CN109462332B - 一种电源供电系统 - Google Patents

一种电源供电系统 Download PDF

Info

Publication number
CN109462332B
CN109462332B CN201811647663.7A CN201811647663A CN109462332B CN 109462332 B CN109462332 B CN 109462332B CN 201811647663 A CN201811647663 A CN 201811647663A CN 109462332 B CN109462332 B CN 109462332B
Authority
CN
China
Prior art keywords
bias
power supply
mos tube
mos
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811647663.7A
Other languages
English (en)
Other versions
CN109462332A (zh
Inventor
刘成
郭晓锋
龙晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Unilc Semiconductors Co Ltd
Original Assignee
Xian Unilc Semiconductors Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Unilc Semiconductors Co Ltd filed Critical Xian Unilc Semiconductors Co Ltd
Priority to CN201811647663.7A priority Critical patent/CN109462332B/zh
Publication of CN109462332A publication Critical patent/CN109462332A/zh
Application granted granted Critical
Publication of CN109462332B publication Critical patent/CN109462332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

本发明一种电源供电系统,包括建立电路和n个并联的负载电路i;建立电路包括由MOS管N0、缓冲器buffer、电阻R1、电阻R2和参考电压vref建立的环路,以及与环路连接的参考电压单元;建立电路没有电流负载只输出三路偏置电压bias_sf,bias_cs,bias_pd,因此故在启动时响应速度很快。同时在省电模式下,建立电路不关闭,只关闭相应的负载电路,故负载电路的偏置电压一直存在,当负载电路开启时,可快速建立vout,响应速度很快。能够根据芯片不同位置的负载电流大小,设置不同的负载电路以满足负载电流,并且不同的负载有单独的负载电路,彼此之间的干扰少,扩展方便,操作简单,控制精确。

Description

一种电源供电系统
技术领域
本发明涉及芯片的供电系统,具体为一种电源供电系统。
背景技术
现有技术中的电源供电系统,如图1所示,建立及调整电路建立输出电压vout,给所有的负载Iload提供供电电压。其在对负载进行供电时存在如下两个问题;第一是,当负载发生变化时,需要环路调整。例如,Iload_1发生变化会引起vout及vfb的变化,缓冲器buffer根据反馈电压vfb的变化,调整栅极电压vg,从而调整vout的电压。Vout的变化是由整个环路的调整完成的,需要较长的反应时间,vout上会出现时间较大的波动。第二是,当每个负载发生变化时,都会影响到其它负载。例如,Iload_1的变化会影响vout电压,从而影响其他负载Iload_n的供电电源电压。
发明内容
针对现有技术中存在的问题,本发明提供一种电源供电系统,负载变化时的响应速度快,负载电路之间的相互影响小,能够适应不同负载电路的电压供电。
本发明是通过以下技术方案来实现:
一种电源供电系统,包括建立电路和n个并联的负载电路i;所述的建立电路包括由MOS管N0、缓冲器buffer、电阻R1、电阻R2和参考电压vref建立的环路,以及与环路连接的参考电压单元;
所述环路接入参考电压vref和供电电压vdd,输出输出电压vout和偏置电压bias_sf;
所述参考电压单元分别连接供电电压vdd、输出电压vout和参考电流Iref,分别输出偏置电压bias_cs和偏置电压bias_pd;
所述负载电路i分别接入供电电压vdd、偏置电压bias_sf、偏置电压bias_cs和偏置电压bias_pd,输出输出电压vout_i为负载iload_i供电;n为正整数,1≤i≤n。
优选的,缓冲器buffer的一个输入端连接参考电压vref,输出端输出偏置电压bias_sf并连接MOS管N0的栅极,MOS管N0的源极连接供电电压vdd,漏极输出输出电压vout并依次连接电阻R1和电阻R2后接地,电阻R1和电阻R2之间输出反馈电压vfb连接缓冲器buffer的另一个输入端。
进一步,当环路建立后,vout=(1+R1/R2)vref。
进一步,参考电压单元包括MOS管N1、N2、N3、N4、N9、N10、N11、N12;MOS管N12的漏极接入参考电流Iref,栅极接入供电电压vdd,源极连接MOS管N1的漏极;MOS管N1的源极接地,栅极分别连接MOS管N2和N3的栅极且输出偏置电压bias_cs;MOS管N2的漏极接地,源极连接MOS管N0的漏极;MOS管N3的漏极接地,源极连接MOS管N11的漏极;MOS管N4的源极接地,漏极和栅极连接输出偏置电压bias_pd且连接MOS管N9漏极;MOS管N9的源极接入供电电压vdd,栅极连接MOS管N10的栅极;MOS管N10的漏极接入供电电压vdd,源极连接栅极且连接MOS管N11的源极,MOS管N11的栅极接入供电电压vdd。
进一步,负载电路i包括MOS管N5、N6、N7、N8和接地的负载iload_i;MOS管N8的源极接入供电电压vdd,栅极接入偏置电压bias_sf;MOS管N8的漏极输出输出电压vout_i且分别连接MOS管N5和N7的源极,以及负载iload_i;MOS管N5的漏极接地,栅极接入偏置电压bias_pd;MOS管N7的栅极接入使能en_i,漏极连接MOS管N6的源极;MOS管N6的栅极接入偏置电压bias_cs,漏极接地。
进一步,N0/N8和N2/N6比例相等,所有负载电路的输出电压都相等,即vout_1=vout_i=vout_n=vout。
与现有技术相比,本发明具有以下有益的技术效果:
本发明所述的电源供电系统中,建立电路没有电流负载只输出三路偏置电压bias_sf,bias_cs,bias_pd,因此故在启动时响应速度很快。同时在省电模式下,建立电路不关闭,只关闭相应的负载电路,故负载电路的偏置电压一直存在,当负载电路开启时,可快速建立vout,响应速度很快。本发明适用于大规模集成电路,由于负载电路的基本架构相同,只需要根据不同的负载调整其中晶体管的大小,因此能够根据芯片不同位置的负载电流大小,设置不同的负载电路以满足负载电流,并且不同的负载有单独的负载电路,彼此之间的干扰少,扩展方便,操作简单,控制精确。
附图说明
图1是现有技术中LDO的供电系统。
图2是本发明实施例中所述的电源供电系统。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明一种电源供电系统,如图2所示,其包括建立电路和若干部件类型和部件连接均相同且并联的负载电路;所述的建立电路包括由MOS管N0、缓冲器buffer、电阻R1、电阻R2和参考电压vref建立的环路,以及参考电压单元。
环路中,缓冲器buffer的一个输入端连接参考电压vref,输出端输出偏置电压bias_sf并连接MOS管N0的栅极,MOS管N0的源极连接供电电压vdd,漏极输出输出电压vout并依次连接电阻R1和电阻R2后接地,电阻R1和电阻R2之间输出反馈电压vfb连接缓冲器buffer的另一个输入端。
参考电压单元包括MOS管N1、N2、N3、N4、N9、N10、N11、N12;MOS管N12的漏极接入参考电流,栅极接入供电电压vdd,源极连接MOS管N1的漏极;MOS管N1的源极接地,栅极分别连接MOS管N2和N3的栅极且输出偏置电压bias_cs;MOS管N2的漏极接地,源极连接MOS管N0的漏极;MOS管N3的漏极接地,源极连接MOS管N11的漏极;MOS管N4的源极接地,漏极和栅极连接输出偏置电压bias_pd且连接MOS管N9漏极;MOS管N9的源极接入供电电压vdd,栅极连接MOS管N10的栅极;MOS管N10的漏极接入供电电压vdd,源极连接栅极且连接MOS管N11的源极,MOS管N11的栅极接入供电电压vdd。
当环路建立后,vout=(1+R1/R2)vref。环路建立后,输出偏置电压bias_sf、bias_cs和bias_pd。
负载电路1包括MOS管N5、N6、N7、N8和接地的负载iload_1;MOS管N8的源极接入供电电压vdd,栅极接入偏置电压bias_sf;MOS管N8的漏极输出输出电压vout_1且分别连接MOS管N5和N7的源极,以及负载iload_1;MOS管N5的漏极接地,栅极接入偏置电压bias_pd;MOS管N7的栅极接入使能en_1,漏极连接MOS管N6的源极;MOS管N6的栅极接入偏置电压bias_cs,漏极接地。
其中,N0/N8和N2/N6比例相等,所有负载电路的输出电压都相等,即vout_1=vout_i=vout_n=vout。
以负载电路1为例。en_1为负载电路1的使能。当iload_1=0,即负载电路1的负载为0时,en_1=0,此时N5在bias_pd的偏置下提供极小的偏置电流,以保持vout_1的电压不会偏离理想电压太远。当负载电路1的负载不为0时,en_1=1,由于vout_1的调整只需要改变N8的栅源电压vgs,不需要环路调整,故可快速调整到理想电压。
根据不同的负载电流,设置不同的负载电路的晶体管尺寸,即负载不同时,N5、N6、N7、N8的需设置不同尺寸。负载电路n的工作原理和负载电路1的工作原理类同,组成部件类型和连接相同,部件尺寸不同。从而能够实现不同负载的负载电路共享同一个电源供电系统的建立电路,负载电路之间的接入和断出都不影响环路的调整,能够根据需要对不同的负载电路进行快速调整和切换。负载电路之间的接入和断出也不会相互影响。

Claims (3)

1.一种电源供电系统,其特征在于,包括建立电路和n个并联的负载电路i;所述的建立电路包括由MOS管N0、缓冲器buffer、电阻R1、电阻R2和参考电压vref建立的环路,以及与环路连接的参考电压单元;
所述环路接入参考电压vref和供电电压vdd,输出输出电压vout和偏置电压bias_sf;
所述参考电压单元分别连接供电电压vdd、输出电压vout和参考电流Iref,分别输出偏置电压bias_cs和偏置电压bias_pd;
所述负载电路i分别接入供电电压vdd、偏置电压bias_sf、偏置电压bias_cs和偏置电压bias_pd,输出输出电压vout_i为负载iload_i供电;n为正整数,1≤i≤n;
缓冲器buffer的一个输入端连接参考电压vref,输出端输出偏置电压bias_sf并连接MOS管N0的栅极,MOS管N0的源极连接供电电压vdd,漏极输出输出电压vout并依次连接电阻R1和电阻R2后接地,电阻R1和电阻R2之间输出反馈电压vfb连接缓冲器buffer的另一个输入端;
参考电压单元包括MOS管N1、N2、N3、N4、N9、N10、N11、N12;MOS管N12的漏极接入参考电流Iref,栅极接入供电电压vdd,源极连接MOS管N1的漏极;MOS管N1的源极接地,栅极分别连接MOS管N2和N3的栅极且输出偏置电压bias_cs;MOS管N2的漏极接地,源极连接MOS管N0的漏极;MOS管N3的漏极接地,源极连接MOS管N11的漏极;MOS管N4的源极接地,漏极和栅极连接输出偏置电压bias_pd且连接MOS管N9漏极;MOS管N9的源极接入供电电压vdd,栅极连接MOS管N10的栅极;MOS管N10的漏极接入供电电压vdd,源极连接栅极且连接MOS管N11的源极,MOS管N11的栅极接入供电电压vdd;
负载电路i包括MOS管N5、N6、N7、N8和接地的负载iload_i;MOS管N8的源极接入供电电压vdd,栅极接入偏置电压bias_sf;MOS管N8的漏极输出输出电压vout_i且分别连接MOS管N5和N7的源极,以及负载iload_i;MOS管N5的漏极接地,栅极接入偏置电压bias_pd;MOS管N7的栅极接入使能en_i,漏极连接MOS管N6的源极;MOS管N6的栅极接入偏置电压bias_cs,漏极接地。
2.根据权利要求1所述的一种电源供电系统,其特征在于,当环路建立后,vout=(1+R1/R2)vref。
3.根据权利要求1所述的一种电源供电系统,其特征在于,N0/N8和N2/N6比例相等,所有负载电路的输出电压都相等,即vout_1=vout_i=vout_n=vout。
CN201811647663.7A 2018-12-29 2018-12-29 一种电源供电系统 Active CN109462332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811647663.7A CN109462332B (zh) 2018-12-29 2018-12-29 一种电源供电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811647663.7A CN109462332B (zh) 2018-12-29 2018-12-29 一种电源供电系统

Publications (2)

Publication Number Publication Date
CN109462332A CN109462332A (zh) 2019-03-12
CN109462332B true CN109462332B (zh) 2021-04-13

Family

ID=65615695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811647663.7A Active CN109462332B (zh) 2018-12-29 2018-12-29 一种电源供电系统

Country Status (1)

Country Link
CN (1) CN109462332B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112346506A (zh) * 2020-01-07 2021-02-09 成都华微电子科技有限公司 一种无需片外电容的ldo电路
CN113364278B (zh) * 2020-04-08 2022-07-12 澜起电子科技(昆山)有限公司 开关电流源电路及开关电流源快速建立方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674015B (zh) * 2008-09-11 2012-02-29 通嘉科技股份有限公司 控制电路、电压稳压器与其控制方法
US8624429B2 (en) * 2009-07-20 2014-01-07 The Hong Kong University Of Science And Technology Single-inductor-multiple-output regulator with auto-hopping control and the method of use
CN101833348B (zh) * 2010-05-07 2012-08-15 北京工业大学 一种基于ldo的电阻阻值编码方法及装置
CN204740523U (zh) * 2015-03-27 2015-11-04 西安华芯半导体有限公司 一种利用负载变化信号调节偏置电流的装置
CN107769551A (zh) * 2016-08-22 2018-03-06 王小义 一种基于电流模Buck‑Boost转换器系统电路

Also Published As

Publication number Publication date
CN109462332A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
US20190064862A1 (en) Low-dropout regulators
US10541677B2 (en) Low output impedance, high speed and high voltage generator for use in driving a capacitive load
CN110928358B (zh) 低压差电压调节电路
KR102470562B1 (ko) 향상된 슬루율을 갖는 레귤레이터
CN108235744A (zh) 低压差线性稳压电路
US7928708B2 (en) Constant-voltage power circuit
JP6545692B2 (ja) バッファ回路および方法
CN113760029B (zh) 一种基于全mos基准源的新型低压差线性稳压器
US11128215B2 (en) Direct current voltage step-down regulation circuit structure
CN105955387B (zh) 一种双环保护低压差ldo线性稳压器
CN109462332B (zh) 一种电源供电系统
CN113760031B (zh) 一种低静态电流nmos型全集成ldo电路
CN112987841A (zh) 一种新型线性稳压器
CN103440011B (zh) 具有压差补偿的线性恒流源电路
CN108233701B (zh) 一种升降压电压转换电路
CN113364278B (zh) 开关电流源电路及开关电流源快速建立方法
JP2019004556A (ja) 電流調節回路、それを用いた電源管理回路
TWI659287B (zh) 調節電路及其提供調節電壓至目標電路的方法
CN114578892B (zh) 一种线性稳压电路
CN114637367B (zh) 一种芯片内部低压电源产生电路
CN116185115A (zh) 一种ldo复合零点跟踪补偿电路
CN109683655B (zh) 瞬态增强的ldo电路
CN203465628U (zh) 具有压差补偿的线性恒流源电路
CN114448367B (zh) 一种固定电位的共模反馈电路
CN117348667B (zh) 一种负载切换瞬态增强的超低静态功耗ldo电路、工作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant