CN109437941A - 一种高强度、耐高温、抗热冲击的氮化硅陶瓷热刀及其制备方法和应用 - Google Patents

一种高强度、耐高温、抗热冲击的氮化硅陶瓷热刀及其制备方法和应用 Download PDF

Info

Publication number
CN109437941A
CN109437941A CN201811323488.6A CN201811323488A CN109437941A CN 109437941 A CN109437941 A CN 109437941A CN 201811323488 A CN201811323488 A CN 201811323488A CN 109437941 A CN109437941 A CN 109437941A
Authority
CN
China
Prior art keywords
silicon nitride
nitride ceramics
hot knife
powder
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811323488.6A
Other languages
English (en)
Inventor
曾宇平
梁汉琴
左开慧
夏咏锋
姚冬旭
尹金伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN201811323488.6A priority Critical patent/CN109437941A/zh
Publication of CN109437941A publication Critical patent/CN109437941A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • C04B35/76Fibres, filaments, whiskers, platelets, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种高强度、耐高温、抗热冲击的氮化硅陶瓷热刀及其制备方法和应用,所述氮化硅陶瓷热刀包括氮化硅陶瓷基体、内嵌于所述氮化硅陶瓷基体中的电热丝、以及用于连接电热丝的导线,氮化硅陶瓷热刀通过导线与电源连接。

Description

一种高强度、耐高温、抗热冲击的氮化硅陶瓷热刀及其制备方 法和应用
技术领域
本发明涉及一种高强度、耐高温、抗热冲击的氮化硅陶瓷热刀及其制备方法和应用,属于氮化硅陶瓷领域。
背景技术
随着现代科学技术的飞速发展,越来越多的飞行器部件需要在轨进行展开。航天器上的释放装置分为火工装置和非火工装置。其中,非火工装置具有解锁冲击小,无化学污染,可重复使用等诸多优势而日益受到关注。热刀致动的压紧释放装置就是一种典型的非火工装置。
随着人类向太空迈进的脚步的加大,航天器的结构越来越复杂,尺寸也越来越大,这就导致绳索的强度和熔点也越来越高,传统共烧陶瓷电热元件的耐温特性及抗热冲击性等都已较难适应新的使用环境要求,亟需开发新一代陶瓷热刀元件。
发明内容
针对上述问题,本发明的目的在于提供一种高强度、耐高温、抗热冲击的氮化硅陶瓷热刀及其制备方法和应用。
一方面,本发明提供了一种氮化硅陶瓷热刀,包括氮化硅陶瓷基体、内嵌于所述氮化硅陶瓷基体中的电热丝、以及用于连接电热丝的导线,并通过导线与电源连接。
在本发明中,选用具有高强度、耐高温、抗热冲击、高热导和抗氧化等诸多优良特性的氮化硅作为基板材料,将其与发热丝嵌套复合可作为苛刻环境中的热刀部件使用。此外,还通过后期加工使得发热丝裸露部分台阶以便连接导线,获得Si3N4陶瓷热刀元件。
较佳地,所述氮化硅陶瓷热刀的使用温度为室温~1200℃。本发明中,Si3N4陶瓷热刀可满足800℃以上高温循环使用,可高达1200℃。
较佳地,所述电热丝为钨丝或铂丝。可根据功率要求选取不同粗细并设计成不同长短和形状。
较佳地,所述氮化硅陶瓷热刀的抗弯强度为600~742MPa,热导率为55.3~73.8W/(m·K),断裂韧性为5.6~7.4MPa·m1/2,维氏硬度为14.9~16.8GPa。
较佳地,所述氮化硅陶瓷基体是包括Si3N4、MgO和稀土氧化物的起始原料经烧结后得到;优选地,以起始原料质量计为100wt%,所述Si3N4占起始原料总质量的80~90wt%,所述MgO和稀土氧化物占起始原料总质量的10~20wt%;更优选地,所述MgO和稀土氧化物的摩尔质量比为5:(1~3)(该摩尔质量比可在保证氮化硅陶瓷致密化的前提下添加最少量的氧化物)。氮化硅陶瓷的热导率与其加入的氧化物烧结助剂的含量密切相关,较高的氧化物含量会导致热导率降低。同时,稀土氧化物的加入有助于从氮化硅晶格中“吸氧”,从而提高热导率。同时,氮化硅陶瓷是一种强共价键化合物,较难致密化。为了促进其致密化,必须加入一定含量的氧化物。因此,合适的MgO和稀土氧化物的比例有利于促进氮化硅陶瓷致密化的同时保持最低的氧化物添加量,提高氮化硅陶瓷的热导率。
又,较佳地,所述稀土氧化物为Y2O3、La2O3、CeO2、Pr2O3、Nd2O3、Sm2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3中的至少一种;优选地,所述稀土氧化物为Er2O3或Tm2O3中的一种。
另一方面,本发明提供了一种如上述的氮化硅陶瓷热刀的制备方法,包括:
将Si3N4粉体、MgO粉体、稀土氧化物粉体和溶剂混合后,得到浆料;
将所得浆料再经球磨、烘干、研磨、过筛,得到复合粉体;
将所得复合粉体压制成型,得到多个素坯;
将电热丝黏附于第一素坯表面,并将第二素坯或复合粉体敷在第一素坯表面并压实后,在10~30MPa、1700~1850℃下烧结60~120分钟,得到所述氮化硅陶瓷热刀。
较佳地,所述Si3N4粉体为α-Si3N4粉体,平均粒径为0.2~0.8μm;所述MgO粉体的平均粒径为0.2~0.8μm;所述稀土氧化物粉体的平均粒径为1~3μm。
较佳地,采用粘结剂溶液将电热丝黏附于第一素坯表面,所述粘结剂溶液为PVA溶液或PVB溶液。
较佳地,所述烧结的气氛为氮气、氩气、真空中的一种。
较佳地,所述压制成型和压实的方式为干压成型(干压法),压力为10~60MPa。
较佳地,以Si3N4球作为球磨介质,所述Si3N4粉体、MgO粉体、稀土氧化物粉体的总质量和Si3N4球的质量比为1:(1~3)。
较佳地,所述球磨的转速为200~400转/分钟,时间为2~6小时。
再一方面,而本发明还提供了一种上述氮化硅陶瓷热刀在航天器展开机构释放装置中的应用。
有益效果:
本发明中氮化硅陶瓷热刀利用了氮化硅陶瓷优异的抗热冲击及高温抗氧化,高热导等突出优良性能。而且本发明的氮化硅陶瓷热刀体积小、质量轻,能在很小的电压和电流下快速升温至所需温度,从而将绳子熔断,实现展开机构的解锁。
本发明中的氮化硅陶瓷热刀包括氮化硅陶瓷基体及内嵌的电热丝组成。在1700~1850℃范围内烧结60~120min,可得到抗弯强度为600~742MPa,热导率为55.3~73.8W/(m·K),断裂韧性为5.6~7.4MPa·m1/2,维氏硬度为14.9~16.8GPa的氮化硅陶瓷热导产品(氮化硅陶瓷热刀),使用温度可达1200℃,可耐受循环热冲击。
附图说明
图1为实施例1中添加Nd2O3为烧结助剂的Si3N4热刀基体的显微结构图;
图2为实施例2中添加Er2O3为烧结助剂的Si3N4热刀基体的显微结构图;
图3为实施例3中添加Tm2O3为烧结助剂的Si3N4热刀基体的显微结构图;
图4为实施例4中添加Y2O3为烧结助剂的Si3N4热刀基体的显微结构图;
图5为实施例5中添加Y2O3为烧结助剂的Si3N4热刀光学图像。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,氮化硅陶瓷热刀可由氮化硅陶瓷基体及内嵌的电热丝组成。此外,所述氮化硅陶瓷热刀的一端加工出台阶露出部分电热丝,以便连接导线,通过导线与电源连接。其中,氮化硅陶瓷热刀的抗弯强度可为600~742MPa,热导率可为55.3~73.8W/(m·K),断裂韧性可为5.6~7.4MPa·m1/2,维氏硬度可为14.9~16.8Gpa。电热丝可为钨丝或铂丝。所得氮化硅陶瓷热刀的使用温度可为室温~1200℃。
在可选的实施方式中,氮化硅陶瓷基体由Si3N4、MgO和稀土氧化物(例如Y2O3、La2O3、CeO2、Pr2O3、Nd2O3、Sm2O3、Gd2O3、Tb2O3、Dy2O、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3等)三种作为起始原料,经烧结后制备得到。以起始原料质量计为100wt%,所述Si3N4占起始原料总质量的80~90wt%,MgO和稀土氧化物占起始原料的总质量的10~20wt%。其中,MgO和稀土氧化物的摩尔质量比可为5:(1~3)。
在本发明一实施方式中,选用Si3N4粉体(例如,α-Si3N4粉体)为主要原料、以MgO粉体和稀土氧化物粉体(例如Y2O3、La2O3、CeO2、Pr2O3、Nd2O3、Sm2O3、Gd2O3、Tb2O3、Dy2O、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3等)为烧结助剂,作为起始原料,以制备的氮化硅陶瓷内嵌钨丝或铂丝作为发热元件的航天器展开机构释放装置。以下示例性地说明氮化硅陶瓷热刀的制备方法。
以α-Si3N4粉体、MgO粉体和稀土氧化物粉体按照质量比称取,作为起始原料。其中,Si3N4粉体可为α-Si3N4粉体,平均粒径为0.2~0.8μm。MgO粉体的平均粒径可为0.2~0.8μm。稀土氧化物粉体的平均粒径可为1~3μm。
将起始原料和溶剂混合后,得到固含量为17~24vol%浆料。其中溶剂可为酒精、去离子水、叔丁醇、丙酮中的至少一种。
以Si3N4球为研磨介质,将浆料经过球磨,烘干,研磨,过筛,制备出复合粉体。起始原料与Si3N4球研磨介质的质量比可为1:1~1:3。将复合粉体倒入钢模中,进行压制成型(例如,干压成型的压力为10~60MPa),得到多个素坯。其中,球磨转速可为200~400转/分钟。球磨时间为2~6小时。
将形状和尺寸设计好的电热丝黏附(目的进行固定)于第一素坯表面,并将第二素坯(素坯片)或复合粉体敷在第一素坯表面并压实后,在10~30MPa、1700~1850℃下烧结60~120分钟,得到所述氮化硅陶瓷热刀。例如,采用粘结剂溶液将电热丝黏附于第一素坯表面。其中,粘结剂溶液为含量为0.5~10wt%的PVA溶液、或含量为1~15wt%的PVB溶液。烧结的气氛可为氮气、氩气、真空中的一种。压实的方式为干压成型,干压成型的压力可为10~60MPa。作为一个示例,在成型好的素坯上将形状和尺寸设计好的发热丝用PVA溶液或者PVB溶液进行固定,然后在发热丝上面铺一层复合粉体或者素坯片,并通过干压使上层复合粉体或素坯片(第二素坯)与下层块体(第一素坯)紧密结合,将成型好的样品装入热压模具中。然后将热压模具放入热压烧结炉中,在氮气气氛的保护下进行高温烧结。
测试方法:
抗弯强度:采用三点弯曲法在万能材料试验机(Instron 5566,Norwood,MA))上进行测试;
断裂韧性:采用全自动显微维氏硬度计(Model 2100B;Tukon,Canton,MA)进行测试,量取维氏硬度测量中得到的压痕裂纹对角线长度并根据Niihara公式计算得到;
维氏硬度:采用全自动显微维氏硬度计(Model 2100B;Tukon,Canton,MA)进行测试,载荷为5公斤。
本发明制备得到的氮化硅陶瓷热刀强度可达600MPa以上,便于加工小型化,热导率达到55W/(m·K)以上,能够较快地传热,耐高温1200℃以上。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
90g Si3N4粉体、3.73g MgO粉体和6.27g Nd2O3粉体一共100g,以117g酒精为溶剂,将3种粉体配成固含量为17vol%的浆料,以Si3N4球100g为球磨介质,行星球磨4h,然后在恒温箱中70℃烘干为止。然后研磨粉碎,再经过100目的筛子过筛,将所得粉体在10MPa压力下干压成型,将钨丝用PVA溶液粘附在所得素坯片上并敷上与素坯片组分相同的粉体后压实,将样品置于热压模具中在碳管炉中N2气氛下烧结,烧结温度为1700℃,保温时间为120min,得到的Si3N4陶瓷的抗弯强度为667MPa,断裂韧性为5.8MPa·m1/2,维氏硬度为14.9GPa,热导率为69.8W/(m·K)。
对本实施1得到的氮化硅陶瓷热刀的基体抛光面形貌进行电镜观察,结果如图1所示,从图1可以看出晶粒之间结合紧密,晶粒发育良好,存在一定的孔隙,呈现出一定的致密度。
实施例2
85g Si3N4粉体、3.12g MgO粉体和11.88g Er2O3粉体一共100g,以95g酒精为溶剂,将3种粉体配成固含量为19.5vol%的浆料,以Si3N4球200g为球磨介质,行星球磨4h,然后在恒温箱中70℃烘干为止。然后研磨粉碎,再经过100目的筛子过筛,将所得粉体在20MPa压力下干压成型,将铂丝用PVB溶液粘附在所得素坯片上并敷上与素坯片组分相同的粉体后压实,将样品置于热压模具中在碳管炉中N2气氛下烧结,烧结温度为1750℃,保温时间为100min,得到的Si3N4陶瓷的抗弯强度为722MPa,断裂韧性为6.7MPa·m1/2,维氏硬度为16.8GPa,热导率为62.1W/(m·K)。
对本实施2得到的氮化硅陶瓷热刀的基体抛光面形貌进行电镜观察,结果如图2所示,从图2可以看出晶粒之间结合紧密,晶粒发育良好,存在一定的孔隙,呈现出一定的致密度。
实施例3
80g Si3N4粉体、2.94g MgO粉体和17.06gTm2O3粉体一共100g,以83g酒精为溶剂,将3种粉体配成固含量为21.1vol%的浆料,以Si3N4球300g为球磨介质,行星球磨4h,然后在恒温箱中70℃烘干为止。然后研磨粉碎,再经过100目的筛子过筛,将所得粉体在30MPa压力下干压成型,将铂丝用PVA溶液粘附在所得素坯片上并敷上与素坯片组分相同的粉体后压实,将样品置于热压模具中在碳管炉中N2气氛下烧结,烧结温度为1800℃,保温时间为80min,得到的Si3N4陶瓷的抗弯强度为683MPa,断裂韧性为6.5MPa·m1/2,维氏硬度为15.2GPa,热导率为58.6W/(m·K)。
对本实施3得到的氮化硅陶瓷热刀的基体抛光面形貌进行电镜观察,结果如图3所示,从图3可以看出晶粒之间结合紧密,晶粒发育良好,存在一定的孔隙,呈现出一定的致密度。
实施例4
90g Si3N4粉体、4.69g MgO粉体和5.31gY2O3粉体一共100g,以77g酒精为溶剂,将3种粉体配成固含量为24vol%的浆料,以Si3N4球100g为球磨介质,行星球磨4h,然后在恒温箱中70℃烘干为止。然后研磨粉碎,再经过100目的筛子过筛,将所得粉体在60MPa压力下干压成型,将钨丝用PVB溶液粘附在所得素坯片上并敷上与素坯片组分相同的粉体后压实,将样品置于热压模具中在碳管炉中N2气氛下烧结,烧结温度为1850℃,保温时间为60min,得到的Si3N4陶瓷的抗弯强度为742MPa,断裂韧性为5.6MPa·m1/2,维氏硬度为16.8GPa,热导率为73.8W/(m·K)。
对本实施4得到的氮化硅陶瓷热刀的基体抛光面形貌进行电镜观察,结果如图4所示,从图4可以看出晶粒之间结合紧密,晶粒发育良好,存在一定的孔隙,呈现出一定的致密度。
实施例5
80g Si3N4粉体、4.56g MgO粉体和15.44gY2O3粉体一共100g,以100g酒精为溶剂,将3种粉体配成固含量为19vol%的浆料,以Si3N4球100g为球磨介质,行星球磨4h,然后在恒温箱中70℃烘干为止。然后研磨粉碎,再经过100目的筛子过筛,将所得粉体在40MPa压力下干压成型,将钨丝用PVB溶液粘附在所得素坯片上并敷上与素坯片组分相同的粉体后压实,将样品置于热压模具中在碳管炉中N2气氛下烧结,烧结温度为1850℃,保温时间为120min,得到的Si3N4陶瓷的抗弯强度为600MPa,断裂韧性为7.4MPa·m1/2,维氏硬度为14.9GPa,热导率为55.3W/(m·K)。
对本实施例5得到的氮化硅陶瓷热刀的基体抛光面形貌进行电镜观察,结果如图5所示,从图5可以看出晶粒之间结合紧密,晶粒发育良好,存在一定的孔隙,呈现出一定的致密度。
从上述实施例1-5可以看出,本发明采用Si3N4作为主晶相,以MgO和稀土氧化物作为烧结助剂,内嵌钨丝或者铂丝作为发热丝,通过热压烧结的方法,可获得力学性能优异的陶瓷热刀。
最后有必要说明的是:以上实施例只用于对本发明的技术方案作进一步详细说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (11)

1.一种氮化硅陶瓷热刀,其特征在于,包括氮化硅陶瓷基体、内嵌于所述氮化硅陶瓷基体中的电热丝、以及用于连接电热丝的导线,氮化硅陶瓷热刀通过导线与电源连接。
2.根据权利要求1所述的氮化硅陶瓷热刀,其特征在于,所述氮化硅陶瓷热刀的使用温度为室温~1200℃。
3.根据权利要求1或2所述的氮化硅陶瓷热刀,其特征在于,所述电热丝为钨丝或铂丝。
4.根据权利要求1-3中任一项所述的氮化硅陶瓷热刀,其特征在于,所述氮化硅陶瓷热刀的抗弯强度为600~742MPa,热导率为55.3~73.8W/(m·K),断裂韧性为5.6~7.4MPa·m1/2,维氏硬度为14.9~16.8 GPa。
5.根据权利要求1-4中任一项所述的氮化硅陶瓷热刀,其特征在于,所述氮化硅陶瓷基体是包括Si3N4、MgO和稀土氧化物的起始原料经烧结后得到;优选地,以起始原料质量计为100wt%,所述Si3N4占起始原料总质量的80~90wt%,所述MgO和稀土氧化物占起始原料总质量的10~20wt%;更优选地,所述MgO和稀土氧化物的摩尔质量比为5:(1~3)。
6.根据权利要求5所述的氮化硅陶瓷热刀,其特征在于,所述稀土氧化物为Y2O3、La2O3、CeO2、Pr2O3、Nd2O3、Sm2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3中的至少一种。
7.一种如权利要求1-6中任一项所述的氮化硅陶瓷热刀的制备方法,其特征在于,包括:
将Si3N4粉体、MgO粉体、稀土氧化物粉体和溶剂混合后,得到浆料;
将所得浆料再经球磨、烘干、研磨、过筛,得到复合粉体;
将所得复合粉体压制成型,得到多个素坯;
将电热丝黏附于第一素坯表面,并将第二素坯或复合粉体敷在第一素坯表面并压实后,在10~30MPa、1700~1850℃下烧结60~120分钟,得到所述氮化硅陶瓷热刀。
8.根据权利要求7所述的制备方法,其特征在于,所述Si3N4粉体为α-Si3N4粉体,平均粒径为0.2~0.8μm;所述MgO粉体的平均粒径为0.2~0.8μm;所述稀土氧化物粉体的平均粒径为1~3μm。
9.根据权利要求7或8所述的制备方法,其特征在于,采用粘结剂溶液将电热丝黏附于第一素坯表面,所述粘结剂溶液为PVA溶液或PVB溶液。
10.根据权利要求7-9中任一项所述的制备方法,其特征在于,所述烧结的气氛为氮气、氩气、真空中的一种。
11.一种权利要求1-6中任一所述的氮化硅陶瓷热刀在航天器展开机构释放装置中的应用。
CN201811323488.6A 2018-11-08 2018-11-08 一种高强度、耐高温、抗热冲击的氮化硅陶瓷热刀及其制备方法和应用 Pending CN109437941A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811323488.6A CN109437941A (zh) 2018-11-08 2018-11-08 一种高强度、耐高温、抗热冲击的氮化硅陶瓷热刀及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811323488.6A CN109437941A (zh) 2018-11-08 2018-11-08 一种高强度、耐高温、抗热冲击的氮化硅陶瓷热刀及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN109437941A true CN109437941A (zh) 2019-03-08

Family

ID=65550688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811323488.6A Pending CN109437941A (zh) 2018-11-08 2018-11-08 一种高强度、耐高温、抗热冲击的氮化硅陶瓷热刀及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109437941A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1412268A (zh) * 2001-10-09 2003-04-23 刘庆昌 纳米级氮化硅复合材料发热体及制作工艺
CN102798143A (zh) * 2012-08-31 2012-11-28 黎石红 一种陶瓷点火器及其制造方法
CN103350759A (zh) * 2013-06-20 2013-10-16 北京航空航天大学 盘绕式空间伸展臂应急拉索热切割装置
CN104627392A (zh) * 2015-02-04 2015-05-20 浙江大学 轻型无冲击可重复利用的热刀式锁紧释放装置及控制方法
CN106584599A (zh) * 2016-12-06 2017-04-26 山东航天电子技术研究所 一种热切割式线缆分离装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1412268A (zh) * 2001-10-09 2003-04-23 刘庆昌 纳米级氮化硅复合材料发热体及制作工艺
CN102798143A (zh) * 2012-08-31 2012-11-28 黎石红 一种陶瓷点火器及其制造方法
CN103350759A (zh) * 2013-06-20 2013-10-16 北京航空航天大学 盘绕式空间伸展臂应急拉索热切割装置
CN104627392A (zh) * 2015-02-04 2015-05-20 浙江大学 轻型无冲击可重复利用的热刀式锁紧释放装置及控制方法
CN106584599A (zh) * 2016-12-06 2017-04-26 山东航天电子技术研究所 一种热切割式线缆分离装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
周书助: "《硬质材料与工具》", 31 August 2015, 北京:冶金工业出版社 *
奚同庚等人: "热压氮化硅的导热行为及其与工艺因素、显微结构关系的研究", 《硅酸盐学报》 *
张浩等人: "含稀土助烧剂氮化硅陶瓷的热导率、强度及电学性能", 《稀有金属材料与工程》 *

Similar Documents

Publication Publication Date Title
CN107182139B (zh) 一种金属膜多孔陶瓷发热体及其应用
CN101913879B (zh) 氮化硅材料及其制备方法和氮化硅发热器件及其制备方法
CN106904977B (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN109305816A (zh) 一种常压烧结制备高热导率氮化硅陶瓷的方法
CN109851369A (zh) 一种制备高热导率氮化硅陶瓷的方法
CN104628392B (zh) 一种致密氮化铝-氮化硼复合材料的制备方法
CN109400164A (zh) 一种max相/氮化物陶瓷层状梯度复合材料及其快速制备方法和应用
CN110818428A (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN109592984A (zh) 一种高热导、高电阻液相烧结碳化硅陶瓷及其制备方法
CN107382284A (zh) 一种高温共烧氧化铝陶瓷的烧结方法
CN109627014A (zh) 一种高强度、高导热性的Si3N4陶瓷材料及其制备方法
CN110156476A (zh) 一种高硬高韧氮化硅基陶瓷及其制备方法和应用
CN108610055A (zh) 一种低温液相烧结制备致密氮化硅陶瓷的方法
JP4484004B2 (ja) セラミックス基複合部材の製造方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN104844250B (zh) 一种耐高温多孔夹层透波材料及其制备方法
Cao et al. Microstructure, mechanical, and thermal properties of B4C-TiB2-SiC composites prepared by reactive hot-pressing
CN109437941A (zh) 一种高强度、耐高温、抗热冲击的氮化硅陶瓷热刀及其制备方法和应用
CN112209722A (zh) 氮化硅复合材料及其制备方法、发热体
CN104261822A (zh) 一种氧化锆复合陶瓷及其制备方法
CN101948326A (zh) 一种SiC晶须增韧ZrC基超高温陶瓷复合材料及其制备方法
CN113170927A (zh) 一种加热组件及气溶胶生成装置
CN104418608A (zh) 碳化硅多孔陶瓷的低温烧成方法
CN109665847A (zh) 一种全致密碳化硼陶瓷复合材料及制备方法
CN109467442A (zh) 一种氮化硅陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination