管加工工艺,其特征在于,依次包括如下步骤:
下料、铣边开坡口、预弯、三辊式卷板机辊弯、直缝焊、环焊;
在进行卷板机辊弯前,先测量钢板回弹量,再根据钢板回弹量计算出实际成管时的卷管直径及卷管成形时上工作辊的总下调位移量,并确定上工作辊的道次位移量,通过数次卷板完成卷管加工;
根据几何原理计算三辊式卷板机卷管成形时上工作辊的总下调位移量S公式为:
S=(Rmin+r2+t)*(1-cosθ) (1)
式中:
Figure FDA0002718814820000011
a为两支撑辊间距之半(mm),R为所欲制作钢管的半径(mm),r1、r2为支撑辊半径(mm),t为钢板厚度(mm);
由于钢板回弹,实际卷管的直径应适当缩小,定义实际成管时的卷管半径为Rmin,计算实际成管时的卷管半径Rmin公式如下:
Figure FDA0002718814820000012
式中:α为钢板回弹量;
将式(2)带入式(1)即可求出回弹情况下三辊式卷板机上工作辊的总下调位移量S;
所述钢板的屈服强度在1250MPa以上、壁厚为14-22mm;
所述上工作辊的道次位移量逐次递减;钢板经过5-8个道次实现初步成管,在初始的3-5个道次中上工作辊完成大部分的位移量,后续几个道次作为管体椭圆度的修正;
所述上工作辊的首道次位移量占总下调位移量50%以上,前三道次总位移量完成总下调位移量的90%以上,至少在倒数第三道次时上工作辊位移基本到位,后续道次仅为提高椭圆度精度而进行;
所述钢板回弹量根据钢板在180℃冷弯试验下测量获得,冷弯直径(15-30)t即可,但不可大于钢管直径或超出钢板冷弯性能要求。
2.根据权利要求1所述的高强钢卷管加工工艺,其特征在于,所述卷板机功率根据钢板性能、制管规格及卷板机的设备参数计算得出。
CN201910001593.6A 2019-01-02 2019-01-02 高强钢卷管加工工艺 Active CN109483179B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910001593.6A CN109483179B (zh) 2019-01-02 2019-01-02 高强钢卷管加工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910001593.6A CN109483179B (zh) 2019-01-02 2019-01-02 高强钢卷管加工工艺

Publications (2)

Publication Number Publication Date
CN109483179A CN109483179A (zh) 2019-03-19
CN109483179B true CN109483179B (zh) 2021-02-12

Family

ID=65713729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910001593.6A Active CN109483179B (zh) 2019-01-02 2019-01-02 高强钢卷管加工工艺

Country Status (1)

Country Link
CN (1) CN109483179B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111069363B (zh) * 2019-12-17 2021-03-30 北京科技大学 一种原位纳米增强高强韧钢的弯曲成形工艺实现方法
CN111872632B (zh) * 2020-06-12 2023-06-20 中国二冶集团有限公司 一种开口管道制作方法
CN112355582A (zh) * 2020-10-29 2021-02-12 广船国际有限公司 一种滚筒的制造方法
CN113523713B (zh) * 2021-05-28 2022-04-29 常州旷达威德机械有限公司 一种偏心锥体的加工方法
CN113798788B (zh) * 2021-09-01 2023-07-11 渤海造船厂集团有限公司 一种大厚度小曲率高强钢筒体无余量一次成型方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH671893A5 (zh) * 1987-05-05 1989-10-13 Elpatronic Ag
CN102553984B (zh) * 2011-12-29 2014-02-19 南京埃斯顿自动化股份有限公司 一种卷板机预弯板材的方法
CN103389681B (zh) * 2012-05-09 2016-02-10 施业平 一种全自动卷板机数控系统的建模方法
CN102717242A (zh) * 2012-07-06 2012-10-10 洛阳市双勇机器制造有限公司 用三辊卷板机卷制轮圈的工艺方法
CN104107848B (zh) * 2013-09-09 2017-01-11 南通超力卷板机制造有限公司 数控矫圆机的矫圆工艺

Also Published As

Publication number Publication date
CN109483179A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
CN109483179B (zh) 高强钢卷管加工工艺
US6880220B2 (en) Method of manufacturing cold worked, high strength seamless CRA PIPE
CN102172814B (zh) 直缝埋弧焊管制造方法
CN104816076B (zh) 一种连续管的管管对接焊工艺方法
CN102330034B (zh) 一种酸性腐蚀环境用x65ms钢级螺旋焊管及其制造方法
US4603806A (en) Method of manufacturing metal pipe with longitudinally differentiated wall thickness
CN102205458B (zh) X120钢级螺旋缝埋弧焊管的制造方法
CN109848650A (zh) 一种b型套筒的加工方法
CN106041420A (zh) 一种筒体卷制工艺
CN108620448B (zh) 一种大直径、高强度螺旋焊管制造方法
CN105598224A (zh) 直缝埋弧焊钢管生产线预弯工艺
CN105108458A (zh) 一种不等厚钢管的制造方法
CN110852488A (zh) 一种排序上料提高螺旋焊管成材率的方法
CN102330032A (zh) 一种抗酸性x70ms钢级螺旋焊管及其制造方法
CN105171347B (zh) 试验舱的现场安装方法
CN102407425A (zh) 船用钢通风钢管的制造方法
CN107962311B (zh) 一种双金属复合内防腐管的制备方法
RU2571298C2 (ru) Способ изготовления прямошовных сварных труб большого диаметра
CN110778804A (zh) 油气输送管及油气输送管的制作方法
RU2486981C1 (ru) Способ изготовления сварных труб большого диаметра
WO2009154299A1 (ja) T形鋼
CN107443016A (zh) 一种超薄内复合螺旋管制管焊接方法
CN113199247A (zh) 直缝埋弧焊钢管一次性成型装置和方法
JP2003340518A (ja) 圧潰強度に優れたuoe鋼管の製造方法
JP2008100261A (ja) リブ付きスパイラル鋼管の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant