CN109457739B - 一种基于下游构筑物受损程度的边坡安全度评价方法 - Google Patents

一种基于下游构筑物受损程度的边坡安全度评价方法 Download PDF

Info

Publication number
CN109457739B
CN109457739B CN201811323341.7A CN201811323341A CN109457739B CN 109457739 B CN109457739 B CN 109457739B CN 201811323341 A CN201811323341 A CN 201811323341A CN 109457739 B CN109457739 B CN 109457739B
Authority
CN
China
Prior art keywords
structures
value
side slope
slope
safety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811323341.7A
Other languages
English (en)
Other versions
CN109457739A (zh
Inventor
李亮
翟明
褚雪松
于广明
路世豹
袁长丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN201811323341.7A priority Critical patent/CN109457739B/zh
Publication of CN109457739A publication Critical patent/CN109457739A/zh
Application granted granted Critical
Publication of CN109457739B publication Critical patent/CN109457739B/zh
Priority to PCT/CN2019/112456 priority patent/WO2020093863A1/zh
Priority to ZA2019/07322A priority patent/ZA201907322B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/23Dune restoration or creation; Cliff stabilisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

本发明属于边坡安全评价与风险量化领域,尤其涉及一种基于下游构筑物受损程度的边坡安全度评价方法,包括如下步骤,步骤1:根据边坡材料力学参数的不确定性,假定生成一系列参数组合值步骤2:基于第i组参数组合ci,i=1,2...,N,计算其边坡的安全系数Fsi和边坡滑动体的运动轨迹;步骤3:计算下游边坡构筑物的位置和边坡滑动体的运动轨迹中最远点之间的距离di;步骤4:重复步骤2、3,得到一系列距离值和安全系数步骤5:计算上述距离值和安全系数的平均值,记为dm、Fsm;步骤6:利用dm和Fsm的乘积对下游存在构筑物边坡的安全度进行评价。本发明能有效解决现有技术中在评价下游存在构筑物或建筑物的边坡的安全度时不够有效、合理、直观,不利于滑坡风险防治的问题。

Description

一种基于下游构筑物受损程度的边坡安全度评价方法
技术领域
本发明属于边坡安全评价与风险量化领域,尤其涉及一种基于下游构筑物受损程度的边坡安全度评价方法。
背景技术
滑坡是一种非常常见的地质灾害之一,尤其在夏季,我国每年都会遭受降雨引发的滑坡灾害。发生滑坡之后,滑动的土体和岩体对边坡下游的建筑物或构筑物产生冲击作用,造成不同程度的损害。发生在我国比较大型的滑坡有,千将坪古滑坡,重庆武隆滑坡和深圳光明新区余泥渣土滑坡,给我国造成了不同程度的损失。因此,考虑边坡下游构筑物受损程度的边坡安全评价就显得尤为重要。
在边坡安全评价领域,一般采用极限平衡方法和有限元强度折减法进行最小安全系数的搜索,利用最小安全系数指标来评价边坡安全程度。然而,对于下游存在构筑物或建筑物的边坡而言,在评价其安全程度时,因为没有结合滑动体对建筑物或构筑物的损害程度以及边坡构筑材料的不确定性,而仅依靠安全系数,故不能直观地进行评价,不利于滑坡风险的防治。所以目前在评价下游存在构筑物或者建筑物的边坡安全程度时,在评价结果的合理和有效性上亟待提高。
发明内容
根据以上现有技术的不足,本发明提供了一种基于下游构筑物受损程度的边坡安全度评价方法,其能有效解决现有技术中在评价下游存在构筑物或建筑物的边坡的安全度时不够有效、合理、直观,不利于滑坡风险防治的问题。
本发明解决的技术问题采用的技术方案为:
一种基于下游构筑物受损程度的边坡安全度评价方法,一种基于下游构筑物受损程度的边坡安全度评价方法,包括如下步骤:
步骤1:针对所研究的边坡,因边坡材料力学参数的不确定性,基于材料力学参数的平均值和标准差σ,并根据材料力学参数3σ变化法则,确定力学参数的上下限值,并在此限值内按照均匀分布假定生成一系列参数组合值
步骤2:基于第i组参数组合ci,i=1,2...,N,利用极限平衡方法中的简化毕晓普法计算边坡的安全系数Fsi,i=1,2...,N,并采用光滑粒子流体动力学方法计算边坡滑动体的运动轨迹,并记录每个粒子所代表土体单元的最终位置;
步骤3:下游边坡构筑物的位置坐标记为(xg,yg),选取边坡滑动体的运动轨迹中最远点粒子,并确定其滑动后的位置坐标(xm,ym);计算下游边坡构筑物和运动轨迹中最远点粒子两者之间的距离值di,其中,若运动轨迹中最远点粒子超过构筑物,则距离值di取负值,即否则,距离值di保持不变;
步骤4:重复步骤2和步骤3,得到一系列距离值和一系列的安全系数
步骤5:计算一系列距离值的平均值,记为dm,计算一系列安全系数的平均值,记为Fsm
步骤6:利用距离值的平均值dm和安全系数的平均值Fsm的乘积对下游存在构筑物边坡的安全度进行评价。
通过光滑粒子流体动力学方法确定滑动体轨迹,能够确定构筑物受损程度,并综合考虑边坡构筑材料的不确定性以及安全系数,最终评价边坡安全程度,相对于现有技术而言,能更加直观的评价下游存在构筑物或建筑物的边坡的安全程度,有利于滑坡风险的防治。
其中,优选方式为:
在步骤5中,距离值的平均值dm具体为安全系数的平均值Fsm具体为
本发明具有以下有益效果:本发明首先通过光滑粒子流体动力学方法计算滑坡滑动体的运动轨迹;其次,判断滑动体最远点至构筑物的距离,并根据超过和未超过构筑物来判断距离的正负,并用该正负距离值初步评价边坡的安全度;再次,考虑边坡材料参数的不确定性,变换不同的材料参数重复以上两步计算,并保存每次计算时滑动体运动最远点至构筑物的正负距离值;最后利用该正负距离值的均值和安全系数来综合评价边坡安全度,相比于现有技术,评价下游存在构筑物或者建筑物的边坡安全度时更加有效、合理、直观,有利于滑坡风险的防治。
附图说明
图1是本发明所述基于下游构筑物受损程度的边坡安全度评价方法的流程图;
图2是本发明所提供实施例的粘性土边坡与构筑物位置示意图;
图3是本发明所提供实施例的光滑粒子流体动力学方法计算所得运动轨迹图。
具体实施方式
下面结合附图对本发明做进一步描述。
实施例一:
如图1~图3所示,本发明所述的一种基于下游构筑物受损程度的边坡安全度评价方法,包括一种基于下游构筑物受损程度的边坡安全度评价方法,其特征在于:包括如下步骤,
步骤S1:针对所研究的边坡,因边坡材料力学参数的不确定性,基于材料力学参数的平均值和标准差σ,并根据材料力学参数3σ变化法则,确定力学参数的上下限值,并在此限值内按照均匀分布假定生成一系列参数组合值
步骤S2:基于第i组参数组合ci,i=1,2...,N,利用极限平衡方法中的简化毕晓普法计算边坡的安全系数Fsi,i=1,2...,N,并采用光滑粒子流体动力学方法计算边坡滑动体的运动轨迹,并记录每个粒子所代表土体单元的最终位置;
步骤S3:下游边坡构筑物的位置坐标记为(xg,yg),选取边坡滑动体的运动轨迹中最远点粒子,并确定其滑动后的位置坐标(xm,ym);计算下游边坡构筑物和运动轨迹中最远点粒子两者之间的距离值di,其中,若运动轨迹中最远点粒子超过构筑物,则距离值di取负值,即否则,距离值di保持不变;
根据下游边坡构筑物的位置和步骤2中得到的边坡滑动体的运动轨迹中最远点粒子位置的相对关系,计算两者之间的距离di,i=1,2...,N;
步骤S4:重复步骤2和步骤3,得到一系列距离值和一系列的安全系数
步骤S5:计算一系列距离值的平均值,记为dm,计算一系列安全系数的平均值,记为Fsm
步骤S6:利用距离值的平均值dm和安全系数的平均值Fsm的乘积对下游存在构筑物边坡的安全度进行评价。
通过光滑粒子流体动力学方法确定滑动体轨迹,能够确定构筑物受损程度,并综合考虑边坡构筑材料的不确定性以及安全系数,最终评价边坡安全程度,相对于现有技术而言,能更加直观的评价下游存在构筑物或建筑物的边坡的安全程度,有利于滑坡风险的防治。
在步骤S5中,距离值的平均值dm具体为安全系数的平均值Fsm具体为
以下是本发明所述方法在具体应用场景中的应用。
步骤S1,如图2所示,某粘性土边坡,坡高4m,土的重度γ=20kN/m3,内摩擦角土的粘聚力c均值为15.0kPa,考虑粘聚力c的不确定性,其标准差σ为1.67kPa,根据3σ法则,在10kPa到20kPa区间内,均匀生成N=11个c值,即ci=i+9.0,i=1,2,....,11;
步骤S2,在第一组参数c1下,即γ=20kN/m3,c1=10kPa,按照极限平衡方法中的简化毕晓普法计算其安全系数Fs1为0.73;将图2所示边坡离散为9020个直径为0.1m的圆形粒子,将以上三个参数输入光滑粒子流体动力学方法程序中,得到滑动体运动轨迹图,如图3所示;
步骤S3,从滑动体运动轨迹图中可以读出,滑动体运动轨迹上最远点粒子的位置大致位于xm=5,ym=2.0;水塔坐标为xg=10.0,yg=2.0,因此滑动体运动轨迹上的最远点与水塔之间的距离值d1=5.0,又因为该滑动体运动轨迹上的最远点粒子超过了构筑物(即水塔),因此距离值取负值,即d1=-5.0。本发明中,利用距离值d1的值来量化下游构筑物(即水塔)的受损程度,该值越小表明构筑物(即水塔)的受损程度越大,反之亦然。
步骤S4,针对其余10组参数组合,采取相同的计算方法和计算步骤,可以得到相应的安全系数值和相应的距离值(即受损程度)表1汇总了安全系数和距离值的详细信息;
i 1 2 3 4 5 6 7 8 9 10 11
d<sub>i</sub> -5.0 -4.6 -3.0 -1.7 -1.0 -0.54 -0.15 2.0 2.0 2.0 2.0
Fs<sub>i</sub> 0.73 0.8 0.87 0.94 1.02 1.09 1.16 1.22 1.28 1.35 1.43
表1
步骤S5,基于上述所得安全系数值和距离值,分别计算距离平均值dm=-0.73和安全系数的平均值Fsm=1.08。
步骤S6,综合评定后的边坡安全度为-0.79。
为了证明本发明方法的有效性,现进行对比分析,传统的边坡安全评价方法不考虑下游建筑物或构筑物的受损程度,仅仅用传统的安全系数来评价边坡的安全程度,对于本例,简化毕晓普法给出的安全系数平均值为1.08;本发明方法利用光滑粒子流体动力学方法确定滑动轨迹,通过与构筑物位置的比对判断其受损程度,受损程度平均值为-0.78,说明构筑物存在一定被撞击的风险,滑动体运动轨迹上的最远粒子距离其中心位置有0.78m,在边坡防护过程中需要引起重视。
综上,通过对比发现,传统方法仅依靠安全系数来评价边坡安全程度,没有直观地反映对下游构筑物或建筑物的危害程度,不利于滑坡风险的防治,通过实例对比分析验证了本发明的有效性。
以上所述为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书以及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (2)

1.一种基于下游构筑物受损程度的边坡安全度评价方法,其特征在于:包括如下步骤,
步骤1:针对所研究的边坡,因边坡材料力学参数的不确定性,基于材料力学参数的平均值和标准差σ,并根据材料力学参数3σ变化法则,确定力学参数的上下限值,并在此限值内按照均匀分布假定生成一系列参数组合值
步骤2:基于第i组参数组合ci,i=1,2...,N,利用极限平衡方法中的简化毕晓普法计算边坡的安全系数Fsi,i=1,2...,N,并采用光滑粒子流体动力学方法计算边坡滑动体的运动轨迹,并记录每个粒子所代表土体单元的最终位置;
步骤3:下游边坡构筑物的位置坐标记为(xg,yg),选取边坡滑动体的运动轨迹中最远点粒子,并确定其滑动后的位置坐标(xm,ym);计算下游边坡构筑物和运动轨迹中最远点粒子两者之间的距离值di,其中,若运动轨迹中最远点粒子超过构筑物,则距离值di取负值,即否则,距离值di保持不变;
根据下游边坡构筑物的位置和步骤2中得到的边坡滑动体的运动轨迹中最远点粒子位置的相对关系,计算两者之间的距离di,i=1,2...,N;
步骤4:重复步骤2和步骤3,得到一系列距离值和一系列的安全系数
步骤5:计算一系列距离值的平均值,记为dm,计算一系列安全系数的平均值,记为Fsm
步骤6:利用距离值的平均值dm和安全系数的平均值Fsm的乘积对下游存在构筑物边坡的安全度进行评价。
2.根据权利要求1所述的基于下游构筑物受损程度的边坡安全度评价方法,其特征在于:在步骤5中,距离值的平均值dm具体为安全系数的平均值Fsm具体为
CN201811323341.7A 2018-11-08 2018-11-08 一种基于下游构筑物受损程度的边坡安全度评价方法 Active CN109457739B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201811323341.7A CN109457739B (zh) 2018-11-08 2018-11-08 一种基于下游构筑物受损程度的边坡安全度评价方法
PCT/CN2019/112456 WO2020093863A1 (zh) 2018-11-08 2019-10-22 一种基于下游构筑物受损程度的边坡安全度评价方法
ZA2019/07322A ZA201907322B (en) 2018-11-08 2019-11-05 Method for evaluating safety degree of slope based on damage degree of downstream structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811323341.7A CN109457739B (zh) 2018-11-08 2018-11-08 一种基于下游构筑物受损程度的边坡安全度评价方法

Publications (2)

Publication Number Publication Date
CN109457739A CN109457739A (zh) 2019-03-12
CN109457739B true CN109457739B (zh) 2019-06-18

Family

ID=65609669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811323341.7A Active CN109457739B (zh) 2018-11-08 2018-11-08 一种基于下游构筑物受损程度的边坡安全度评价方法

Country Status (3)

Country Link
CN (1) CN109457739B (zh)
WO (1) WO2020093863A1 (zh)
ZA (1) ZA201907322B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109457739B (zh) * 2018-11-08 2019-06-18 青岛理工大学 一种基于下游构筑物受损程度的边坡安全度评价方法
CN110298577B (zh) * 2019-06-21 2022-04-05 济南大学 一种基于dpsir模型的沿河村落山洪灾害风险评价方法及系统
CN110569609B (zh) * 2019-09-12 2020-04-17 青岛理工大学 一种边坡失稳后粒子位移临界值的确定方法
CN110765614A (zh) * 2019-10-24 2020-02-07 青岛理工大学 一种基于滑坡破坏形态的边坡风险综合评估方法
CN113887074B (zh) * 2021-10-25 2024-04-12 青岛理工大学 一种水库大坝上游边坡最优坡角确定的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252128A (ja) * 2005-03-10 2006-09-21 Shimizu Corp 斜面崩壊予測および周辺地域への避難情報伝達システム
JP4887121B2 (ja) * 2006-11-08 2012-02-29 公益財団法人鉄道総合技術研究所 安全率計算装置および安全率計算方法
CN101538861A (zh) * 2009-04-21 2009-09-23 中国科学院武汉岩土力学研究所 公路边坡稳定性分级评估方法
CN101936008B (zh) * 2010-09-30 2011-12-07 东北大学 岩体边坡三维模型及块体滑落分析方法
JP2017116971A (ja) * 2015-12-21 2017-06-29 公益財団法人鉄道総合技術研究所 降雨による斜面崩壊と地震の複合災害に対する運転規制の基準値変更システム
CN106205060B (zh) * 2016-08-19 2018-03-27 临沂大学 用于露天矿坑尾矿库边坡滑坡预警预报方法
CN107516401A (zh) * 2017-08-02 2017-12-26 深圳市盛路物联通讯技术有限公司 一种山体滑坡监测方法和系统
CN107908849B (zh) * 2017-11-08 2020-12-11 青岛理工大学 滑坡危险度量化方法
CN109457739B (zh) * 2018-11-08 2019-06-18 青岛理工大学 一种基于下游构筑物受损程度的边坡安全度评价方法

Also Published As

Publication number Publication date
ZA201907322B (en) 2022-03-30
WO2020093863A1 (zh) 2020-05-14
CN109457739A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN109457739B (zh) 一种基于下游构筑物受损程度的边坡安全度评价方法
Fang et al. A comprehensive assessment of urban vulnerability and its spatial differentiation in China
WO2021174665A1 (zh) 一种用于评估基坑开挖边坡失稳面积放大效应的方法
CN103995947A (zh) 改进的煤层底板突水脆弱性评价方法
CN104008466A (zh) 一种雨水调蓄池预选址的确定方法
CN113705125B (zh) 一种高层建筑局域风场cfd模拟分析方法
CN104482991A (zh) 一种确定危坝坝体安全库水位的测定参数与预警方法
CN110689283A (zh) 基于地下水模型的河系与渠系交错系统供水模拟方法及装置
CN104778365A (zh) 一种绿色建筑群室外风环境质量的综合指数评价方法
CN114418446A (zh) 水资源短缺的定量评估方法
CN105354370A (zh) 一种多层铁路路基结构安定性分析的三维有限元计算方法
CN111090921B (zh) 一种边坡锚固结构体系的安全性评价方法
CN111340285A (zh) 国土空间规划中城市建设用地分配的量化方法
Hanafi et al. Essential entities towards developing an adaptive reuse model for organization management in conservation of heritage buildings in Malaysia
CN114493702A (zh) 一种基于有限元分析及地理信息的农村房产损失评估方法
Wang et al. Research on the impact mechanism of multiple environmental regulations on carbon emissions under the perspective of carbon peaking pressure: A case study of China's coastal regions
CN117313584A (zh) 基于ramms的泥石流动力学模拟分析及治理评估方法
Song et al. Numerical simulation of airflow structure and dust emissions behind porous fences used to shelter open storage piles
CN103870614B (zh) 一种结构概率优化设计方法
CN105512941A (zh) 一种水景观生态工程生态服务功能测定方法和评价方法
Zhang et al. Performance evaluation of urban environmental governance in Anhui Province based on spatial and temporal differentiation analyses
CN103926390B (zh) 一种湛江地区玄武岩承载力的综合判定方法
Mohanty et al. Pedotransfer functions for estimating water content at field capacity and wilting point of Indian soils using particle size distribution and bulk density
CN109933921A (zh) 一种滚石灾害风险评估方法、装置、系统及存储介质
CN116956446B (zh) 深厚软土区桩柱式桥墩临界荷载简化计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant