CN109437915A - 一种过渡金属硼化物硬质陶瓷材料及其制备方法和应用 - Google Patents

一种过渡金属硼化物硬质陶瓷材料及其制备方法和应用 Download PDF

Info

Publication number
CN109437915A
CN109437915A CN201811378289.5A CN201811378289A CN109437915A CN 109437915 A CN109437915 A CN 109437915A CN 201811378289 A CN201811378289 A CN 201811378289A CN 109437915 A CN109437915 A CN 109437915A
Authority
CN
China
Prior art keywords
transition metal
powder
sintering
ceramic material
hard ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811378289.5A
Other languages
English (en)
Inventor
龙莹
黄路江
车金涛
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201811378289.5A priority Critical patent/CN109437915A/zh
Priority to PCT/CN2018/121024 priority patent/WO2020103235A1/zh
Publication of CN109437915A publication Critical patent/CN109437915A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明属于无机非金属硬质材料领域,公开了一种过渡金属硼化物硬质陶瓷材料及其制备方法和应用。所述过渡金属硼化物硬质陶瓷材料为Os1‑xMTxB2,其中,MT为Re,W或Ir;x为0.01~0.5;是在氩气下利用机械化学法将Os、MT和B粉末混合制成Os1‑xMTxB2粉末;在Os1‑xMTxB粉末中添加烧结助剂Ni,碾磨后过筛处理,将含Ni的Os1‑xMTxB2粉末经1400~1800℃烧结制得。本发明通过添加Ni作为烧结助剂,降低块体的烧结温度、得到致密度较高的块体材料,改善了块体材料的力学性能,该陶瓷材料可用于切削刀具或研磨等工业领域。

Description

一种过渡金属硼化物硬质陶瓷材料及其制备方法和应用
技术领域
本发明属于无机非金属材料技术领域,更具体地,涉及一种过渡金属硼化物硬质陶瓷材料Os1-xMTxB2(MT=Re,W,Ir)及其制备方法和应用。
背景技术
随着工业化的快速发展,对高性能材料的需求越来越大。超硬材料广泛应用于精密制造、航空航天、机械和医疗等众多领域,被称为工业上的“牙齿”。目前主要的超硬材料是金刚石和立方氮化硼,但金刚石的热稳定性和化学惰性比较差,且切削含铁类工件容易石墨化,其使用范围受到一定的限制;立方氮化硼是目前第二硬的材料,虽在切屑含铁类工件上可替代金刚石,但立方氮化硼的合成需要在高温高压下,成本比较高。因此,迫切需要寻找一种新型的超硬材料。
新型超硬材料的研究主要有B-C-N-O系列和过渡金属(Re、Os、Ru、Ir)与轻元素(B、N、C)系列。在B-C-N-O系列化合物的研究中虽取得了很大的进展,但其合成的条件苛刻,制造成本过高,所以为了寻求物美价廉的超硬材料,很多研究者们投身于过渡金属与轻元素的研究。
在过渡金属元素与轻元素的研究中,锇因其具有最高的价电子密度而受到关注。研究人员通过第一性原理计算预测OsB2具有三种类型的结构:(1)RuB2型正交结构(2)ReB2型六方结构(3)AlB2型六方结构,并且计算结果表明六方结构的硬度要高于正交结构。但由于ReB2型六方结构OsB2为亚稳相,一直以来,实验研究制备的OsB2均为RuB2型正交结构。如美国专利US09701542B2所述,2014年xie等人首次通过机械化学法合成ReB2型六方结构OsB2,但他们在随后的放电等离子烧结过程中,发现部分ReB2型六方结构OsB2转变为正交结构,相变的发生会导致材料性能降低。中国专利CN107043260A和中国专利CN107188565A的研究发现ReB2型六方结构的OsB2在600℃以上即发生向正交结构的相变,通过在Os、B原料粉末中掺杂一定量的铼(Re)、铱(Ir)或钨(W)元素,可获得稳定的ReB2型六方结构第三元素掺杂OsB2。目前,Os1-xMTxB2(MT=Re,W,Ir等)过渡金属硼化物硬质材料在未添加烧结助剂情况下,通过SPS烧结、热压烧结和无压烧结后块体材料的致密度都不高,相应的力学性能表征也很低。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明提供了一种过渡金属硼化物硬质材料。该材料具有致密度高、力学性能优异等优点。
本发明的另一目的在于提供一种上述过渡金属硼化物硬质材料的制备方法。该方法通过添加烧结助剂Ni提高Os1-xMTxB2(MT=Re,W,Ir)过渡金属硼化物硬质材料致密度和力学性能。
本发明的再一目的在于提供上述过渡金属硼化物硬质材料的应用。
本发明的目的通过下述技术方案来实现:
一种过渡金属硼化物硬质陶瓷材料,所述过渡金属硼化物硬质陶瓷材料为Os1- xMTxB2,其中,MT为Re,W或Ir;x为0.01~0.5;
所述过渡金属硼化物硬质陶瓷材料是在氩气下,利用机械化学法将原料Os、MT和B粉末混合制成Os1-xMTxB2粉末,其中Os:MT:B的摩尔比为(0.5~0.99):(0.01~0.5):(2.25~5);在Os1-xMTxB2粉末中添加烧结助剂Ni,碾磨后过筛处理,将含Ni的Os1-xMTxB2粉末经1400~1800℃烧结制得。
优选地,所述烧结助剂Ni的添加量为Os1-xMTxB2粉末的1~12wt.%;所述的B粉为非晶态,所述Os、MT和B的摩尔比为0.9:0.1:(2.25~5)。
优选地,所述过渡金属硼化物硬质陶瓷材料的致密度为85~99%,所述过渡金属硼化物硬质陶瓷材料的维氏硬度值为1700~4000Hv。
优选地,所述过渡金属硼化物硬质陶瓷材料的主相具有六方结构的Os1-xMTxB2为ReB2型。
所述的过渡金属硼化物硬质陶瓷材料的制备方法,包括以下具体步骤:
S1.在氩气气氛下,利用机械化学法将Os、MT和B粉混合制成Os1-xMTxB2粉末;
S2.在Os1-xMTxB2粉末中添加烧结助剂Ni,碾磨后过筛处理;
S3.将步骤S2得到的含Ni的Os1-xMTxB2粉末,在1400~1800℃经烧结制得。
优选地,步骤S1中所述机械化学法采用的设备为高能球磨机、振动球磨机、行星式球磨机或等离子体辅助高能球磨机。
优选地,步骤S2中所述碾磨的时间为20~30min,所述筛的孔直径为100~200目。
优选地,步骤S3中所述烧结的方法为无压烧结、热压烧结或放电等离子烧结。
更为优选地,所述无压烧结中升温速率为3~15℃/min,保温时间为1~2h;所述热压烧结中升温速率为5~15℃/min,烧结压力为20~70MPa,烧结压力在区间20MPa-70MPa中尽可能选择较大的压力,保温保压时间为1~2h;所述放电等离子烧结中升温速率为100~200℃/min,烧结压力为20~70MPa,保温保压时间为10~15min。
所述的过渡金属硼化物硬质陶瓷材料在切削刀具或研磨工业领域中的应用。
优选地,所述切削刀具为含铁类金属的干切削刀具。
与现有技术相比,本发明具有以下有益效果:
1.本发明选择合适的Ni添加量,获得致密度高,硬度高、块体主相可控的过渡金属硼化物硬质陶瓷材料Os1-xMTxB2(MT=Re,W,Ir),其主相具有六方结构的Os1-xMTxB2为ReB2型。
2.本发明通过控制烧结参数,获得较高的块体材料致密度,致密度在85~99%之间。
3.本发明拟通过建立烧结工艺及Ni添加量-块体材料微观结构和致密度-块体材料力学性能之间的相互关系,在烧结过程中利用固液相烧结原理来促进块体的致密化烧结的方法,用于指导工艺参数和Ni添加量的调控,实现对材料主相、晶体结构、致密度和硬度的优化。
4.本发明制备的过渡金属硼化物硬质陶瓷材料Os1-xMTxB2(MT=Re,W,Ir)可以有效用于切削刀具,特别是含铁类金属的高速干切削。
附图说明
图1是实施例1和对比例1中Os-Re-B混合粉末高能球磨40h后的XRD图。
图2是对比例1中经球磨40h后的Os0.9Re0.1B2粉末和实施例1中Os0.9Re0.1B2粉末中添加3wt.%Ni烧结助剂经1750℃、30MPa热压烧结后的块体XRD图。
图3是对比例1中Os0.9Re0.1B2粉末和实施例1中Os0.9Re0.1B2粉末中添加3wt.%Ni烧结助剂经1750℃、30MPa热压烧结后的块体断面SEM和EDS照片。
图4是实施例1中Os0.9Re0.1B2粉末中添加3wt.%Ni烧结助剂的Os0.9Re0.1B2块体断面面扫照片。
图5是对比例1中Os0.9Re0.1B2粉末和实施例1中Os0.9Re0.1B2粉末中添加3wt.%Ni烧结助剂经1750℃、30MPa热压烧结后的块体抛光面背散射。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
(1)以Os0.9Re0.1B2粉末为例,采用美国SPEX公司型号为8000M的高能球磨机合成Os0.9Re0.1B2粉体,然后添加适量的Ni粉末作为烧结助剂进行致密化烧结。首先,在充满氩气的手套箱中将高纯的锇粉(Os),铼粉(Re)(其中锇粉与铼粉的摩尔比为9:1)与硼(B)粉按化学计量比1:3进行配料。使用的磨球为碳化钨材质,数量为6个,直径尺寸为11.20mm,球料比为4:1。
(2)将装好粉体和磨球的球磨罐固定在高能球磨机的夹具上,对其进行球磨40h,为防止电动机过热,设定每球磨1h停机20min。
(3)取一定量高能球磨40h后的Os-Re-B混合粉末,加入质量分数为3%的Ni粉末,利用碾钵碾磨混合均匀,再对混合均匀后的粉末过筛处理,筛孔规格为200目。
(4)将添加3wt.%Ni的Os0.9Re0.1B2粉末采用热压炉进行1750℃、30MPa,保温保压1h烧结,得到添加3wt.%Ni的Os0.9Re0.1B2块体材料。
对比例1
(1)以Os0.9Re0.1B2粉末为例,采用美国SPEX公司型号为8000M的高能球磨机合成Os0.9Re0.1B2粉体,然后进行致密化烧结。首先,在充满氩气的手套箱中将高纯的锇粉(Os),铼粉(Re)(其中锇粉与铼粉的摩尔比为9:1)与硼(B)粉按化学计量比1:3进行配料。使用的磨球为碳化钨材质,数量为6个,直径尺寸为11.20mm,球料比为4:1。
(2)将装好粉体和磨球的球磨罐固定在高能球磨机的夹具上,对其进行球磨40h,为防止电动机过热,设定每球磨1h停机20min。
(3)取一定量高能球磨40h后的Os-Re-B混合粉末,对其进行过筛处理,筛孔规格为200目。
(4)将高能球磨40h后得到的Os0.9Re0.1B2粉末采用热压炉进行1750℃、30MPa,保温保压1h烧结,得到Os0.9Re0.1B2块体材料。
图1为实施例1和对比例1中Os-Re-B混合粉末高能球磨40h后的XRD图,其中(Os,Re=9:1):B=1:3。由图1可知,混合粉在化学计量比Os-Re-B为0.9:0.1:3的条件下,高能球磨40h后,其所得到的产物主相为具有六方结构的ReB2型Os0.9Re0.1B2粉体。此外,合成的粉体中还存在少量的WC,可能来自于球磨罐和磨球的污染。
图2为对比例1中球磨40h后的Os0.9Re0.1B2粉末和实施例1中Os0.9Re0.1B2粉末中添加3wt.%Ni烧结助剂经1750℃、30MPa热压烧结后的块体XRD图。由图2中(a)可知,在球磨40h后的Os0.9Re0.1B2粉末和Os0.9Re0.1B2粉末中添加3wt.%Ni进行1750℃、30MPa热压烧结,二者烧结后的XRD图谱中均只存在六方结构的Os0.9Re0.1B2衍射峰,说明烧结助剂Ni的添加没有影响其主相的变化。再结合图2中(b),可以看出添加3wt.%Ni烧结助剂的块体XRD衍射峰存在一定量的偏移,其原因可能是添加的烧结助剂Ni固溶到Os0.9Re0.1B2晶体中,引起晶格畸变,从而出现峰位偏移。
图3为对比例1中Os0.9Re0.1B2粉末和实施例1中Os0.9Re0.1B2粉末中添加3wt.%Ni烧结助剂经1750℃、30MPa热压烧结后的块体断面SEM和EDS照片。其中,(a)和(b)为无添加Ni,(c)和(d)添加3wt.%Ni。由图3(a)和(c)可知,无添加Ni、添加3wt.%Ni烧结助剂烧结后的样品具有相似的微观结构,断裂形式均为穿晶断裂,两组样品的晶粒多为棒状晶且晶粒交错无序,从图3中可以看出,均有气孔存在,致密度不高但添加3wt.%Ni的块体致密度较无添加的有一定程度的提高,其致密度值分别为79%和85.3%。(b)和(d)分别是(a)和(b)的局部放大图,由图可知,图3(b)中各晶粒烧结在一起,结合相应的EDS可知,其晶界之间仅存在多余B,不存在其他的第二相;而在添加烧结助剂Ni的图3(d)中晶界处,结合其相对应的EDS图可知,其晶界处除了存在多余的B外,还存在有Ni元素。
图4是实施例1中Os0.9Re0.1B2粉末中添加3wt.%Ni烧结助剂的Os0.9Re0.1B2块体断面面扫照片,由图4可知烧结后的样品中存在Os、Re、B、O和Ni元素,且各元素分布不均,其中Ni元素主要分布在晶界处。图5为对比例1中Os0.9Re0.1B2粉末和实施例1中Os0.9Re0.1B2粉末中添加3wt.%Ni烧结助剂经1750℃、30MPa热压烧结后的块体抛光面背散射。其中,(a)无添加Ni和(b)添加3wt.%Ni。从图5中可以看出,两组样品的晶粒尺寸较大且存在一些黑色区域,这可能是多余的硼粉富集生成黑色区域。也有可能在烧结过程中硼粉挥发产生的气体来不及排出而形成的气孔。
实施例3
与实施例1不同之处在于:添加6wt.%Ni作为烧结助剂。
实施例4
与实施例1不同之处在于:添加9wt.%Ni作为烧结助剂。
实施例5
与实施例1不同之处在于:添加12wt.%Ni作为烧结助剂。
实施例6
与实施例1不同之处在于:将添加3wt.%Ni的Os0.9Re0.1B2粉末采用SPS进行1600℃,40MPa,保温保压10min烧结。
实施例7
与实施例1不同之处在于:将添加3wt.%Ni的Os0.9Re0.1B2粉末采用无压炉进行1700℃,保温保压90min烧结。
实施例8
一种过渡金属硼化物硬质陶瓷材料为Os0.99Re0.01B2,所述过渡金属硼化物硬质陶瓷材料是在氩气下,利用机械化学法将Os、Re和B粉末按照Os:Re:B摩尔比为0.99:0.01:2.25混合制成Os0.99Re0.01B2粉末,在Os0.99Re0.01B2粉末中添加3wt.%烧结助剂Ni,碾磨后过筛处理,将含Ni的Os0.99Re0.01B2粉末经1800℃烧结制得。
实施例9
一种过渡金属硼化物硬质陶瓷材料为Os0.5W0.5B2,所述过渡金属硼化物硬质陶瓷材料是在氩气下,利用机械化学法将原料Os、MT和B粉末按照Os:MT:B的摩尔比为0.1:0.1:1混合制成Os0.5W0.5B2粉末,在Os0.5W0.5B2粉末中添加5wt.%烧结助剂Ni,碾磨后过筛处理,将含Ni的Os0.5W0.5B2粉末经1500℃烧结制得。
实施例10
一种过渡金属硼化物硬质陶瓷材料为Os0.25Ir0.75B2,所述过渡金属硼化物硬质陶瓷材料是在氩气下,利用机械化学法将原料Os、MT和B粉末按照Os:MT:B的摩尔比为0.25:0.75:3混合制混合制成Os0.25Ir0.75B2粉末,在Os0.25Ir0.75B2粉末中添加7wt.%烧结助剂Ni,碾磨后过筛处理,将含Ni的Os0.25Ir0.75B2粉末经1400℃烧结制得。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种过渡金属硼化物硬质陶瓷材料,其特征在于,所述过渡金属硼化物硬质陶瓷材料为Os1-xMTxB2,其中,MT为Re,W或Ir;x为0.01~0.5;
所述过渡金属硼化物硬质陶瓷材料是在氩气下,利用机械化学法将原料Os、MT和B粉末混合制成Os1-xMTxB2粉末,其中Os:MT:B的摩尔比为(0.5~0.99):(0.01~0.5):(2.25~5);在Os1-xMTxB2粉末中添加烧结助剂Ni,碾磨后过筛处理,将含Ni的Os1-xMTxB2粉末经1400~1800℃烧结制得。
2.根据权利要求1所述的过渡金属硼化物硬质陶瓷材料,其特征在于,所述烧结助剂Ni的添加量为Os1-xMTxB2粉末的1~12wt.%;所述的B粉为非晶态,所述Os、MT和B的摩尔比为0.9:0.1:(2.25~5)。
3.根据权利要求1所述的过渡金属硼化物硬质陶瓷材料,其特征在于,所述过渡金属硼化物硬质陶瓷材料的致密度为85~99%,所述过渡金属硼化物硬质陶瓷材料的维氏硬度值为1700~4000Hv。
4.根据权利要求1所述的过渡金属硼化物硬质陶瓷材料,其特征在于,所述过渡金属硼化物硬质陶瓷材料的主相具有六方结构的Os1-xMTxB2为ReB2型。
5.根据权利要求1-4任一项所述的过渡金属硼化物硬质陶瓷材料的制备方法,其特征在于,包括以下具体步骤:
S1.在氩气气氛下,利用机械化学法将Os、MT和B粉混合制成Os1-xMTxB2粉末;
S2.在Os1-xMTxB2粉末中添加烧结助剂Ni,碾磨后过筛处理;
S3.将步骤S2得到的含Ni的Os1-xMTxB2粉末,在1400~1800℃经烧结得到过渡金属硼化物硬质陶瓷材料。
6.根据权利要求5所述的过渡金属硼化物硬质陶瓷材料的制备方法,其特征在于,步骤S1中所述机械化学法采用的设备为高能球磨机、振动球磨机、行星式球磨机或等离子体辅助高能球磨机。
7.根据权利要求5所述的过渡金属硼化物硬质陶瓷材料的制备方法,其特征在于,步骤S2中所述碾磨的时间为20~30min,所述筛的孔直径为100~200目。
8.根据权利要求5所述的过渡金属硼化物硬质陶瓷材料的制备方法,其特征在于,步骤S3中所述烧结的方法为无压烧结、热压烧结或放电等离子烧结。
9.根据权利要求8所述的过渡金属硼化物硬质陶瓷材料的制备方法,其特征在于,所述无压烧结中升温速率为3~15℃/min,保温时间为1~2h;所述热压烧结中升温速率为5~15℃/min,烧结压力为20~70MPa,保温保压时间为1~2h;所述放电等离子烧结中升温速率为100~200℃/min,烧结压力为20~70MPa,保温保压时间为10~15min。
10.权利要求1-4任一项所述的过渡金属硼化物硬质陶瓷材料在切削刀具或研磨工业领域中的应用。
CN201811378289.5A 2018-11-19 2018-11-19 一种过渡金属硼化物硬质陶瓷材料及其制备方法和应用 Pending CN109437915A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811378289.5A CN109437915A (zh) 2018-11-19 2018-11-19 一种过渡金属硼化物硬质陶瓷材料及其制备方法和应用
PCT/CN2018/121024 WO2020103235A1 (zh) 2018-11-19 2018-12-14 一种过渡金属硼化物硬质陶瓷材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811378289.5A CN109437915A (zh) 2018-11-19 2018-11-19 一种过渡金属硼化物硬质陶瓷材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN109437915A true CN109437915A (zh) 2019-03-08

Family

ID=65553784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811378289.5A Pending CN109437915A (zh) 2018-11-19 2018-11-19 一种过渡金属硼化物硬质陶瓷材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN109437915A (zh)
WO (1) WO2020103235A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851367A (zh) * 2019-03-11 2019-06-07 华南理工大学 一种棒状(Zr,Hf,Ta,Nb)B2高熵纳米粉体及其制备方法
CN110526715A (zh) * 2019-08-01 2019-12-03 广东工业大学 一种三元钨钌硼化物陶瓷材料及其制备方法与应用
CN110655408A (zh) * 2019-11-13 2020-01-07 哈尔滨工业大学 一种单相碳硼化物固溶体陶瓷材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960834A (zh) * 2004-05-11 2007-05-09 加利福尼亚大学董事会 二硼化锇化合物及其应用
CN103172380A (zh) * 2013-02-04 2013-06-26 常熟华融太阳能新型材料科技有限公司 非氧化物陶瓷粉体的喷雾造粒方法
CN107043260A (zh) * 2016-12-07 2017-08-15 广东工业大学 一种新型三元锇铼二硼化物(Os1‑xRexB2)硬质材料及其制备方法
CN107188565A (zh) * 2017-05-27 2017-09-22 广东工业大学 一种三元系锇钨二硼化物硬质材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102924086B (zh) * 2012-11-22 2013-12-11 山东轻工业学院 添加六方氮化硼的硼化钛基自润滑陶瓷刀具材料的制备方法
US9926204B2 (en) * 2013-01-16 2018-03-27 University Of Central Florida Research Foundation, Inc. Mechanochemical synthesis of hexagonal OsB2
CN103058662B (zh) * 2013-01-31 2014-01-01 山东轻工业学院 二硼化钛基纳米复合自润滑陶瓷刀具材料及其制备方法
CN107140987A (zh) * 2017-03-31 2017-09-08 广东工业大学 一种Os2B3硬质材料及其制备和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960834A (zh) * 2004-05-11 2007-05-09 加利福尼亚大学董事会 二硼化锇化合物及其应用
CN103172380A (zh) * 2013-02-04 2013-06-26 常熟华融太阳能新型材料科技有限公司 非氧化物陶瓷粉体的喷雾造粒方法
CN107043260A (zh) * 2016-12-07 2017-08-15 广东工业大学 一种新型三元锇铼二硼化物(Os1‑xRexB2)硬质材料及其制备方法
CN107188565A (zh) * 2017-05-27 2017-09-22 广东工业大学 一种三元系锇钨二硼化物硬质材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAO XIAOZHOU等: "Effect of Ni addition on pressureless sintering of tungsten diboride", 《INT. JOURNAL OF REFRACTORY METALS AND HARD MATERIALS》 *
ZHENG XIN等: "Thermal stability and hardness of ReB2 type hexagonal OsB2 with the addition of W", 《CERAMICS INTERNATIONAL》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851367A (zh) * 2019-03-11 2019-06-07 华南理工大学 一种棒状(Zr,Hf,Ta,Nb)B2高熵纳米粉体及其制备方法
CN109851367B (zh) * 2019-03-11 2021-08-10 华南理工大学 一种棒状(Zr,Hf,Ta,Nb)B2高熵纳米粉体及其制备方法
CN110526715A (zh) * 2019-08-01 2019-12-03 广东工业大学 一种三元钨钌硼化物陶瓷材料及其制备方法与应用
CN110526715B (zh) * 2019-08-01 2022-01-28 广东工业大学 一种三元钨钌硼化物陶瓷材料及其制备方法与应用
CN110655408A (zh) * 2019-11-13 2020-01-07 哈尔滨工业大学 一种单相碳硼化物固溶体陶瓷材料的制备方法

Also Published As

Publication number Publication date
WO2020103235A1 (zh) 2020-05-28

Similar Documents

Publication Publication Date Title
Zhou et al. Rapid synthesis of Ti2AlC by spark plasma sintering technique
KR101821220B1 (ko) 질화티탄-티타늄 2붕화물-입방정계 질화붕소 복합재료의 제조방법
Nachiappan et al. Synthesis and densification of monolithic zirconium carbide by reactive hot pressing
JP6293669B2 (ja) 焼結された立方晶窒化ホウ素切削工具
CN109437915A (zh) 一种过渡金属硼化物硬质陶瓷材料及其制备方法和应用
CN103739292A (zh) 一种氮化硅-碳化钨钛纳米复合陶瓷刀具材料的制备方法
CN106587088B (zh) 一种新型三元锇钌硼化物硬质材料及其制备方法
Ma et al. Preparation and sintering of ultrafine TiB2 powders
Smith et al. High‐entropy boride–carbide ceramics by sequential boro/carbothermal synthesis
CN108358645A (zh) 一种制备高致密度二硼化铪陶瓷的方法
JP2007254249A (ja) cBN基超高圧焼結体
CN107285329B (zh) 一种二硼化钨硬质材料及其制备方法和应用
CN103113125A (zh) 层状化合物板状晶粒弥散增强的过渡金属碳化物复相材料及其超低温制备方法
Rosinski et al. Properties of WCCO/diamond composites produced by PPS method intended for drill bits for machining of building stones
CN107043260A (zh) 一种新型三元锇铼二硼化物(Os1‑xRexB2)硬质材料及其制备方法
CN109534824A (zh) 一种过渡金属硼化物硬质材料及其制备方法
Mathew et al. A comprehensive analysis of the influence of resistive coupled microwave sintering on the optical, thermal and hardness properties of infrared transparent yttria-magnesia composites
CN110483057A (zh) 一种掺杂钽元素的四硼化钨材料及其制备方法与应用
US10252946B2 (en) Composite ceramic composition and method of forming same
Zhang et al. Fabrication and microstructure of B4C matrix composites by hot-pressing sinter
Kannan et al. Reactive hot pressing of TiC0. 5 ceramic at low applied pressure with 1 wt% Ni additive
Chu et al. cBN-Al2O3 composites in NaCl environment under high pressure and high temperature conditions
Zhou et al. Synthesize Ti3SiC2 and Ti3SiC2-diamond composites at high pressure and high temperature
CN110526715B (zh) 一种三元钨钌硼化物陶瓷材料及其制备方法与应用
CN106495156B (zh) 一种制备碳化锆纳米粉体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190308