CN109415227B - 在低的顶部盐水温度下的加湿-减湿系统和方法 - Google Patents

在低的顶部盐水温度下的加湿-减湿系统和方法 Download PDF

Info

Publication number
CN109415227B
CN109415227B CN201780038595.1A CN201780038595A CN109415227B CN 109415227 B CN109415227 B CN 109415227B CN 201780038595 A CN201780038595 A CN 201780038595A CN 109415227 B CN109415227 B CN 109415227B
Authority
CN
China
Prior art keywords
humidifier
liquid
stream
dehumidifier
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780038595.1A
Other languages
English (en)
Other versions
CN109415227A (zh
Inventor
史蒂文·拉姆
康纳尔·托马斯·威尔逊
马克西莫斯·G·圣约翰
普拉卡什·纳拉扬·戈文丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gradiant Corp
Original Assignee
Gradiant Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gradiant Corp filed Critical Gradiant Corp
Publication of CN109415227A publication Critical patent/CN109415227A/zh
Application granted granted Critical
Publication of CN109415227B publication Critical patent/CN109415227B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/14Evaporating with heated gases or vapours or liquids in contact with the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/343Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas
    • B01D3/346Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas the gas being used for removing vapours, e.g. transport gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0027Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium
    • B01D5/003Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium within column(s)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/305Treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Air Humidification (AREA)

Abstract

所描述的实施方案一般性地涉及包括加湿器(例如,鼓泡塔加湿器)和加热装置(例如,换热器)的系统以及相关方法。在某些实施方案中,在包含液相可冷凝流体(例如,水)和溶解盐(例如,NaCl)的第一液体流通过主加湿器液体入口进入加湿器之前,加热装置将第一液体流加热至相对低的温度(例如,约90℃或更低)。在一些情况下,包括加湿器和加热装置的系统仅需要低等级的热来操作,这由于这样的热的高可得性和低成本而可以是有利的。

Description

在低的顶部盐水温度下的加湿-减湿系统和方法
相关申请
本申请是于2016年5月20日提交的题为“在低的顶部盐水温度下的加湿-减湿系统和方法(Humidification-Dehumidification Systems and Methods at Low Top BrineTemperatures)”的美国专利申请第15/161,051号的继续申请,其全部内容出于所有目的通过引用并入本文。
技术领域
所公开的实施方案一般性地涉及包括加湿器和加热装置的系统以及相关方法。
背景技术
随着人类消耗、灌溉和/或工业用途对淡水的需求持续增长,淡水短缺在世界各地正在变成日益严重的问题。为了满足对淡水日益增长的需求,可以使用各种脱盐方法来从含盐水(例如,海水、微咸水、由油和/或气开采过程产生的水、返排水(flowback water)、和/或废水)生产淡水。例如,一种脱盐方法是加湿-减湿(HDH)方法,其涉及使含盐水在加湿器中与载气接触,使得载气被加热和加湿。然后,使经加热加湿的气体在减湿器中与冷水接触,从而产生纯水。
然而,HDH系统和方法常常涉及某些缺点。例如,为了提高系统的效率和/或生产率,流入流通常在被引入HDH系统的加湿器之前被加热到相对高的温度。在一些情况下,加热步骤可能需要相对大量的能量,这可能是昂贵和/或难以获得。因此需要具有改善性能(例如对流入流的温度要求较低)的HDH系统。
发明内容
公开了包括加湿器和加热装置的系统以及相关方法。在一些情况下,本发明的主题涉及相关产品、特定问题的替代解决方案、和/或一个或更多个系统和/或制品的多个不同用途。
一些方面涉及包括加湿器的系统。根据一些实施方案,加湿器包括主加湿器液体入口、主加湿器气体入口、主加湿器液体出口、中间加湿器液体出口、主加湿器气体出口和多个级。在某些实施方案中,多个级包括第一级、最后一级、和位于第一级与最后一级之间的一个或更多个中间级。在某些实施方案中,中间加湿器液体出口为第一级的液体出口或者一个或更多个中间级中的一者的液体出口。根据一些实施方案,该系统还包括第一加热装置。在某些实施方案中,第一加热装置的第一液体入口包括中间加湿器液体出口或者流体连接至中间加湿器液体出口。在某些实施方案中,第一加热装置的第一液体出口包括主加湿器液体入口或者流体连接至主加湿器液体入口。在一些实施方案中,第一加热装置的第一液体入口被配置成接收包含液相可冷凝流体和溶解盐的第一液体流。在一些实施方案中,主加湿器气体入口被配置成接收包含不凝气体的气体流。
一些方面涉及操作加湿器的方法。根据一些实施方案,该方法包括:使包含液相可冷凝流体和溶解盐的第一液体流流过第一加热装置的第一流体路径。在某些实施方案中,第一液体流在第一加热装置内被加热而形成经加热的第一液体流。在一些实施方案中,该方法还包括将经加热的第一液体流注入包括多个级的加湿器的主液体入口。在某些实施方案中,多个级包括第一级、最后一级、和位于第一级与最后一级之间的一个或更多个中间级。在一些实施方案中,该方法还包括将包含不凝气体的气体流注入加湿器的主气体入口。在一些实施方案中,该方法还包括使经加热的第一液体流以第一方向从第一级至最后一级流过加湿器,并且同时使气体流以第二方向从最后一级至第一级流过加湿器。在某些实施方案中,热和物质从经加热的第一液体流传递至气体流以产生含蒸气的加湿器气体出口流和浓缩液体流。在一些实施方案中,该方法还包括使包含至少一部分浓缩液体流的提取液体流从加湿器的中间液体出口流动至第一加热装置。在某些实施方案中,加湿器的中间液体出口是加湿器的第一级的液体出口或者加湿器的一个或更多个中间级中的一者的液体出口。
当结合附图考虑时,根据以下的本发明的多个非限制性实施方案的详细描述,本发明的其他优点和新特征将变得明显。在本说明书和通过引用并入的文献包含冲突和/或不一致的公开内容的情况下,应以本说明书为准。如果通过引用并入的两个或更多个文献包含相对于彼此冲突和/或不一致的公开内容,则应以有效日期较晚的文献为准。
附图说明
将通过举例的方式参照附图来描述本发明的非限制性实施方案,附图为示意性的并且不旨在按比例绘制。在附图中,所示出的每个相同或几乎相同的部件通常由单一数字表示。为了清楚起见,在不需要图示来使本领域普通技术人员理解本发明的情况下,不是每个部件都标记在每个附图中,而且也没有示出本发明的每个实施方案的每个部件。在附图中:
图1示出了根据一些实施方案的示例性系统的示意图,所述系统包括多级加湿器和加热装置;
图2示出了根据一些实施方案的示例性系统的示意图,所述系统包括多级加湿器、多级减湿器和加热装置;
图3A示出了根据一些实施方案的示例性系统的示意图,所述系统包括多级加湿器、多级减湿器、加热装置、换热器、第一罐和第二罐,其中换热器的第一液体出口流体连接至加热装置的第一液体入口;
图3B示出了根据一些实施方案的示例性系统的示意图,所述系统包括多级加湿器、多级减湿器、加热装置、换热器、第一罐和第二罐,其中换热器的第一液体出口流体连接至加湿器的中间液体入口;
图4示出了根据一些实施方案的示例性系统的示意图,所述系统包括多级加湿器、多级减湿器、加热装置、换热器、储存罐和空气冷却换热器。
图5A示出了根据一些实施方案的对于在180°F的初始顶部液体温度下达到热平衡的系统进行的实验,生产率、获得输出率(Gained Output Ratio,GOR)和顶部液体温度作为在顶盘之后提取的水的百分数的函数的图。
图5B示出了根据一些实施方案的对于在192°F的初始顶部液体温度下达到热平衡的系统进行的实验,生产率、获得输出率(GOR)和顶部液体温度作为在顶盘之后提取的水的百分数的函数的图。
具体实施方式
本文中描述的实施方案一般性地涉及包括加湿器(例如,鼓泡塔加湿器)和加热装置的系统以及相关方法。在某些实施方案中,在包含液相可冷凝流体(例如,水)和溶解盐(例如,NaCl)的第一液体流通过主加湿器液体入口进入加湿器之前,加热装置将第一液体流加热至相对低的温度(例如,约90℃或更低)。在一些情况下,包括加湿器和加热装置的系统仅需要低等级的热来操作,这由于这样的热的高可得性和低成本而可以是有利的。
在一些实施方案中,第一液体流以第一方向流过加湿器,并且包含不凝气体(例如,空气)的气体流以第二方向流过加湿器。在加湿器内,热和物质可以从第一液体流传递至气体流(例如,通过蒸发)以产生相对于气体流而富含气相可冷凝流体的含蒸气的加湿器气体出口流,以及相对于第一液体流而富含溶解盐的浓缩液体流。在一些实施方案中,一部分浓缩液体流通过中间加湿器液体出口离开加湿器,并且再循环通过包括中间加湿器液体出口、加热装置的第一液体入口、加热装置的第一液体出口和主加湿器液体入口的流体回路。浓缩液体流的剩余部分可以继续流过加湿器,从而进一步被浓缩,并且可以通过主加湿器液体出口离开加湿器。在一些实施方案中,加湿器可以流体连接至减湿器(例如,鼓泡塔冷凝器)。加湿器和减湿器可以用于水净化系统,例如脱盐系统。
先前的加湿-减湿(HDH)系统通常在相对高的流入温度下操作。也就是说,在这样的先前的HDH系统中,流入液体流在被引入HDH系统的加湿器之前经常被加热至相对高的温度(例如,大于约90℃),以提高HDH系统的效率和/或生产率。然而,在本发明的上下中已经开发了新的加湿器和HDH系统以及方法,其可以在某些情况下使用相对低的液体流入温度(例如,小于约90℃)而具有相对高的操作效率和/或可以能够被有效地操作。
某些方面涉及加湿器系统,其具有包括加湿器的中间液体出口、加热装置的第一液体入口、加热装置的第一液体出口、和加湿器的主液体入口的流体回路。在一些情况下,液体流再循环通过流体回路可以增加通过加湿器的第一级的液体质量流量,并且可以补偿流入液体流(例如,包含液相可冷凝流体和溶解盐的第一液体流)的相对低的温度。例如,某些实施方案的操作可以由方程式1表征:
Figure BDA0001913569390000041
其中
Figure BDA0001913569390000042
表示流入液体流的第一质量流量(例如,在主加湿器液体入口处第一液体流的第一质量流量),ΔT液体,i表示流入液体流穿过加湿器的第一级的第一温度变化(例如,第一液体流在主加湿器液体入口处的温度与第一液体流在加湿器的第一级的液体出口处的温度之差),C表示流入液体流的热容,
Figure BDA0001913569390000051
表示流入液体流的第二质量流量(例如,在主加湿器液体入口处第一液体流的第二质量流量),ΔT液体,f表示流入液体流穿过加湿器的第一级的第二温度变化,
Figure BDA0001913569390000052
表示与流入液体流热接触的气体流的焓率变化(enthalpy rate change)。方程式1表明,对于热接触中的液体流和气体流,液体质量流量的增加可以补偿液体温度变化的减小,使得气体流的焓率变化保持恒定。例如,如果流入液体流穿过加湿器第一级的第二温度变化小于流入液体流穿过加湿器第一级的第一温度变化,则在流入液体流的第二质量流量大于流入液体流的第一质量流量的情况下,与流入液体流热接触的气体流的焓率变化可以保持恒定。因此,即使流入液体流具有相对低的温度,加湿器的第一级中的增加的液体质量流量也可以允许气体流的焓率变化保持相对恒定。在一些情况下,温度可以表示为焓的函数,并且气体流的相对恒定的焓率变化可以表明气体流的温度变化也是相对恒定的。也就是说,增加的液体质量流量可以允许足够量的热从流入液体流传递至气体流,使得气体流的温度增加至被确定为产生最佳效率和/或生产率的目标温度。
在一些实施方案中,通过中间加湿器液体出口除去加湿器内的至少一部分液体流可以隔离/减轻增加的液体质量流量的影响,使得在加湿器中保持最佳的热平衡而不需要大幅增加整个加湿器的尺寸/容量。
在一些情况下,具有相对低的流入温度的系统(例如,HDH系统)可以是更有利的,因为它可以允许使用低等级的热(例如,温度为约90℃或更低的热)来操作系统。在一些情况下,低等级的热可以以相对低的成本(或者,在某些情况下,没有成本)来大量获得。例如,低等级的热可以从天然热源获得,例如地热热源和太阳辐射。此外,许多工业过程(例如,炼油、金属精炼)产生低等级的废热,许多热电联产厂除了电之外还生产热水或蒸汽。即使使用常规的加热源(例如,炉),获得低等级的热也可以比高温度的热更低廉,原因是例如与操作这样的加热器相关的燃料成本降低以及/或者能够在低于被加热液体(例如,加热流体)的沸点下操作常规加热源,使得压力要求较低并且相关资金和操作成本较低。在所描述的某些实施方案中,这样的低等级热源可以用于在流入液体流进入加湿器之前对该流进行加热。
虽然本发明的实施方案可以采用各种加湿器设计,包括但不限于涉及气体流与液体流之间直接接触的那些,但是某些类型的加湿器与其他类型的加湿器相比可以具有优点。例如,鼓泡塔加湿器与某些其他类型的加湿器(例如,某些填充床加湿器、喷淋塔、湿壁塔)相比可以表现出更高的热力学效率。不希望受特定理论的束缚,鼓泡塔加湿器的增加的热力学效率可以至少部分地归因于使用气泡进行传热和传质,因为与许多其他类型的表面(例如,常规的填充材料)相比,气泡可以具有更大的可用于传热和传质的表面积。如下面进一步详细描述的,鼓泡塔加湿器可以具有进一步提高热力学效率的某些特征,包括但不限于相对低的液位高度、相对高的纵横比的液体流动路径和多级设计。在某些情况下,鼓泡塔加湿器可以特别适合于某些当前描述的系统,原因在于可以利用那些加湿器中的某些获得的相对高的传热和传质速率。
图1为示例性系统100的示意图,系统100包括加湿器102和加热装置104。如图1所示,加湿器102包括多个级102A至102E,包括第一级102A、最后一级102E和中间级102B至102D。加热装置104的第一液体入口122包括加湿器102的中间液体出口128和加湿器102的主液体出口130或者流体连接至加湿器102的中间液体出口128和加湿器102的主液体出口130。此外,加热装置104的第一液体出口124包括加湿器102的主液体入口126或者流体连接至加湿器102的主液体入口126。在一些情况下,加热装置104还可以流体连接至液体流的源,该液体流包含液相可冷凝流体和溶解盐(未在图1中示出)。
在操作中,加热装置104可以通过第一液体入口122接收包含液相可冷凝流体和溶解盐的第一液体流106。在加热装置104内,第一液体流106可以被加热以产生经加热的第一液体流108。然后,可以引导经加热的第一液体流108从加热装置104的第一液体出口124流动至加湿器102的主液体入口126。在一些情况下,在加湿器102的主液体入口126处经加热的第一液体流108的温度相对低(例如,约90℃或更低)。在进入加湿器第一级102A(其包括加湿器102的主液体入口126或者流体连接(例如,直接流体连接)至加湿器102的主液体入口126)时,经加热的第一液体流108可以在加湿器102内与可能包含不凝气体的气体流112接触。气体流112可以通过流体连接(例如,直接流体连接)至加湿器最后一级102E的主加湿器气体入口132进入加湿器102,并且可以从加湿器最后一级102E至加湿器第一级102A流过加湿器102。
在加湿器第一级102A中,热和物质可以从经加热的第一液体流108传移至气体流112(例如,通过蒸发过程),从而产生相对于经加热的第一液体流108富含溶解盐的经冷却浓缩的液体流和相对于主加湿器气体入口中接收的气体流112富含气相可冷凝流体的经加热的经至少部分加湿的气体流。经加热的经至少部分加湿的气体流可以通过主加湿器气体出口134作为含蒸气的加湿器气体出口流114离开加湿器102。包含至少一部分经冷却浓缩的液体流的提取液体流110可以通过中间加湿器液体出口128离开加湿器102,并且可以被引导以流动至加热装置104的第一液体入口122。经冷却浓缩的液体流的剩余部分可以继续从加湿器第一级102A至加湿器最后一级102E流过加湿器102,从而进一步被冷却并浓缩(即,富含溶解盐)。经冷却浓缩的液体流可以通过与加湿器最后一级102E流体连通(例如,直接流体连接至加湿器最后一级102E)的主加湿器液体出口130作为加湿器液体出口流116离开加湿器102。
在某些实施方案中,加湿器液体出口流116的至少一部分118从系统100中排出。在某些情况下,可以对加湿器液体出口流116的至少一部分的排放速率进行选择以保持稳定状态的系统盐度。在一些实施方案中,加湿器液体出口流116全部从系统100中排出。在一些实施方案中,加湿器液体出口流116的至少一部分120保留在系统100内,并且在返回至加热装置104并且再循环至加湿器102之前与提取液体流110和另外的流入液体(例如,第一液体流106)合并。
根据一些实施方案,加热装置可以将流入液体流(例如,包含液相可冷凝流体和溶解盐的第一液体流)加热至相对低的温度(例如,约90℃或更低),并且经加热的流入液体流可以以相对低的温度进入加湿器。在一些实施方案中,在主加湿器液体入口(例如,直接流体连接至加湿器第一级的液体入口)处进入加湿器的流入液体流的温度为约90℃或更低、约80℃或更低、约70℃或更低、约60℃或更低、约50℃或更低、约40℃或更低、或者约30℃或更低。在某些实施方案中,在主加湿器液体入口处进入加湿器的流入液体流的温度在以下范围内:约30℃至约50℃、约30℃至约60℃、约30℃至约70℃、约30℃至约80℃、约30℃至约90℃、约40℃至约60℃、约40℃至约70℃、约40℃至约80℃、约40℃至约90℃、约50℃至约70℃、约50℃至约80℃、约50℃至约90℃、约60℃至约80℃、约60℃至约90℃、或者约70℃至约90℃。可以根据本领域中已知的任何方法在主加湿器液体入口处测量流入液体流的温度。例如,可以使用一个或更多个热电偶(例如,K型热电偶)测量温度。
在一些实施方案中,提取液体流(例如,包含至少一部分经冷却浓缩的液体流的流)通过中间加湿器液体出口离开加湿器。如本文中所使用的,中间加湿器液体出口是指包括至少三个级的加湿器的第一级或中间级的液体出口。在某些实施方案中,选择提取的位置使得提取液体流的温度与进入加热装置的流入液体流(例如,包含液相可冷凝流体和溶解盐的第一液体流、经预热的第一液体流)的温度相差仅相对小的量。在一些实施方案中,温度差为约10℃或更小、约5℃或更小、约2℃或更小、或者约1℃或更小。在某些实施方案中,温度差在约0℃至约10℃、约0℃至约5℃、约0℃至约2℃、或者约0℃至约1℃的范围内。
提取液体流可以以为了优化加湿器的热效率而选定的特定流量离开加湿器。例如,在其中进入加湿器的液体流的温度相对低的某些实施方案中,可以调节(例如,增加或减少)提取液体流的流量以保持离开加湿器第一级的液体流和气体流的最佳温度。
在一些情况下,气体流和/或液体流流过加湿器的最佳温度是指加湿器的热容率比(HCR)接近1时的温度。在一些实施方案中,加湿器的HCR可以根据方程式2来计算:
Figure BDA0001913569390000081
其中分子
Figure BDA0001913569390000082
是流过加湿器的冷流(例如,气体流)的最大焓率变化,分母
Figure BDA0001913569390000083
是流过加湿器的热流(例如,液体流)的最大焓率变化。在减湿器的情况下,冷流是指流过减湿器的液体流,热流是指流过减湿器的气体流。流的最大焓率变化是指该流在主加湿器出口处达到另一流的入口温度时发生的焓率变化。例如,热流(例如,加湿器中的液体流)的最大焓率变化可以根据方程式1近似为在主加湿器液体入口处流入液体流的质量流量、液体的热容、以及在主加湿器液体入口处流入液体流的温度与在主加湿器气体入口处流入气体流的温度之差的乘积。冷流(例如,加湿器中的气体流)的最大焓率变化可以近似为气体流在主加湿器气体入口处的焓率(在主加湿器气体入口处流入气体流的质量流量、在流入气体流在主加湿器气体入口处的温度和湿度比下气体的比热容、以及在主加湿器气体入口处流入气体流的温度的乘积)与气体流在主加湿器气体出口处的理想焓率(在主加湿器气体入口处流入气体流的质量流量、在主加湿器液体入口处流入液体流的温度和在该温度下的饱和湿度比下气体的比热容、以及在主加湿器液体入口处流入液体流的温度的乘积)之差。在某些情况下,选择液体流和/或气体流流过加湿器的温度和/或流量,使得HCR为约0.5至约1.5、约0.6至约1.4、约0.7至约1.3、0.8至约1.2、约0.9至约1.1、或约0.95至约1.05。
根据一些实施方案,提取液体流以比加湿器液体出口流通过主加湿器液体出口离开加湿器更低的流量通过中间加湿器液体出口离开加湿器。在某些实施方案中,中间加湿器液体出口处的提取液体流的流量为主加湿器液体出口处的加湿器液体出口流的流量的至少约5%、至少约10%、至少约20%、至少约25%、至少约30%、至少约40%、或至少约50%。在一些实施方案中,中间加湿器液体出口处的提取液体流的流量为主加湿器液体出口处的加湿器液体出口流的流量的约50%或更小、约40%或更小、约30%或更小、约25%或更小、约20%或更小、约10%或更小、或约5%或更小。在一些实施方案中,中间加湿器液体出口处的提取液体流的流量为主加湿器液体出口处的加湿器液体出口流的流量的约5%至约10%、约5%至约20%、约5%至约25%、约5%至约30%、约5%至约40%、约5%至约50%、约10%至约20%、约10%至约25%、约10%至约30%、约10%至约40%、约10%至约50%、约20%至约30%、约20%至约40%、约20%至约50%、约25%至约40%、约25%至约50%、约30%至约40%、约30%至约50%、或约40%至约50%。中间加湿器液体出口处的提取液体流的流量和主加湿器液体出口处的加湿器液体出口流的流量可以根据本领域中已知的任何合适的方法来测量。例如,可以使用一个或更多个流量计(例如,桨轮流量计、转子流量计、超声波流量计、质量流量计)来测量流量。
根据一些实施方案,提取液体流以比加湿器液体出口流通过主加湿器液体出口离开加湿器更高的流量通过中间加湿器液体出口离开加湿器。在某些实施方案中,中间加湿器液体出口处的提取液体流的流量为主加湿器液体出口处的加湿器液体出口流的流量的至少约105%、至少约110%、至少约120%、至少约125%、至少约130%、至少约140%、或至少约150%。在一些实施方案中,中间加湿器液体出口处的提取液体流的流量为主加湿器液体出口处的加湿器液体出口流的流量的约150%或更小、约140%或更小、约130%或更小、约125%或更小、约120%或更小、约110%或更小、或约105%或更小。在一些实施方案中,中间加湿器液体出口处的提取液体流的流量为主加湿器液体出口处的加湿器液体出口流的流量的约105%至约110%、约105%至约120%、约105%至约125%、约105%至约130%、约105%至约140%、约105%至约150%、约110%至约120%、约110%至约125%、约110%至约130%、约110%至约140%、约110%至约150%、约120%至约130%、约120%至约140%、约120%至约150%、约125%至约140%、约125%至约150%、约130%至约140%、约130%至约150%、或约140%至约150%。
在包括脱盐系统(其具有图3A所示的示例性配置,并且被配置成每天生产约800桶基本上纯的水)的某些实施方案中,中间加湿器液体出口处的提取液体流的流量为至少约30gpm、至少约40gpm、至少约50gpm、至少约100gpm、至少约150gpm、至少约200gpm、至少约250gpm、至少约300gpm、至少约350gpm、至少约400gpm、至少约450gpm、至少约500gpm、至少约550gpm、或至少约600gpm。在某些实施方案中,中间加湿器液体出口处的提取液体流的流量在以下范围内:约30gpm至约50gpm、约30gpm至约100gpm、约30gpm至约150gpm、约30gpm至约200gpm、约30gpm至约300gpm、约30gpm至约400gpm、约30gpm至约500gpm、约30gpm至约600gpm、约50gpm至约100gpm、约50gpm至约200gpm、约50gpm至约300gpm、约50gpm至约400gpm、约50gpm至约500gpm、约50gpm至约600gpm、约100gpm至约200gpm、约100gpm至约300gpm、约100gpm至约400gpm、约100gpm至约500gpm、约100gpm至约600gpm、约200gpm至约600gpm、约300gpm至约600gpm、约400gpm至约600gpm、或约500gpm至约600gpm。
在一些实施方案中,提取液体流可以再循环通过包括中间加湿器液体出口、加热装置的第一液体入口、加热装置的第一液体出口和主加湿器液体入口的流体回路。在某些情况下,可以将一定量的液体添加到流体回路中或从流体回路中除去以控制再循环液体流的盐度。例如,可以通过增加或减少整个流体回路中多个点处的提取流量和/或注入流量来调节(例如,增加或减少)再循环通过流体回路的液体量。在一些情况下,流体回路中的液体替换可以是基本上连续的、不连续的(例如,分批)、或半不连续的(例如,半分批)。
在一些实施方案中,加热装置被配置成接收包含液相可冷凝流体的含有溶解盐的第一液体流。可冷凝流体通常是指在加湿器内的至少一组操作条件下能够从液相转变为气相的流体。合适的可冷凝流体的非限制性说明性实例包括水、氨、苯、甲苯、乙苯、醇和/或其组合。除了液相可冷凝流体以外,第一液体流还可以包含一种或更多种另外的液体(例如,液体流可以为液体混合物)。溶解盐通常是指已经溶解至该盐的组分离子(例如,阴离子、阳离子)不再彼此离子键合的程度的盐。可以存在于第一液体流中的溶解盐的非限制性实例包括氯化钠(NaCl)、溴化钠(NaBr)、氯化钾(KCl)、溴化钾(KBr)、氯化铵(NH4Cl)、氯化钙(CaCl2)、氯化镁(MgCl2)、碳酸钠(Na2CO3)、碳酸氢钠(NaHCO3)、碳酸氢钾(KHCO3)、硫酸钠(Na2SO4)、硫酸钾(K2SO4)、硫酸钙(CaSO4)、硫酸镁(MgSO4)、硫酸锶(SrSO4)、硫酸钡(BaSO4)、硫酸钡锶(BaSr(SO4)2)、硝酸钙(Ca(NO3)2)、氢氧化铁(III)(Fe(OH)3)、碳酸铁(III)(Fe2(CO3)3)、氢氧化铝(Al(OH)3)、碳酸铝(Al2(CO3)3)、碳酸铵、碳酸氢铵、硫酸铵、硼盐、聚丙烯酸钠盐和/或硅酸盐。
在某些实施方案中,第一液体流包括含盐水(例如,包含一种或更多种溶解盐的水)。在某些情况下,含盐水包括海水、微咸水、由油和/或气开采过程产生的水、返排水、和/或废水(例如,工业废水)。废水的非限制性实例包括纺织厂废水、皮革制革废水、造纸厂废水、冷却塔排污水、烟道气脱硫废水、垃圾沥出物水和/或化学过程的流出物(例如,另一脱盐系统和/或化学过程的流出物)。
在一些实施方案中,第一液体流具有相对高的溶解盐浓度。在某些实施方案中,第一液体流中溶解盐的浓度为至少约1,000mg/L、至少约5,000mg/L、至少约10,000mg/L、至少约50,000mg/L、至少约100,000mg/L、至少约150,000mg/L、至少约200,000mg/L、至少约250,000mg/L、至少约300,000mg/L、至少约350,000mg/L、或至少约375,000mg/L(和/或,在某些实施方案中,高至溶解盐在液体流中的溶解度极限)。在一些实施方案中,第一液体流中溶解盐的浓度在以下范围内:约1,000mg/L至约10,000mg/L、约1,000mg/L至约50,000mg/L、约1,000mg/L至约100,000mg/L、约1,000mg/L至约150,000mg/L、约1,000mg/L至约200,000mg/L、约1,000mg/L至约250,000mg/L、约1,000mg/L至约300,000mg/L、约1,000mg/L至约350,000mg/L、约1,000mg/L至约375,000mg/L、约10,000mg/L至约50,000mg/L、约10,000mg/L至约100,000mg/L,约10,000mg/L至约150,000mg/L、约10,000mg/L至约200,000mg/L、约10,000mg/L至约250,000mg/L、约10,000mg/L至约300,000mg/L、约10,000mg/L至约350,000mg/L、约10,000mg/L至约375,000mg/L、约50,000mg/L至约100,000mg/L、约50,000mg/L至约150,000mg/L、约50,000mg/L至约200,000mg/L、约50,000mg/L至约250,000mg/L、约50,000mg/L至约300,000mg/L、约50,000mg/L至约350,000mg/L、约50,000mg/L至约375,000mg/L、约100,000mg/L至约150,000mg/L、约100,000mg/L至约200,000mg/L、约100,000mg/L至约250,000mg/L、约100,000mg/L至约300,000mg/L、约100,000mg/L至约350,000mg/L、约100,000mg/L至约375,000mg/L、约150,000mg/L至约200,000mg/L、约150,000mg/L至约250,000mg/L、约150,000mg/L至约300,000mg/L、约150,000mg/L至约350,000mg/L、约150,000mg/L至约375,000mg/L、约200,000mg/L至约250,000mg/L、约200,000mg/L至约300,000mg/L、约200,000mg/L至约350,000mg/L、约200,000mg/L至约375,000mg/L、约250,000mg/L至约300,000mg/L、约250,000mg/L至约350,000mg/L、约250,000mg/L至约375,000mg/L、约300,000mg/L至约350,000mg/L、或约300,000mg/L至约375,000mg/L。溶解盐的浓度通常是指盐的阳离子和阴离子的组合浓度。例如,溶解的NaCl的浓度是指钠离子(Na+)的浓度和氯离子(Cl-)的浓度的总和。溶解盐的浓度可以根据本领域中已知的任何合适的方法来测量。例如,用于测量溶解盐的浓度的方法包括电感耦合等离子体(ICP)光谱(例如,电感耦合等离子体光学发射光谱)。作为一个非限制性实例,可以使用Optima 8300 ICP-OES光谱仪。
在一些实施方案中,第一液体流包含以下量的溶解盐:至少约1重量%、至少约5重量%、至少约10重量%、至少约15重量%、至少约20重量%、至少约25重量%、至少约26重量%、至少约27重量%、至少约28重量%、至少约29重量%、或至少约30重量%(和/或,在某些实施方案中,高至溶解盐在第一液体流中的溶解度极限)。在一些实施方案中,第一液体流包含以下范围内的量的溶解盐:约1重量%至约30重量%、约5重量%至约30重量%、约10重量%至约30重量%、约15重量%至约30重量%、约20重量%至约30重量%、约25重量%至约30重量%、约26重量%至约30重量%、约27重量%至约30重量%、约28重量%至约30重量%、或约29重量%至约30重量%。
加热装置可以为能够将热传递至流体流的任何装置。在一些实施方案中,加热装置包括第一液体入口和第一液体出口。在某些情况下,加热装置包括第一流体路径。加热装置的第一液体入口可以是第一流体路径的液体入口,加热装置的第一液体出口可以是第一流体路径的液体出口。在一些实施方案中,加热装置的第一液体入口流体连接至包含液相可冷凝流体和溶解盐的第一液体流的源。在一些实施方案中,加热装置的第一液体入口包括加湿器的中间加湿器液体出口或者流体连接至加湿器的中间加湿器液体出口。在某些实施方案中,第一加热装置的第一液体出口包括加湿器的主液体入口或者流体连接至加湿器的主液体入口。
在一些实施方案中,加热装置为换热器。加热装置可以为本领域中已知的任何类型的换热器。在一些情况下,换热器包括第一流体路径和第二流体路径。第一流体流可以流过第一流体路径,第二流体流可以流过第二流体路径。第一流体流与第二流体流可以直接或间接接触,并且热可以在第一流体流与第二流体流之间传递。在一些实施方案中,第一流体流与第二流体流仅间接接触。在某些实施方案中,第二流体流包含加热流体。加热流体可以为能够吸收并传递热的任何流体。合适的加热流体的非限制性实例包括水、空气、饱和/过热蒸汽、合成的有机类无水流体、二醇、盐水和/或矿物油。
在一些实施方案中,第一流体流以第一方向流过第一流体路径,第二流体流以第二方向流过第二流体路径,所述第二方向与第一方向基本上相反(例如,逆流)、与第一方向基本上相同(例如,平行流)、或与第一方向基本上垂直(例如,交叉流)。在某些情况下,逆流式换热器可以比其他类型的换热器更有效。在一些实施方案中,加热装置为逆流式换热器。在一些实施方案中,多于两个的流体流可以流过换热器。
在一些实施方案中,流过加热装置的第一流体路径的第一流体流和/或流过加热装置的第二流体路径的第二流体流为液体流,并且加热装置为液-液换热器。在另一些实施方案中,流过加热装置的第一流体路径的第一流体流和/或流过加热装置的第二流体路径的第二流体流为气体流。在一些实施方案中,第一流体流和/或第二流体流在加热装置内不经受相变(例如,液体到气体或者气体到液体)。
合适的换热器的实例包括但不限于板框式换热器、壳管式换热器、套管式换热器、板式换热器、板壳式换热器等。在一个特定的非限制性实施方案中,加热装置为板框式换热器。
在一些实施方案中,换热器可以表现出相对高的传热速率。在一些实施方案中,换热器的传热系数可以为至少约150W/(m2K)、至少约200W/(m2K)、至少约500W/(m2K)、至少约1000W/(m2K)、至少约2000W/(m2K)、至少约3000W/(m2K)、至少约4000W/(m2K)、至少约5000W/(m2K)、至少约6000W/(m2K)、至少约7000W/(m2K)、至少约8000W/(m2K)、至少约9000W/(m2K)、或至少约10,000W/(m2K)。在一些实施方案中,换热器的传热系数可以在以下范围内:约150W/(m2K)至约10,000W/(m2K)、约200W/(m2K)至约10,000W/(m2K)、约500W/(m2K)至约10,000W/(m2K)、约1000W/(m2K)至约10,000W/(m2K)、约2000W/(m2K)至约10,000W/(m2K)、约3000W/(m2K)至约10,000W/(m2K)、约4000W/(m2K)至约10,000W/(m2K)、约5000W/(m2K)至约10,000W/(m2K)、约6000W/(m2K)至约10,000W/(m2K)、约7000W/(m2K)至约10,000W/(m2K)、约8000W/(m2K)至约10,000W/(m2K)、或约9000W/(m2K)至约10,000W/(m2K)。
一些实施方案中,加热装置为集热装置。集热装置可以被配置成产生和/或储存和/或利用热能(例如,以天然气燃烧、太阳能、来自发电厂的废热或来自燃烧废气的废热的形式)。在某些情况下,加热装置被配置成将电能转换成热能。例如,加热装置可以为电加热器。在一些实施方案中,加热装置包括炉(例如,燃烧炉)。
在一些情况下,加热装置可以增加流过加热装置(或以其他方式与加热装置接触)的一个或更多个流体流的温度。例如,进入加热装置的流体流与离开加热装置的流体流的温度差可以为至少约5℃、至少约10℃、至少约15℃、至少约20℃、至少约30℃、至少约40℃、或至少约50℃。在一些实施方案中,进入加热装置的流体流与离开加热装置的流体流的温度差可以在以下范围内:约5℃至约10℃、约5℃至约15℃、约5℃至约20℃、约5℃至约30℃、约5℃至约40℃、约5℃至约50℃、约10℃至约20℃、约10℃至约30℃、约10℃至约40℃、约10℃至约50℃、约20℃至约30℃、约20℃至约40℃、或约20℃至约50℃。在一些情况下,在加热装置中被加热的流体流(例如,第一液体流)的温度保持低于该流体流的沸点。
在一些实施方案中,第一加热装置利用低等级的热(例如,温度为约90℃或更低的热)以提高流体流的温度。在某些情况下,例如,低等级的热可以从工业过程、热电联产厂、地热热源、太阳辐射、燃机(例如柴油发电机冷却夹套)、发电厂冷却水、炼油厂、冶金过程(例如,钛精炼)和/或常规的热源中获得。
加湿器可以为本领域中已知的任何类型的加湿器。在一些实施方案中,加湿器被配置成接收包含液相可冷凝流体和溶解盐的液体流(例如,从加热装置接收的经加热的第一液体流)。在一些实施方案中,加湿器还被配置成通过至少一个加湿器气体入口(例如,主加湿器气体入口、中间加湿器气体入口)接收气体流。在一些情况下,气体包含至少一种不凝气体。不凝气体通常是指在加湿器的操作条件下不能从气相冷凝为液相的气体。合适的不凝气体的实例包括但不限于空气、氮气、氧气、氦气、氩气、一氧化碳、二氧化碳、硫氧化物(SOx)(例如,SO2、SO3)、氮氧化物(NOx)(例如,NO、NO2)、和/或其组合。在一些实施方案中,气体为气体混合物(例如,气体包含至少一种不凝气体和一种或更多种另外的气体)。
在加湿器中,气体流可以与离开加热装置的经加热的第一液体流接触(例如,直接或间接接触)。在一些实施方案中,经加热的第一液体流的温度高于气体流的温度。根据一些实施方案,当气体流和经加热的第一液体流在加湿器内接触时,液体中的一定量的热和至少一部分可冷凝的流体通过蒸发(例如,加湿)过程从经加热的第一液体流传递至气体流,从而产生含蒸气的加湿器气体出口流和经冷却浓缩的液体流。在一些实施方案中,含蒸气的加湿器气体出口流包含蒸气混合物(例如,气相可冷凝流体和不凝气体的混合物)。在某些情况下,可冷凝流体为水,并且含蒸气的加湿器气体出口流相对于从主加湿器气体入口接收的气体流而富含水蒸气。在一些实施方案中,经冷却浓缩的液体流具有比经加热的第一液体流更高的溶解盐浓度(例如,经冷却浓缩的液体流相对于经加热的第一液体流而富含溶解盐)。
在一些实施方案中,加湿器被配置成使得主液体入口位于加湿器的第一端(例如,顶端),并且主气体入口位于加湿器的第二相对端(例如,底端)。加湿器还可以包括在加湿器的第二端处的主液体出口和在加湿器的第一端处的主气体出口。这样的配置可以促进液体流(例如,经加热的第一液体流)以第一方向从主液体入口至主液体出口流过加湿器,并且促进气体流以基本上相反的第二方向从主气体入口至主气体出口流过加湿器,这可以有利地导致高的热效率。此外,加湿器可以包括至少一个中间加湿器液体出口和/或至少一个中间加湿器液体入口。在某些实施方案中,加湿器还可以包括至少一个中间加湿器气体出口和/或至少一个中间加湿器气体入口。
在某些实施方案中,加湿器包括多个级(例如,加湿器为多级加湿器)。在一些实施方案中,多个级包括第一级、最后一级、和位于第一级与最后一级之间的一个或更多个中间级。如本文中所使用的,加湿器第一级是指通过主液体入口进入加湿器的液体流遇到的加湿器的第一级。因此,加湿器第一级通常为加湿器的位于最接近主加湿器液体入口的级。在一些实施方案中,加湿器第一级包括主加湿器液体入口或者流体连接(例如,直接流体连接)至主加湿器液体入口(例如,主加湿器液体入口为加湿器第一级的液体入口)。如本文中所使用的,加湿器最后一级是指流过加湿器的液体流遇到的加湿器的最后一级。因此,加湿器最后一级通常为加湿器的位于最接近主加湿器液体出口的级。在一些实施方案中,加湿器最后一级包括主加湿器液体出口或者流体连接(例如,直接流体连接)至主加湿器液体出口(例如,主加湿器液体出口为加湿器最后一级的液体出口)。在一些实施方案中,除了流体连接至加湿器最后一级的主加湿器液体出口之外,加湿器还可以包括中间加湿器液体出口。如本文中所使用的,中间加湿器液体出口是指加湿器的第一级的液体出口或者加湿器的多个级的一个或更多个中间级中的一者的液体出口。在加湿器中,多个级可以垂直布置(例如,第一级可以位于最后一级的上方)或水平布置(例如,第一级可以位于最后一级的左侧或右侧)。
加湿器可以具有任何数目的级。在一些实施方案中,加湿器具有至少1个、至少2个、至少3个、至少4个、至少5个、至少6个、至少7个、至少8个、至少9个、或者至少10个或更多个级。在一些实施方案中,加湿器具有1至10个级、2至10个级、3至10个级、4至10个级、5至10个级、6至10个级、7至10个级、8至10个级或9至10个级。在一些实施方案中,级被布置成使得它们基本上彼此平行。在某些情况下,级以一定角度设置。
在一些实施方案中,加湿器还包括位于主加湿器气体入口与多个级之间的气体分布室。在某些实施方案(例如其中加湿器包括多个垂直布置的级的那些实施方案)中,气体分布室位于加湿器的底部部分或者位于靠近加湿器的底部部分。在一些实施方案中,气体分布室包括主加湿器气体入口或者流体连接(例如,直接流体连接)至主加湿器气体入口。气体分布室可以具有足够的体积以允许气体流(例如,包含不凝气体的气体流)基本上均匀地扩散在加湿器的截面上。
在一些情况下,气体分布室还包括液体层(例如,液体贮槽容积(liquid sumpvolume))。例如,液体(例如,包含液相可冷凝流体和溶解盐)可以在离开加湿器的最后一级之后收集在液体贮槽容积中。在一些情况下,液体贮槽容积包括加湿器的主加湿器液体出口或者流体连接(例如,直接流体连接)至加湿器的主加湿器液体出口。在某些实施方案中,液体贮槽容积与将液体泵送出加湿器的泵流体连通。例如,液体贮槽容积可以为泵的吸入提供正抽吸压力,并且可以有利地防止可能引起有害的空化气泡的负(例如,真空)抽吸压力。在一些情况下,液体贮槽容积可以有利地降低加湿器对流量、盐度、温度和/或传热速率的变化的敏感性。
根据一些实施方案,加湿器被配置成促进液体流与气体流之间的直接接触。在一些实施方案中,加湿器为鼓泡塔加湿器。如上所述,鼓泡塔加湿器与其他类型的加湿器相比可以具有某些优点,例如提高的热效率。在一些实施方案中,鼓泡塔加湿器的至少一个级包括气泡发生器。在某些实施方案中,气泡发生器可以充当至少一个级的气体入口。在操作中,鼓泡塔加湿器的至少一个级还可以包括包含一定量的液相可冷凝流体和溶解盐的液体层(例如,经加热的第一液体流的至少一部分)。
在一些实施方案中,所述至少一个级还可以包括位于邻近液体层(例如,在液体层上方)的蒸气分布区域。蒸气分布区域是指级内的整个分布有蒸气的空间(例如,级的未被液体层占据的部分)。在某些情况下,蒸气分布区域可以通过使气体重新均匀地分布在加湿器的截面上而有利地减轻由随机鼓泡产生的流动变化。此外,在蒸气分布区域的自由空间中,气体中夹带的大液滴在气体进入后续级之前可以具有一些空间以落回到液体层中。在一些实施方案中,蒸气分布区域位于两个连续级的两个液体层之间。蒸气分布区域可以用于将两个连续级分开,从而通过保持各级的液体层分开来提高加湿器的热力学效率。在一些实施方案中,鼓泡塔加湿器的多个级中的每个级包括气泡发生器、液体层和位于邻近液体层的蒸气分布区域。
在一些实施方案中,加湿器气体入口流(例如,包含不凝气体的气体流)通过主加湿器气体入口进入鼓泡塔加湿器,加湿器液体入口流(例如,经加热的第一液体流)通过主加湿器液体入口进入鼓泡塔加湿器。加湿器气体入口流可以流过加湿器的至少一个级的气泡发生器,从而形成多个气泡。在一些情况下,气泡流过加湿器的至少一个级的液体层。当气泡直接接触温度可以高于气泡的液体层时,热和/或物质(例如,可冷凝流体)可以通过蒸发(例如,加湿)过程从液体层传递至气泡,从而形成经加热的经至少部分加湿的加湿器气体出口流(例如,含蒸气的加湿器气体出口流)和溶解盐浓度高于加湿器液体入口流的加湿器液体出口流(例如,经冷却浓缩的液体流)。在某些实施方案中,可冷凝流体为水,并且加湿器气体出口流相对于从主加湿器气体入口接收的加湿器气体入口流而富含水蒸气。在一些实施方案中,经加热的经至少部分加湿的气体的气泡离开液体层并在蒸气分布区域中重新合并,并且经加热的经至少部分加湿的气体基本上均匀地分布在整个蒸气分布区域中。含蒸气的加湿器气体出口流可以通过主加湿器气体出口离开鼓泡塔加湿器,并且加湿器液体出口流可以通过主加湿器液体出口离开鼓泡塔加湿器。
在一些实施方案中,鼓泡塔加湿器包括多个级,并且所述多个级中的一个或更多个级包括包含一定量的液相可冷凝流体和溶解盐的液体层(例如,经加热的第一液体流的至少一部分)。在涉及多级鼓泡塔加湿器的一些实施方案中,第一级(例如,垂直布置的加湿器中的最上级)的液体层的温度可以高于第二级(例如,位于垂直布置的加湿器中的第一级下方的级)的液体层的温度,所述第二级的液体层的温度可以高于第三级(例如,位于垂直布置的加湿器中的第二级下方的级)的液体层的温度。在一些实施方案中,多级鼓泡塔加湿器中的每个级在低于前一级(例如,在包括垂直布置的加湿器的实施方案中,在其上方的级)的温度的温度下操作。
在一些情况下,鼓泡塔加湿器内多个级的存在可以有利地导致气体流的加湿增加。例如,多个级的存在可以提供气体可以被加湿的许多位置。也就是说,气体可以行进穿过其中至少一部分气体经受蒸发(例如,加湿)的多于一个的液体层。此外,鼓泡塔加湿器内多个级的存在可以有利地实现流体流动的更大的灵活性(例如,从加湿器中间级提取和/或注入液体流和/或气体流)。
应注意,本文描述的本发明的系统和方法不限于包括鼓泡塔加湿器的那些,并且在一些实施方案中可以使用其他类型的加湿器。例如,在某些实施方案中,加湿器为填充床加湿器。在某些情况下,加湿器包含填充材料(例如,聚氯乙烯(PVC)填充材料)。在一些情况下,填充材料可以促进湍流气体流和/或加湿器内包含液相可冷凝流体和至少一种溶解盐的液体流与气体流之间的直接接触的提高。在某些实施方案中,加湿器还包括配置成产生液体流的液滴的装置。例如,加湿器的顶部可以设置有喷嘴或其他喷淋装置,使得将液体流向下喷淋至加湿器的底部。喷淋装置的使用可以有利地增加供给至加湿器的液体流与向其中输送来自液体流的水的气体流之间的接触程度。
在一些实施方案中,加湿器(例如,鼓泡塔加湿器)被配置成具有相对高的蒸发速率。在某些情况下,例如,加湿器的蒸发速率为至少约500桶/天、至少约600桶/天、至少约700桶/天、至少约800桶/天、至少约900桶/天、至少约1,000桶/天、至少约1,100桶/天、至少约1,200桶/天、至少约1,300桶/天、至少约1,400桶/天、至少约1,500桶/每天、至少约2,000桶/天、至少约3,000桶/天、至少约4,000桶/天、或至少约5,000桶/天。在一些实施方案中,加湿器的蒸发速率为约500桶/天至约5,000桶/天、约600桶/天至约5,000桶/天、约700桶/天至约5,000桶/天、约800桶/天至约5,000桶/天、约900桶/天至约5,000桶/天、约1,000桶/天至约5,000桶/天、约1,100桶/天至约5,000桶/天、约1,200桶/天至约5,000桶/天、约1,300桶/天至约5,000桶/天、约1,400桶/天至约5,000桶/天、约1,500桶/天至约5,000桶/天、约2,000桶/天至约5,000桶/天、约3,000桶/天至约5,000桶/天、或约4,000桶/天至约5,000桶/天。加湿器的蒸发速率可以通过测量一时间段(例如,一天)内加湿器的总液体输出体积(例如,全部加湿器液体出口流的体积)并减去同一时间段内加湿器的输入体积(例如,全部加湿器液体入口流(例如经加热的第一液体流)的体积)来获得。
根据一些实施方案,加湿器液体出口流具有相对高的溶解盐浓度。在某些实施方案中,加湿器液体出口流中的溶解盐(例如,NaCl)的浓度为至少约1,000mg/L、至少约5,000mg/L、至少约10,000mg/L、至少约50,000mg/L、至少约100,000mg/L、至少约150,000mg/L、至少约200,000mg/L、至少约250,000mg/L、至少约300,000mg/L、至少约350,000mg/L、至少约400,000mg/L、至少约450,000mg/L、或至少约500,000mg/L(和/或,在某些实施方案中,高至溶解盐在液体流中的溶解度极限)。在一些实施方案中,加湿器液体出口流中的溶解盐的浓度在以下范围内:约1,000mg/L至约10,000mg/L、约1,000mg/L至约50,000mg/L、约1,000mg/L至约100,000mg/L、约1,000mg/L至约150,000mg/L、约1,000mg/L至约200,000mg/L、约1,000mg/L至约250,000mg/L、约1,000mg/L至约300,000mg/L、约1,000mg/L至约350,000mg/L、约1,000mg/L至约400,000mg/L、约1,000mg/L至约450,000mg/L、约1,000mg/L至约500,000mg/L、约10,000mg/L至约50,000mg/L、约10,000mg/L至约100,000mg/L、约10,000mg/L至约150,000mg/L、约10,000mg/L至约200,000mg/L、约10,000mg/L至约250,000mg/L、约10,000mg/L至约300,000mg/L、约10,000mg/L至约350,000mg/L、约10,000mg/L至约400,000mg/L、约10,000mg/L至约450,000mg/L、约10,000mg/L至约500,000mg/L、约50,000mg/L至100,000mg/L、约50,000mg/L至约150,000mg/L、约50,000mg/L至约200,000mg/L、约50,000mg/L至约250,000mg/L、约50,000mg/L至约300,000mg/L、约50,000mg/L至约350,000mg/L、约50,000mg/L至约400,000mg/L、约50,000mg/L至约450,000mg/L、约50,000mg/L至约500,000mg/L、约100,000mg/L至约150,000mg/L、约100,000mg/L至约200,000mg/L、约100,000mg/L至约250,000mg/L、约100,000mg/L至约300,000mg/L、约100,000mg/L至约350,000mg/L、约100,000mg/L至约400,000mg/L、约100,000mg/L至约450,000mg/L、或约100,000mg/L至约500,000mg/L。
在一些实施方案中,加湿器液体出口流包含以下量的溶解盐:至少约1重量%、至少约5重量%、至少约10重量%、至少约15重量%、至少约20重量%、至少约25重量%、至少约26重量%、至少约27重量%、至少约28重量%、至少约29重量%、或至少约30重量%(和/或,在某些实施方案中,高至溶解盐在加湿器液体出口流中的溶解度极限。在一些实施方案中,加湿器液体出口流包含以下范围内的量的溶解盐:约1重量%至约30重量%、约5重量%至约30重量%、约10重量%至约30重量%、约15重量%至约30重量%、约20重量%至约30重量%、约25重量%至约30重量%、约26重量%至约30重量%、约27重量%至约30重量%、约28重量%至约30重量%、或约29重量%至约30重量%。
在一些实施方案中,加湿器液体出口流中的溶解盐的浓度显著大于加湿器液体入口流(例如,经加热的第一液体流)中的溶解盐的浓度。在一些情况下,加湿器液体出口流中的溶解盐的浓度比加湿器液体入口流中的溶解盐的浓度大至少约0.5%、约1%、约2%、约5%、约10%、约15%或约20%。
在一些实施方案中,该系统还包括流体连接至加湿器的减湿器(例如,鼓泡塔冷凝器)。图2示出了包括减湿器的示例性系统。如图2所示,系统200包括加湿器202、加热装置204和减湿器240。加湿器202包括多个级,所述多个级包括第一级202A、最后一级202E、和位于第一级202A与最后一级202E之间的中间级202B至202D。减湿器240包括多个级,所述多个级包括第一级240A、最后一级240E、和位于第一级240A与最后一级240E之间的中间级240B至240D。加湿器202的主加湿器气体出口234可以流体连接至减湿器240的主减湿器气体入口258。任选地,加湿器202的中间气体出口236可以流体连接至减湿器240的中间减湿器气体入口254。例如,图2示出了加湿器中间级202C流体连接至减湿器中间级240C。然而,应注意,如果加湿器202包括中间气体出口,则加湿器202的中间气体出口可以为加湿器202的任何中间级的气体出口(例如,中间级202B至202D中的任一者),如果减湿器240包括中间气体入口,则减湿器240的中间气体入口可以为减湿器240的任何中间级的气体入口(例如,中间级240B至240D中的任一者)。此外,减湿器240的主减湿器气体出口260可以任选地流体连接至加湿器202的主加湿器气体入口232(流体连接未在图2中示出)。加热装置204的第一液体入口222可以流体连接至加湿器202的中间加湿器液体出口228和/或加湿器202的主加湿器液体出口230。加热装置204的第一液体出口224可以流体连接至加湿器202的主加湿器液体入口226。
在操作中,加湿器202和加热装置204可以类似于结合图1描述的加湿器102和加热装置104来操作。此外,含蒸气的加湿器气体出口流214可以被引导以流动至减湿器240,并且可以通过流体连接至减湿器最后一级240E的主减湿器气体入口258进入减湿器240。在某些实施方案中,经部分加湿的气体流238还可以被引导以从流体连接至加湿器中间级(例如,加湿器中间级202C)的中间加湿器气体出口236流动至与减湿器中间级(例如,减湿器中间级240C)流体连接的中间减湿器气体入口254。包含一定量的液相可冷凝流体的可冷凝液体流244可以通过流体连接至减湿器第一级240A的主减湿器液体入口252进入减湿器240。可冷凝液体流244可以以第一方向从第一级240A至最后一级240E流过减湿器240,并且含蒸气的加湿器气体出口流214可以以第二方向从最后一级240E至第一级240A通过减湿器240而流过减湿器240。在减湿器240内,热和物质可以从含蒸气的加湿器气体出口流214传递至可冷凝液体流244(例如,通过冷凝过程),从而产生经冷却的经至少部分减湿的气体流和一定量的经加热的可冷凝液体(其添加至可冷凝液体流244中)。可冷凝液体流244可以通过主减湿器液体出口256作为减湿器液体出口流246离开减湿器240。在一些情况下,减湿器液体出口流246的至少一部分248从系统200中排出。在一些情况下,减湿器液体出口流246的至少一部分244通过主减湿器液体入口252返回至减湿器240。经冷却的经至少部分减湿的气体流可以通过主减湿器气体出口260作为减湿器气体出口流250离开减湿器240。在一些情况下,减湿器气体出口流250的至少一部分可以从系统200中排出(例如,作为废物排放通过排放进入大气中)。在一些情况下,减湿器气体出口流250的至少一部分被引导以流动至加湿器202的主气体入口232(流体连接未在图2中示出)。
减湿器可以为本领域中已知的任何类型的减湿器。在一些实施方案中,减湿器被配置成接收含蒸气的加湿器气体出口流(例如,经加热的经至少部分加湿的气体流)作为减湿器气体入口流。减湿器还可以被配置成接收可冷凝液体流(例如,包含液相可冷凝流体的液体流)作为减湿器液体入口流。在一些实施方案中,减湿器液体入口流包含水。在某些情况下,减湿器液体入口流包含基本上纯的水(例如,溶解盐浓度相对低的水)。
在减湿器中,减湿器气体入口流(例如,含蒸气的加湿器气体出口流)可以与减湿器液体入口流(例如,可冷凝液体流)接触(例如,直接或间接接触)。减湿器气体入口流的温度可以高于减湿器液体入口流,并且在减湿器气体入口流与减湿器液体入口流接触时,热和/或物质可以从减湿器气体入口流传递至减湿器液体入口流。在某些实施方案中,减湿器气体入口流包含气相可冷凝流体和不凝气体,并且至少一部分可冷凝流体通过冷凝(例如,减湿)过程从减湿器气体入口流传递至减湿器液体入口流,从而产生包含液相可冷凝流体和经至少部分减湿的减湿器气体出口流的减湿器液体出口流。在某些情况下,可冷凝流体为水,并且减湿器气体出口流相对于减湿器气体入口流(例如,含蒸气的加湿器气体出口流)贫含水蒸气。在一些实施方案中,减湿器液体出口流包含基本上纯的水。在某些情况下,减湿器液体出口流包含至少约95重量%、至少约99重量%、至少约99.9重量%、或至少约99.99重量%(和/或,在某些实施方案中,高至约99.999重量%、或更多)的量的水。
在一些实施方案中,减湿器被配置成使得主液体入口位于减湿器的第一端(例如,顶端),并且主气体入口位于减湿器的第二相对端(例如,底端)。减湿器还可以包括在减湿器的第二端处的主液体出口和在减湿器的第一端处的主气体出口。这样的配置可以促进液体流(例如,减湿器液体入口流)以第一方向从主液体入口至主液体出口流过减湿器并且促进气体流(例如,含蒸气的加湿器气体出口流)以基本上相反的第二方向从主气体入口至主气体出口流过减湿器,这可以有利地导致高的热效率。此外,减湿器可以包括至少一个中间减湿器液体出口和/或至少一个中间减湿器液体入口。在某些实施方案中,减湿器还可以包括至少一个中间减湿器气体出口和/或至少一个中间减湿器气体入口。
在某些实施方案中,减湿器包括多个级(例如,减湿器为多级减湿器)。在一些实施方案中,多个级包括第一级、最后一级、和位于第一级与最后一级之间的一个或更多个中间级。如本文中所使用的,减湿器第一级是指通过主液体入口进入减湿器的液体流遇到的减湿器的第一级。因此,减湿器第一级通常是减湿器的位于最接近主减湿器液体入口的级。在一些实施方案中,减湿器第一级流体连接(例如,直接流体连接)至主减湿器液体入口(例如,主减湿器液体入口为减湿器第一级的液体入口)。如本文中所使用的,减湿器最后一级是指流过减湿器的液体流遇到的减湿器的最后一级。因此,减湿器最后一级通常是减湿器的位于最接近主减湿器液体出口的级。在一些实施方案中,减湿器最后一级流体连接(例如,直接流体连接)至主减湿器液体出口(例如,主减湿器液体出口为减湿器最后一级的液体出口)。在一些实施方案中,除了流体连接至加湿器最后一级的主减湿器液体出口之外,减湿器还可以包括中间减湿器液体出口。如本文中所使用的,中间减湿器液体出口是指减湿器的第一级的液体出口或减湿器的多个级的一个或更多个中间级中的一者的液体出口。在减湿器中,多个级可以垂直布置(例如,第一级可以位于最后一级上方)或水平布置(例如,第一级可以位于最后一级的左侧或右侧)。
减湿器可以具有任何数目的级。在一些实施方案中,减湿器具有至少1个、至少2个、至少3个、至少4个、至少5个、至少6个、至少7个、至少8个、至少9个、或至少10个或更多个级。在一些实施方案中,减湿器具有1至10个级、2至10个级、3至10个级、4至10个级、5至10个级、6至10个级、7至10个级、8至10个级或9至10个级。在一些实施方案中,级被布置成使得它们基本上彼此平行。在某些情况下,级以一定角度设置。
在一些实施方案中,减湿器还包括位于主减湿器气体入口与多个级之间的气体分布室。在某些实施方案(例如其中减湿器包括多个垂直布置的级的那些实施方案)中,气体分布室位于减湿器的底部部分或者位于靠近减湿器的底部部分。在一些实施方案中,气体分布室流体连接(例如,直接流体连接)至主减湿器气体入口。气体分布室可以具有足够的体积以允许气体流(例如,含蒸气的加湿器气体出口流)基本上均匀地扩散在减湿器的截面上。
在一些情况下,气体分布室还包括液体层(例如,液体贮槽容积)。例如,液体(例如,包含液相可冷凝流体)可以在离开减湿器的最后一级之后收集在液体贮槽容积中。在一些情况下,液体贮槽容积流体连接(例如,直接流体连接)至减湿器的主减湿器液体出口。在某些实施方案中,液体贮槽容积与将液体泵送出减湿器的泵流体连通。例如,液体贮槽容积可以为泵的吸入提供正抽吸压力,并且可以有利地防止可能引起有害的空化气泡的负(例如,真空)抽吸压力。在一些情况下,液体贮槽容积可以有利地降低减湿器对流量、盐度、温度和/或传热速率的变化的敏感性。
根据一些实施方案,减湿器被配置成促进液体流与气体流之间的直接接触。在一些实施方案中,减湿器为鼓泡塔冷凝器。如上所述,鼓泡塔冷凝器与其他类型的减湿器相比可以具有某些优点,例如提高的热效率。在一些实施方案中,鼓泡塔冷凝器的至少一个级包括气泡发生器。在某些实施方案中,气泡发生器可以充当至少一个级的气体入口。在操作中,鼓泡塔冷凝器的至少一个级还可以包括包含一定量的液相可冷凝流体(例如,可冷凝液体流的至少一部分)的液体层。
在一些实施方案中,所述至少一个级还可以包括位于邻近液体层(例如,在液体层上方)的蒸气分布区域。蒸气分布区域是指级内的整个分布有蒸气的空间(例如,级的未被液体层占据的部分)。在某些情况下,蒸气分布区域可以通过使气体重新均匀地分布在减湿器的截面上而有利地减轻由随机鼓泡产生的流动变化。此外,在蒸气分布区域的自由空间中,气体中夹带的大液滴在气体进入后续级之前可以具有一些空间以落回到液体层中。在一些实施方案中,蒸气分布区域位于两个连续级的两个液体层之间。蒸气分布区域可以用于将两个连续级分开,从而通过保持各级的液体层分开来提高鼓泡塔冷凝器的热力学效率。在一些实施方案中,鼓泡塔冷凝器的多个级中的每个级包括气泡发生器、液体层和位于邻近液体层的蒸气分布区域。
在一些实施方案中,鼓泡塔冷凝器被配置成通过主减湿器气体入口接收含蒸气的加湿器气体出口流(例如,包含经加热的经至少部分加湿的气体)作为减湿器气体入口流。减湿器气体入口流可以流过冷凝器的至少一个级的气泡发生器,从而形成经加热的经至少部分加湿的气体的多个气泡。在一些情况下,气泡流过冷凝器的至少一个级的液体层。当气泡直接接触温度可以低于气泡的液体层时,热和/或物质(例如,可冷凝流体)可以通过冷凝(例如,减湿)过程从气泡传递至液体层,从而形成经冷却的经至少部分减湿的减湿器气体出口流和包含液相可冷凝流体的减湿器液体出口流。在某些实施方案中,可冷凝流体为水,并且减湿器气体出口流相对于从主减湿器气体入口接收的减湿器气体入口流而贫含水蒸气。在一些实施方案中,经冷却的经至少部分减湿的气体的气泡离开液体层并且在蒸气分布区域中重新合并,并且经冷却的经至少部分减湿的气体基本上均匀地分布在整个蒸气分布区域中。减湿器气体出口流可以通过主减湿器气体出口离开鼓泡塔冷凝器,并且减湿器液体出口流可以通过主减湿器液体出口离开鼓泡塔冷凝器。
在一些实施方案中,鼓泡塔冷凝器包括多个级,并且所述多个级中的一个或更多个级包括包含一定量的液相可冷凝流体的液体层。在涉及多级减湿器的一些实施方案中,第一级(例如,垂直布置的减湿器中的最上级)的液体层的温度可以低于第二级(例如,位于垂直布置的减湿器中的第一级下方的级)的液体层的温度,所述第二级的液体层的温度可以低于第三级(例如,位于垂直布置的减湿器中的第二级下方的级)的液体层的温度。在一些实施方案中,多级减湿器中的每个级在高于前一级(例如,在包括垂直布置的减湿器的实施方案中,在其上方的级)的温度的温度下操作。
在一些情况下,鼓泡塔冷凝器内多个级的存在可以有利地导致气体流的减湿增加。在一些情况下,多个级的存在可以有利地导致液相可冷凝流体的回收率更高。例如,多个级的存在可以提供其中气体可以被减湿(例如,被处理以回收可冷凝液体)的许多位置。也就是说,气体可以行进穿过其中至少一部分气体经受减湿(例如,冷凝)的多于一个的液体层。此外,多个级的存在可以增加液体流在减湿器的入口和出口处之间的温度差。例如,多个级的使用可以产生相对于减湿器液体入口流具有升高温度的减湿器液体出口流。这在将来自液体流(例如,减湿器液体出口流)的热传递至系统内的单独的流(例如,减湿器液体入口流)的系统中可以是有利的。在这样的情况下,产生经加热的减湿器液体出口流的能力可以提高系统的能量效率。此外,多个级的存在可以实现系统内流体流动的更大的灵活性(例如,从减湿器中间级提取和/或注入液体流和/或气体流)。
应注意,本文描述的本发明的系统和方法不限于包括鼓泡塔冷凝器的那些,并且在一些实施方案中可以使用其他类型的减湿器。例如,减湿器可以为表面冷凝器、喷淋塔或填充床塔。在某些情况下,减湿器可以包括与包含气相可冷凝流体的气体流接触的表面(例如,金属表面)。
在一些实施方案中,减湿器(例如,鼓泡塔冷凝器)被配置成具有相对高的冷凝速率。在某些情况下,例如,减湿器的冷凝速率为至少约500桶/天、至少约600桶/天、至少约700桶/天、至少约800桶/天、至少约900桶/天、至少约1,000桶/天、至少约1,100桶/天、至少约1,200桶/天、至少约1,300桶/天、至少约1,400桶/天、至少约1,500桶/每天、至少约2,000桶/天、至少约3,000桶/天、至少约4,000桶/天、或至少约5,000桶/天。在一些实施方案中,减湿器的冷凝速率为约500桶/天至约5,000桶/天、约600桶/天至约5,000桶/天、约700桶/天至约5,000桶/天、约800桶/天至约5,000桶/天、约900桶/天至约5,000桶/天、约1,000桶/天至约5,000桶/天、约1,100桶/天至约5,000桶/天、约1,200桶/天至约5,000桶/天、约1,300桶/天至约5,000桶/天、约1,400桶/天至约5,000桶/天、约1,500桶/天至约5,000桶/天、约2,000桶/天至约5,000桶/天、约3,000桶/天至约5,000桶/天、或约4,000桶/天至约5,000桶/天。减湿器的冷凝速率可以通过测量一时间段(例如,一天)内减湿器的总液体输出体积(例如,全部减湿器液体出口流的体积)并减去同一时间段内减湿器的输入体积(例如,全部减湿器液体入口流的体积)来获得。
根据一些实施方案,减湿器液体出口流具有相对低的溶解盐浓度。在某些实施方案中,减湿器液体出口流中溶解盐的浓度为约500mg/L或更低、约200mg/L或更低、约100mg/L或更低、约50mg/L或更低、约20mg/L或更低、约10mg/L或更低、约5mg/L或更低、约2mg/L或更低、约1mg/L或更低、约0.5mg/L或更低、约0.2mg/L或更低、约0.1mg/L或更低、约0.05mg/L或更低、约0.02mg/L或更低、或约0.01mg/L或更低。在一些情况下,减湿器液体出口流中溶解盐的浓度基本上为零(例如,不可检测)。在某些情况下,减湿器液体出口流中溶解盐的浓度在以下范围内:约0mg/L至约500mg/L、约0mg/L至约200mg/L、约0mg/L至约100mg/L、约0mg/L至约50mg/L、约0mg/L至约20mg/L、约0mg/L至约10mg/L、约0mg/L至约5mg/L、约0mg/L至约2mg/L、约0mg/L至约1mg/L、约0mg/L至约0.5mg/L、约0mg/L至约0.1mg/L、约0mg/L至约0.05mg/L、约0mg/L至约0.02mg/L、或约0mg/L至约0.01mg/L。
在一些实施方案中,减湿器液体出口流包含以下量的溶解盐:约2重量%或更少、约1重量%或更少、约0.5重量%或更少、约0.2重量%或更少、约0.1重量%或更少、约0.05重量%或更少、或者约0.01重量%或更少。在一些实施方案中,减湿器液体出口流包含以下范围内的量的溶解盐:约0.01重量%至约2重量%、约0.01重量%至约1重量%、约0.01重量%至约0.5重量%、约0.01重量%至约0.2重量%、或约0.01重量%至约0.1重量%。
在一些实施方案中,减湿器液体出口流中溶解盐的浓度基本上小于由系统接收的第一液体流中溶解盐的浓度。在一些情况下,减湿器液体出口流中溶解盐的浓度比第一液体流中溶解盐的浓度小至少约0.5%、约1%、约2%、约5%、约10%、约15%或约20%。
在一些实施方案中,该系统(例如,HDH系统)具有相对高的生产率(例如,每单位时间生产的基本上纯的水的量)。在某些情况下,该系统的生产率为至少约500桶/天、至少约600桶/天、至少约700桶/天、至少约800桶/天、至少约900桶/天、至少约1,000桶/天、至少约1,100桶/天、至少约1,200桶/天、至少约1,300桶/天、至少约1,400桶/天、至少约1,500桶/天、至少约2,000桶/天、至少约3,000桶/天、至少约4,000桶/天、或至少约5,000桶/天。在一些实施方案中,该系统的生产率在以下范围内:约500桶/天至约5,000桶/天、约600桶/天至约5,000桶/天、约700桶/天至约5,000桶/天、约800桶/天至约5,000桶/天、约900桶/天至约5,000桶/天、约1,000桶/天至约5,000桶/天、约1,100桶/天至约5,000桶/天、约1,200桶/天至约5,000桶/天、约1,300桶/天至约5,000桶/天、约1,400桶/天至约5,000桶/天、约1,500桶/天至约5,000桶/天、约2,000桶/天至约5,000桶/天、约3,000桶/天至约5,000桶/天、或约4,000桶/天至约5,000桶/天。
在一些实施方案中,该系统还包括第二加热装置,其可以为换热器的形式。在某些情况下,第二加热装置/换热器促进热从离开减湿器的流体流(例如,减湿器液体出口流)传递至进入系统的流体流(例如,第一液体流)和/或再循环通过系统的流体流。例如,第二加热装置/换热器可以有利地允许从减湿器液体出口流中回收能量并将其用于在流入液体流进入加热装置或加湿器之前对流入液体流进行预热。因此,用以从减湿器液体出口流中回收能量的第二加热装置/换热器的存在可以减少施加至流入液体流所需的热量。在一些实施方案中,系统可以被配置成使得经冷却的减湿器液体出口流可以通过主减湿器液体入口返回至减湿器,并且可以再次用作用以形成减湿器的一个或更多个级中的液体层的液体。
图3A为包括第二换热器362的示例性系统的示意图。在图3A中,系统300包括加湿器302、第一加热装置/换热器304、减湿器340和第二换热器362。此外,系统300包括任选的第一罐364和任选的第二罐366。加湿器302包括多个级302A至级302E,减湿器340包括多个级340A至340E。
在一些情况下,气体流的流动路径包括加湿器302和减湿器340。加湿器302的主加湿器气体出口334流体连接至减湿器340的主减湿器气体入口358。此外,减湿器340的主减湿器气体出口360任选地流体连接至加湿器302的主加湿器气体入口332。
在一些情况下,包含液相可冷凝流体和溶解盐的液体流的主流动路径包括第二换热器362、第一加热装置/换热器304、加湿器302和任选的第二罐366。第二换热器362的第一液体入口368流体连接至包含液相可冷凝流体和溶解盐的第一液体流306的源。第二换热器362的第一液体出口370流体连接至第一加热装置/换热器304的第一液体入口322。第一加热装置/换热器304的第一液体出口324流体连接至加湿器302的主加湿器液体入口326。加湿器302的主加湿器液体出口330流体连接至任选的第二罐366,第二罐366还流体连接至第二换热器362的第一液体入口368。
在一些情况下,包含液相可冷凝流体和溶解盐的再循环液体流的流体回路包括第一加热装置/换热器304、加湿器302和任选的第一罐364。第一加热装置/换热器304的第一液体出口324流体连接至加湿器302的主加湿器液体入口326。加湿器302的中间加湿器液体出口328流体连接至任选的第一罐364,第一罐364流体连接至加热装置304的第一液体入口322。
在一些情况下,包含液相可冷凝流体的液体流的主流动路径包括减湿器340和第二换热器362。主减湿器液体出口356流体连接至第二换热器362的第二液体入口374(例如,第二流体路径的液体入口)。第二换热器362的第二液体出口372流体连接至减湿器340的主减湿器液体入口352。
在操作中,第一液体流306可以进入第二换热器362。热可以从减湿器液体出口流346传递至第一液体流306以形成经预热的第一液体流376。经预热的第一液体流376可以离开换热器362并且与一个或更多个另外的液体流(例如,离开中间加湿器液体出口328的提取液体流310)的至少一部分合并以形成合并流378。在一些实施方案中,提取液体流310的温度与经预热的第一液体流376的温度之差可以相对小(例如,约10℃或更低)。然后,合并流378可以通过第一液体入口322进入第一加热装置/换热器304。在第一加热装置/换热器304内,合并流378可以被加热而形成经加热的合并流308。经加热的合并流308可以通过主加湿器液体入口326进入加湿器302的第一级302A。
气体流312可以通过流体连接至加湿器302的最后一级302E的主加湿器气体入口332进入加湿器302。当气体流312从最后一级302E至第一级302A流过加湿器302时,经加热的合并流308可以同时从第一级302A至最后一级302E流过加湿器302。
在加湿器302的第一级302A中,热和物质可以从经加热的合并流308传递至气体流312(例如,通过蒸发过程),从而形成经冷却浓缩的液体流和经加热的经至少部分加湿的气体流。在一些情况下,经加热的经至少部分加湿的气体流可以通过主加湿器气体出口334作为含蒸气的加湿器气体出口流314离开加湿器302。在一些情况下,至少一部分经冷却浓缩的液体流通过中间加湿器液体出口328作为提取液体流310离开加湿器302。如图3A所示,提取液体流310可以被引导以流动至任选的第一罐364。然后,从任选的第一罐364,至少一部分提取液体流310可以与经预热的第一液体流376合并而形成合并流378,合并流378可以被引导以流动至第一加热装置/换热器304的第一液体入口322。合并流378可以在第一加热装置/换热器304内被加热以产生经加热的合并流308,经加热的合并流308可以被引导以通过主加湿器气体入口326进入加湿器302。
液体流可以再循环通过由第一加热装置/换热器304的第一液体入口322、第一加热装置/换热器304的第一液体出口324、加湿器302的主加湿器液体入口326、加湿器302的中间加湿器液体出口328和任选的第一罐364形成的流体回路。在一些情况下,任选的第一罐364可以为流体回路提供热缓冲、物质缓冲和浓缩缓冲的体积。在一些实施方案中,可以例如通过调节(例如,增加或减少)整个流体回路中多个点处的提取流量和/或注入流量来添加或除去一定量的液体(例如,以控制再循环通过流体回路的液体流的盐度)。在一些情况下,流体回路中的液体替换可以是基本上连续的、不连续的(例如,分批)、或半不连续的(例如,半分批)。
经冷却浓缩的液体流的未通过中间加湿器液体出口328作为提取液体流310离开加湿器302的剩余部分可以流过加湿器302的剩余部分,并且被进一步冷却和浓缩,同时气体流312被相应地进一步加热和加湿。经冷却浓缩的液体流可以作为加湿器液体出口流316离开加湿器302。
在一些情况下,加湿器液体出口流316的至少一部分318可以从系统300中排出。可以排出加湿器液体出口流316的一部分318以便例如保持稳态系统盐度。在一些情况下,加湿器液体出口流316的全部可以从系统300中排出。在某些情况下,加湿器液体出口流316的任何剩余部分可以流动至任选的第二罐366。在一些情况下,系统300中任选的第二罐366的存在可以减少常规操作期间由提供另外的系统体积引起的盐度波动和温度波动。在一些情况下,包含液相可冷凝流体和溶解盐的另外的流入流382可以进入任选的第二罐366(例如,作为补充流)。在一些情况下,包含加湿器液体出口流316的剩余部分和/或另外流入流382的一部分的流320可以被引导以从任选的第二罐366流动至第二换热器362的第一液体入口368。
在流过加湿器302之后,经加热加湿的气体流可以通过主加湿器气体出口334作为含蒸气的加湿器气体出口流314离开加湿器302。流314可以被引导以流动至减湿器340的主减湿器气体入口358。流314可以以从最后一级340E至第一级340A的方向流过减湿器340,并且可冷凝液体流344可以同时以从第一级340A至最后一级340E的方向流过减湿器340。随着流314和流344流过减湿器340,热和物质可以从含蒸气的加湿器气体出口流314传递至可冷凝液体流344(例如,通过冷凝过程),从而形成经冷却的经至少部分减湿的气体流。此外,随着从含蒸气的加湿器气体出口流314中冷凝出可冷凝流体,一定量的经加热的可冷凝液体可以添加至可冷凝液体流344中。
经冷却的经至少部分减湿的气体流可以通过主减湿器气体出口360作为减湿器气体出口流350离开减湿器340。在一些实施方案中,减湿器气体出口流350的至少一部分从系统300中排出(例如,作为废热排放而排放到环境中)。在一些实施方案中,减湿器气体出口流350的至少一部分被引导以流动至加湿器302的主加湿器气体入口332。
经加热的可冷凝液体流可以作为减湿器液体出口流346离开减湿器340。如图3A所示,减湿器液体出口流346可以被引导以流动至第二换热器362。在第二换热器362中,第一液体流306可以流过第一流体路径,减湿器液体出口流346可以流过第二流体路径,并且热可以从减湿器液体出口流346传递至第一液体流306。在流过换热器362的第二流体路径之后,经冷却的减湿器液体出口流可以作为冷却流380离开第二换热器362。在一些实施方案中,冷却流380的至少一部分348从系统300中排出。在一些实施方案中,冷却流380的至少一部分作为可冷凝液体流344返回至减湿器340。
在图3A所示的系统中,再循环液体流的流体回路(图3A中的第一加热装置/换热器304、加湿器302的主加湿器液体入口326与中间加湿器液体出口328之间的部分、和任选的第一罐364)与包含液相可冷凝流体和溶解盐的液体流的加湿器主流动路径(从加湿器第一级302A至加湿器最后一级302E的加湿器302、任选的第二罐366、第二换热器362、和第一加热装置/换热器304)之间存在一些重叠。特别地,再循环液体流流体回路和加湿器主流动路径二者包括第一加热装置/换热器304的第一液体入口322、第一加热装置/换热器304的第一液体出口324、和加湿器302的主加湿器液体入口326。然而,在一些实施方案中,再循环液体流流体回路和加湿器主流动路径至少部分分开/隔离(例如,使得加湿器液体出口流316不通过再循环液体流流体回路的全部或任何部分而再循环-参见图3B)。在某些情况下,使再循环液体流流体回路和加湿器主流动路径至少部分分开可以有利地促进温度和/或流动控制。图3B为其中流体回路和主流动路径分开的示例性系统的示意图。
图3B中的系统300包括与图3A中相同的部件(例如,加湿器302、减湿器340、第一加热装置/换热器304、第二换热器362)。然而,在图3B的系统300中,第二换热器362的第一液体出口370流体连接至加湿器302的级302B的中间加湿器液体入口382,而不是第一加热装置/换热器304的第一液体入口322。中间加湿器液体入口382可以为加湿器302的一个或更多个中间级中的任一者或更多者的任何液体入口。如图3B所示,液体流再循环通过的流体回路包括第一加热装置/换热器304的第一液体入口322、第一加热装置/换热器304的第一液体出口324、加湿器302的主加湿器液体入口326、加湿器302的中间加湿器液体出口328和任选的第一罐364。相比之下,加湿器主流动路径包括第二换热器362的第一液体入口368、第二换热器362的第一液体出口370、加湿器302的中间加湿器液体入口382、加湿器302的主加湿器液体出口330和任选的第二罐366。
在操作中,第一液体流306可以通过第一液体入口368进入第二换热器362。当第一液体流306流过第二换热器362的第一流体路径时,减湿器液体出口流346可以流过第二换热器362的第二流体路径,并且热可以从减湿器液体出口流346传递至第一液体流306而形成经预热的第一液体流376。然后,经预热的第一液体流376可以被引导以流动至加湿器302的中间液体入口382(例如,加湿器中间级302B或302C的液体入口)。在通过中间液体入口382进入加湿器302之后,经预热的第一液体流376可以如先前结合图3A所述的流过加湿器302。
单独地,可以将包含液相可冷凝流体和溶解盐的流入液体流引入第一加热装置/换热器304中,并且可以将流入流加热以产生经加热的流入流308。经加热的流入流308可以通过主加湿器液体入口326进入加湿器302的第一级302A。在第一级302A中,热和物质可以从经加热的流入流308传递至气体流312,从而产生经冷却浓缩的液体流和经加热的经至少部分加湿的气体流。经加热的经至少部分加湿的气体流可以通过主加湿器气体出口334作为含蒸气的加湿器气体出口流314离开加湿器302,含蒸气的加湿器气体出口流314可以被引导以流动至减湿器340的主减湿器气体入口358。至少一部分经冷却浓缩的液体流可以作为提取液体流310离开加湿器302。在一些情况下,提取液体流310可以被引导以流动至任选的第一罐364。从任选的第一罐364,提取液体流310可以返回至第一加热装置/换热器304。
在一些实施方案中,可以将一定量的液体添加到流体回路中或从流体回路中除去。在一些情况下,例如,可以以近似等于加湿器第一级302A中的蒸发速率的平均速率添加另外的液体。在某些情况下,经预热的第一液体流376可以为另外的液体的源。在一些实施方案中,包含液相可冷凝流体和溶解盐的另外的流入流(在图3B中未示出)可以进入任选的第一罐364(例如,作为补充流)。在一些实施方案中,可以将一定量的浓缩液体从流体回路中除去,并用具有更低的溶解盐浓度的液体替换(例如,以便控制再循环液体流的盐度)。在一些情况下,替换可以是连续的、不连续的(例如,分批)、或半不连续的(例如,半分批)。
第二换热器(例如,图3A至3B中的换热器362)可以为本领域中已知的任何类型的换热器。在一些实施方案中,第二换热器包括各自包括入口(例如,液体入口)和出口(例如,液体出口)的第一流体路径和第二流体路径。如本文中所使用的,第二换热器的第一入口和第一出口分别是指第一流体路径的入口和出口,第二换热器的第二入口和第二出口分别是指第二流体路径的入口和出口。在一些实施方案中,第一流体流可以流过第一流体路径,第二流体流可以流过第二流体路径。第一流体流和第二流体流可以直接或间接接触,并且热可以在第一流体流与第二流体流之间传递。在一些实施方案中,第一流体流和第二流体流仅间接接触。
在一些实施方案中,第一流体流以第一方向流过第一流体路径,第二流体流以第二方向流过第二流体路径,所述第二方向与第一方向基本上相反(例如,逆流)、与第一方向基本上相同(例如,平行流)、或与第一方向基本上垂直(例如,交叉流)。在某些情况下,逆流式换热器可以比其他类型的换热器更有效。在一些实施方案中,第二换热器为逆流式换热器。在一些实施方案中,多于两个的流体流可以流过第二换热器。
在一些实施方案中,流过第二换热器的第一流体路径的第一流体流和/或流过第二换热器的第二流体路径的第二流体流为液体流。在某些实施方案中,加热装置为液-液换热器。在一些实施方案中,第一流体流和/或第二流体流在第二换热器内不经受相变(例如,液体到气体)。在某些实施方案中,第一流体流为进入系统的流入液体流(例如,第一液体流),第二流体流为离开减湿器的液体流(例如,减湿器液体出口流)。
合适的换热器的实例包括但不限于板框式换热器、壳管式换热器、套管式换热器、板式换热器、板壳式换热器、螺旋式换热器等。在一个特定实施方案中,换热器为板框式换热器。合适的可商购的换热器的非限制性实例是Plate Concepts Modu-Flex Plate&FrameProduct#MFL041D1PA150-115。
在一些实施方案中,第二换热器可以表现出相对高的传热速率。在一些实施方案中,第二换热器的传热系数可以为至少约150W/(m2K)、至少约200W/(m2K)、至少约500W/(m2K)、至少约1000W/(m2K)、至少约2000W/(m2K)、至少约3000W/(m2K)、至少约4000W/(m2K),或者在一些情况下至少约5000W/(m2K)、至少约6000W/(m2K)、至少约7000W/(m2K)、至少约8000W/(m2K)、至少约9000W/(m2K)、或至少约10,000W/(m2K)。在一些实施方案中,第二换热器的传热系数可以在以下范围内:约150W/(m2K)至约10,000W/(m2K)、约200W/(m2K)至约10,000W/(m2K)、约500W/(m2K)至约10,000W/(m2K)、约1000W/(m2K)至约10,000W/(m2K)、约2000W/(m2K)至约10,000W/(m2K)、约3000W/(m2K)至约10,000W/(m2K)、或约4000W/(m2K)至约10,000W/(m2K)、约5000W/(m2K)至约10,000W/(m2K)、约6000W/(m2K)至约10,000W/(m2K)、约7000W/(m2K)至约10,000W/(m2K)、约8000W/(m2K)至约10,000W/(m2K)、或约9000W/(m2K)至约10,000W/(m2K)。
在一些情况下,第二换热器可以增加流过第二换热器的一个或更多个流体流的温度。例如,进入第二换热器的流体流与离开第二换热器的流体流的温度之差可以为至少约5℃、至少约10℃、至少约15℃、至少约20℃、至少约30℃、至少约40℃、或至少约50℃。在一些实施方案中,进入第二换热器的流体流与离开第二换热器的流体流的温度之差可以在以下范围内:约5℃至约10℃、约5℃至约15℃、约5℃至约20℃、约5℃至约30℃、约5℃至约40℃、约5℃至约50℃、约10℃至约20℃、约10℃至约30℃、约10℃至约40℃、约10℃至约50℃、约20℃至约30℃、约20℃至约40℃、或约20℃至约50℃。在一些情况下,在第二换热器中被加热的流体流(例如,第一液体流)的温度保持低于该流体流的沸点。
在一些实施方案中,第二换热器为外部换热器(例如,加湿器和减湿器外部)。在某些情况下,外部换热器可以具有某些优点。例如,外部换热器与加湿器和/或减湿器一起使用可以有利地允许加湿器和/或减湿器具有减小的尺寸和/或在一个或更多个级内具有降低的液体层高度。
在一些实施方案中,第二换热器为内部换热器(例如,加湿器或减湿器的内部)。例如,内部换热器可以包括位于减湿器内的盘管(tube coil)。盘管可以被设置成使得盘管的至少一部分与减湿器的级内的液体层热接触。例如,在包括多个级(每个级包括液体层)的减湿器(例如,鼓泡塔冷凝器)中,盘管可以被设置成使得每个液体层与盘管的至少一部分热接触。在一些情况下,冷却剂(例如,流入液体流)可以流过内部换热器(例如,盘管),并且热可以从减湿器的液体层传递至冷却剂。
在一些实施方案中,该系统还包括任选的第一罐。在某些实施方案中,任选的第一罐流体连接(例如,直接流体连接)至中间加湿器液体出口。在某些实施方案中,任选的第一罐流体连接(例如,直接流体连接)至加热装置的第一液体入口。在一些情况下,任选的第一罐形成液体流(例如,包含液相可冷凝流体和溶解盐的流)再循环通过的流体回路的一部分。任选的第一罐可以为流体回路提供热缓冲、物质缓冲和/或浓缩缓冲的体积,从而减少操作期间的波动(例如,盐度波动和/或温度波动)。
在一些实施方案中,该系统还包括任选的第二罐。在某些实施方案中,任选的第二罐流体连接(例如,直接流体连接)至主加湿器液体出口。在某些实施方案中,任选的第二罐流体连接(例如,直接流体连接)至加热装置的第一液体入口和/或第二换热器的第一液体入口。在一些情况下,任选的第二罐可以增加系统体积并且为主流动路径提供热缓冲、物质缓冲和/或浓缩缓冲的体积,从而减少操作期间的波动(例如,盐度波动和/或温度波动)。
第一罐和第二罐可以为本领域中已知的任何类型的罐,并且可以包括能够容纳一定体积液体的任何容器。第一罐和第二罐还可以具有任何尺寸。在一些实施方案中,第一罐和/或第二罐的体积为至少约100加仑、至少约250加仑、至少约500加仑、至少约750加仑、至少约1,000加仑、至少约2,000加仑、至少约5,000加仑、或至少约10,000加仑。在一些实施方案中,第一罐和/或第二罐的体积在以下范围内:约100加仑至约250加仑、约100加仑至约500加仑、约100加仑至约750加仑、约100加仑至约1,000加仑、约100加仑至约2,000加仑、约100加仑至约5,000加仑、或约100加仑至约10,000加仑。
如上所述,加湿器可以为鼓泡塔加湿器以及/或者减湿器可以为鼓泡塔冷凝器。因此,加湿器和/或减湿器可以包括一个或更多个气泡发生器。一个或更多个气泡发生器可以具有用于产生气泡的多种特征(例如,孔)。气泡发生器的选择可以影响所产生的气泡的尺寸和/或形状,从而影响气泡与加湿器或减湿器的液体层之间的传热和/或传质。可以选择适当的气泡发生器和/或气泡发生器条件(例如,气泡发生器速度)以产生特定的期望的一组气泡。合适的气泡发生器的非限制性实例包括分布器(sparger)板(例如,包括气体可以行进穿过的多个孔的板);包括一个或更多个穿孔管(例如,具有放射状、环形、蛛网式或轴-辐式(hub-and-spoke)构造)的装置;包括一个或更多个喷嘴的装置;多孔介质(例如,微孔金属);和/或包括泡罩的装置。
在某些实施方案中,气泡发生器包括分布器板。已经认识到,分布器板可以具有某些有利的特性。例如,分布器板的压降可以相对低。此外,分布器板的简易性可以使其制造低廉和/或耐污染影响。根据一些实施方案,分布器板包括多个孔,至少一部分孔的直径(或者对于非圆形孔,最大截面尺寸)在以下范围内:约0.1mm至约50mm、约0.1mm至约25mm、约0.1mm至约15mm、约0.1mm至约10mm、约0.1mm至约5mm、约0.1mm至约1mm、约1mm至约50mm、约1mm至约25mm、约1mm至约15mm、约1mm至约10mm、或约1mm至约5mm。在某些实施方案中,多个孔的基本上所有的孔的直径(或最大截面尺寸)在以下范围内:约0.1mm至约50mm、约0.1mm至约25mm、约0.1mm至约15mm、约0.1mm至约10mm、约0.1mm至约5mm、约0.1mm至约1mm、约1mm至约50mm、约1mm至约25mm、约1mm至约15mm、约1mm至约10mm、或约1mm至约5mm。孔可以具有任何合适的形状。例如,多个孔的至少一部分可以为基本上圆形的、基本上椭圆形的、基本上方形的、基本上矩形的、基本上三角形的、和/或不规则形状的。在一些实施方案中,多个孔的基本上所有的孔为基本上圆形的、基本上椭圆形的、基本上方形的、基本上矩形的、基本上三角形的、和/或不规则形状的。
在一些情况下,分布器板可以沿着加湿器和/或减湿器内的级的底表面布置。在一些实施方案中,分布器板可以具有覆盖加湿器和/或减湿器的截面的至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%或约100%的表面积。
在一些情况下,加湿器和/或减湿器内的入口和/或出口可以作为单独且不同的结构元件/特征来提供。在一些情况下,加湿器和/或减湿器内的入口和/或出口可以通过某些部件例如气泡发生器以及/或者在加湿器和/或减湿器的部件之间建立流体连通的任何其他特征来提供。例如,加湿器或减湿器的“气体入口”和/或“气体出口”可以作为气泡发生器(例如,分布器板)的多个孔来提供。在一些实施方案中,至少一个气泡发生器耦接至加湿器和/或减湿器的级的气体入口。在一些实施方案中,气泡发生器耦接至加湿器和/或减湿器的每个级的气体入口。
除了一个或更多个气泡发生器之外,加湿器(例如,鼓泡塔加湿器)和/或减湿器(例如,鼓泡塔冷凝器)的一个或更多个级可以包括液体层。在一些情况下,加湿器的级中的液体层的组成可以与减湿器的级中的液体层的组成不同。例如,在加湿器中,液体层可以包含含有液相可冷凝流体和溶解盐的液体。在减湿器中,液体层可以包含液相可冷凝流体(例如水)。在某些实施方案中,减湿器的液体层包含基本上纯化形式(例如,具有相对低水平的污垢物,包括溶解盐)的液相可冷凝流体。根据一些实施方案,减湿器的液体层包含基本上纯的水。
在一些实施方案中,加湿器和/或减湿器的一个或更多个级中的液体层的高度在系统的操作(例如,基本上连续的操作和/或基本上瞬时的操作)期间相对低。在一些情况下,级内的液体层的高度可以从气泡发生器的接触液体层的表面至液体层的顶表面垂直地测量。在一些实施方案中,加湿器和/或减湿器的至少一个级中具有相对低的液体层高度可以有利地导致单个级的入口与出口之间相对低的压降。不希望受特定理论的束缚,加湿器或减湿器的给定级的压降可以至少部分地归因于该级中气体必须克服的液体静压头。此外,在一些实施方案中,加湿器和/或减湿器的至少一个级中具有相对低的液体层高度可以有利地增强传热和/或传质。不希望受特定理论的束缚,加湿器和/或减湿器中传热和/或传质的理论最大量可以在这样的条件下发生:其中气体达到与液体相同的温度并且气体中蒸气的量正好处于饱和浓度。液体层高度可以决定传热和/或传质如何接近上述理论最大值,即使大于最小液体层高度,性能也可能不受影响。因此,将液体层高度保持在操作系统所需而不影响性能的最小值可以是有利的。
在一些实施方案中,在加湿器和/或减湿器的操作(例如,基本上连续的操作和/或基本上瞬时的操作)期间,加湿器和/或减湿器的至少一个级内的液体层的高度为约0.1m或更小、约0.09m或更小、约0.08m或更小、约0.07m或更小、约0.06m或更小、约0.05m或更小、约0.04m或更小、约0.03m或更小、约0.02m或更小、约0.01m或更小,或者在一些情况下约0.005m或更小。在一些实施方案中,在加湿器和/或减湿器的操作期间,加湿器和/或减湿器的至少一个级内的液体层的高度在以下范围内:约0m至约0.1m、约0m至约0.09m、约0m至约0.08m、约0m至约0.07m、约0m至约0.06m、约0m至约0.05m、约0m至约0.04m、约0m至约0.03m、约0m至约0.02m、约0m至约0.01m、约0m至约0.005m、约0.005m至约0.1m、约0.005m至约0.09m、约0.005m至约0.08m、约0.005m至约0.07m、约0.005m至约0.06m、约0.005m至约0.05m、约0.005m至约0.04m、约0.005m至约0.03m、约0.005m至约0.02m、或约0.005m至约0.01m。
在一些实施方案中,在加湿器和/或减湿器的操作(例如,基本上连续的操作和/或基本上瞬时的操作)期间,加湿器和/或减湿器的每个级内的液体层的高度为约0.1m或更小、约0.09m或更小、约0.08m或更小、约0.07m或更小、约0.06m或更小、约0.05m或更小、约0.04m或更小、约0.03m或更小、约0.02m或更小、约0.01m或更小,或者在一些情况下约0.005m或更小。在一些实施方案中,在加湿器和/或减湿器的操作期间,加湿器和/或减湿器的每个级内的液体层的高度在以下范围内:约0m至约0.1m、约0m至约0.09m、约0m至约0.08m、约0m至约0.07m、约0m至约0.06m、约0m至约0.05m、约0m至约0.04m、约0m至约0.03m、约0m至约0.02m、约0m至约0.01m、约0m至约0.005m、约0.005m至约0.1m、约0.005m至约0.09m、约0.005m至约0.08m、约0.005m至约0.07m、约0.005m至约0.06m、约0.005m至约0.05m、约0.005m至约0.04m、约0.005m至约0.03m、约0.005m至约0.02m、或约0.005m至约0.01m。
在一些实施方案中,加湿器和/或减湿器的一个或更多个级包括被设置成促进、引导或以其他方式影响流体在一个或更多个级内的流动的一个或更多个部件。
例如,在一些实施方案中,加湿器和/或减湿器的一个或更多个级包括一个或更多个堰。如本文中所使用的,堰是指级中阻挡液体流动的结构。在一些情况下,堰可以位于邻近或者围绕其中液体可以从级中流出例如进入下面的不同级的区域。例如,如果堰位于级的液体出口的上游,则引起液体层的高度超过堰的高度的任何另外的液体将溢出堰并且通过液体出口离开级。在一些实施方案中,加湿器和/或减湿器的一个或更多个级中的液体层的最大高度可以由一个或更多个堰来设定。
在一些实施方案中,加湿器和/或减湿器的一个或更多个级包括被设置成引导液体流在一个或更多个级内的流动的一个或更多个挡板。用于本文中所述的实施方案的合适挡板包括具有例如基本上矩形形状的板状制品。挡板也可以被称为屏障、坝等。在一些情况下,一个或更多个挡板可以被布置在级的底表面使得液体以基本上线性的路径从级的一端行进至级的另一端(例如,沿着具有基本上矩形截面的级的长度)。在一些情况下,一个或更多个挡板可以被布置成使得液体以非线性路径行进穿过室,例如在室内具有一个或更多个弯曲或转弯的路径。即,液体可以在级内行进长于级的长度的距离。在一些实施方案中,一个或更多个挡板可以被设置成与具有基本上矩形截面形状的级的横向侧(即,宽度)基本上平行,即可以为横向挡板。在一些实施方案中,一个或更多个挡板可以被设置成与具有基本上矩形截面形状的级的纵向侧(即,长度)基本上平行,即可以为纵向挡板。在这样的配置中,一个或更多个纵向挡板可以引导液体沿着基本上非线性的路径流动。在一些情况下,增加液体流过级所花费的时间量可以是有利的。因此,在某些实施方案中,可以在单个级内设置一个或更多个挡板以促进液体沿着具有相对高的纵横比(例如,流动路径的平均长度与流动路径的平均宽度之比)的流动路径流动。例如,在一些情况下,一个或更多个挡板可以被设置成使得流过级的液体遵循纵横比为以下的流动路径:至少约1.5、至少约2、至少约5、至少约10、至少约20、至少约50、至少约75、至少约100或更大。在一些实施方案中,流过级的液体遵循纵横比在以下范围内的流动路径:约1.5至约5、约1.5至约10、约1.5至约20、约1.5至约50、约1.5至约75、约1.5至约100、约5至约10、约5至约20、约5至约50、约5至约75、约5至约100、约10至约20、约10至约50、约10至约75、约10至约100、或约50至约100。
在一些实施方案中,加湿器和/或减湿器包括一个或更多个附加特征以提高效率和/或生产率。这些特征的非限制性实例包括排出管和/或液滴消除器。
在某些实施方案中,加湿器和/或减湿器包括任选的排出管。排出管通常是指与加湿器和/或减湿器的气体出口流体连通的结构(例如,导管),其中排出管的最大截面尺寸(例如,直径)和/或长度大于气体出口的对应最大截面尺寸和/或长度。在一些情况下,排出管可以减少或消除液滴夹带(例如,与气体流一起流出加湿器和/或减湿器的液体液滴)。
在某些实施方案中,加湿器和/或减湿器包括一个或更多个任选的液滴消除器。液滴消除器通常是指被配置成防止夹带液体液滴的装置或结构。合适类型的液滴消除器的非限制性实例包括网状消除器(例如,丝网除雾器)、叶片式消除器(例如,垂直流V形叶片式除雾器、水平流V形叶片式除雾器)、旋风分离器、涡旋分离器、液滴聚结器和/或分离罐(knockout drum)。在一些情况下,液滴消除器可以被配置成使得气体流中夹带的液体液滴与液滴消除器的一部分碰撞并从气体流中掉落。在某些实施方案中,液滴消除器可以延伸穿过加湿器和/或减湿器的一个或更多个气体出口的开口(例如,端口)。在一些情况下,液滴消除器可以位于加湿器和/或减湿器内加湿器和/或减湿器的气体出口的上游。在一些情况下,减少或消除液滴夹带可以有利地增加从加湿器和/或减湿器回收的液相可冷凝流体(例如,纯化水)的量(例如,通过减少通过气体出口损失的可冷凝流体的量)。
在一些实施方案中,加湿器和/或减湿器包括一个或更多个中间气体入口和/或中间气体出口。在一些情况下,从加湿器中的至少一个中间位置处提取至少一部分气体流并注入到减湿器中的至少一个中间位置处可以是热力学有利的。因为气体流的在中间气体出口处离开加湿器的部分(例如,提取部分)未通过整个加湿器,所以中间气体出口处的气体流的温度可以低于加湿器的主气体出口处的气体流的温度。可以选择中间提取点(例如,气体出口)和/或注入点(例如,气体入口)的位置以提高系统的热效率。例如,因为与在较低温度下相比,气体(例如,空气)在较高温度下可以具有增加的蒸气含量,并且因为具有较高蒸气含量的气体的比焓可以高于具有较低蒸气含量的气体的比焓,所以在加湿器和/或减湿器的较高温度区域中可以使用较少的气体以更好地平衡气体(例如,空气)流和液体(例如,水)流的热容率比。因此,在中间位置处提取和/或注入一部分气体流可以有利地允许操纵气体质量流量和更大的热回收率。
然而,应认识到,在一些实施方案中,在某些操作条件下,中间提取和/或注入可能未必或者不总是提高HDH系统的热效率。此外,在一些情况下,可能存在与中间位置处的提取和/或注入有关的某些缺陷。例如,中间提取和/或注入可能降低系统的可冷凝流体(例如,水)生产率,并且可能存在与中间提取和/或注入有关的某些附加成本(例如,与仪器设备、导管、隔热和/或液滴分离有关的成本)。在一些情况下,如果减湿器中的中间注入位置处的气体流与从加湿器中提取并注入中间注入位置的气体流之间的温度差太大,则生产率和/或能量效率可能降低。因此,在一些情况下,构建和/或操作没有中间提取和/或注入的设备可能是有利的。
加湿器和/或减湿器可以具有适用于特定应用的任何形状。在一些实施方案中,加湿器和/或减湿器具有基本上圆形的、基本上椭圆形的、基本上方形的、基本上矩形的、基本上三角形的、或不规则形状的截面形状。在一些实施方案中,加湿器和/或减湿器具有相对高的截面纵横比。在某些情况下,加湿器和/或减湿器的截面纵横比为至少约1.5、至少约2、至少约5、至少约10、至少约15、或至少约20。在一些实施方案中,加湿器和/或减湿器的纵横比在以下范围内:约1.5至约5、约1.5至约10、约1.5至约15、约1.5至约20、约2至约5、约2至约10、约2至约15、约2至约20、约5至约10、约5至约15、约5至约20、约10至约15、约10至约20、或约15至约20。在某些实施方案中,加湿器和/或减湿器具有基本上平行六面体的形状、基本上矩形棱柱的形状、基本上圆柱形的形状、基本上锥体的形状和/或不规则的形状。
加湿器和/或减湿器的外部可以包含任何合适的材料。在某些实施方案中,加湿器和/或减湿器包含不锈钢、铝和/或塑料(例如,聚氯乙烯、聚乙烯、聚碳酸酯)。在一些实施方案中,使从加湿器和/或减湿器向环境的热损失最小化可以是有利的。在一些情况下,加湿器和/或减湿器的外部和/或内部可以包含绝热材料。例如,加湿器和/或减湿器可以至少部分地涂覆有、覆盖有或包裹有绝热材料。合适的绝热材料的非限制性实例包括弹性体泡沫、纤维玻璃、陶瓷纤维矿棉、玻璃矿棉、酚醛泡沫、聚异氰脲酸酯、聚苯乙烯和聚氨酯。
在一些情况下,加湿器和/或减湿器可以具有相对小的尺寸(例如,相对低的高度、相对小的占地面积)。在某些情况下,加湿器和/或减湿器具有相对小的尺寸可以是有利的。例如,相对低的高度和/或相对小的占地面积可以有利地促进加湿器和/或减湿器的运输(例如,因为加湿器和/或减湿器可以固定在现有的货车底板上)和/或安装,特别是对于位于远程地点的系统。
在一些实施方案中,加湿器和/或减湿器具有相对低的高度。加湿器或减湿器的高度可以是指加湿器或减湿器的第一端(例如,顶端)与第二端(例如,底端)之间的最大垂直距离。在一些情况下,加湿器和/或减湿器的高度为约5米或更小、约4米或更小、约3.5或更小、约3米或更小、约2米或更小、约1米或更小,或者在一些情况下约0.5米或更小。在某些情况下,加湿器和/或减湿器的高度在以下范围内:约1米至约5米、约1米至约4米、约1米至约3.5米、约1米至约3米、或约1米至约2米。
在一些实施方案中,加湿器和/或减湿器具有相对小的占地面积(例如,加湿器和/或减湿器的底表面的表面积)。在某些实施方案中,加湿器和/或减湿器的占地面积为约100m2或更小、约75m2或更小、约50m2或更小、约20m2或更小、约10m2或更小、约5m2或更小、约2m2或更小、或者约1m2或更小。在一些情况下,加湿器和/或减湿器的占地面积在以下范围内:约1m2至约100m2、约1m2至约75m2、约1m2至约50m2、约1m2至约20m2、约1m2至约10m2、或约1m2至约5m2
根据一些实施方案,加湿器和减湿器容纳在独立的容器中。在另一些实施方案中,加湿器和减湿器容纳在同一容器内。在一些这样的情况下,加湿器和减湿器可以垂直布置(例如,加湿器位于减湿器的顶部)或水平布置。在某些情况下将加湿器和减湿器容纳在同一容器内可以是有利的,因为组合的HDH设备可以比包括独立的加湿器和减湿器的HDH系统具有更少的部件和/或使用更少的材料。
在一些实施方案中,加湿器和/或减湿器可以流体连接至一个或更多个另外的装置。例如,在一些实施方案中,减湿器可以流体连接至任选的外部冷却装置。在一些情况下,冷却装置也可以流体连接至第二换热器。在某些实施方案中,冷却装置可以被布置成使得液体流(例如,减湿器液体出口流、经冷却的减湿器液体出口流)在返回至减湿器之前在冷却装置中被冷却。
冷却装置通常是指能够从流体流(例如,液体流、气体流)中除去热的任何装置。在一些实施方案中,冷却装置为换热器。换热器可以被配置成使得第一流体流和第二流体流流过换热器。在一些情况下,第一流体流和第二流体流可以以基本上相同的方向(例如,平行流)、基本上相反的方向(例如,逆流)或基本上垂直的方向(例如,交叉流)流动。在一些情况下,热从第一流体流传递至第二流体流。在某些实施方案中,冷却装置为液-气换热器。在某些情况下,第一流体流可以包含在冷凝器与换热器之间流动的冷凝器液体回路的一部分的流体流(例如,减湿器液体出口流)。在一些情况下,第二流体流可以包含冷却剂。冷却剂可以为能够吸收或传递热的任何流体。在一些实施方案中,冷却剂包括气体。在一些情况下,气体可以包括空气(例如,环境空气)。包括空气作为冷却剂的换热器通常可以被称为空气冷却换热器。在一些情况下,多于两个流体流流过冷却装置。在一些实施方案中,流过冷却装置的流体流可以都不经受相变。还应注意,在一些实施方案中,冷却装置可以为干式冷却器、冷冻器、散热器或能够从流体流中除去热的任何其他装置。
在一些情况下,冷却装置可以降低流体流(例如,减湿器液体出口流)的温度。在一些实施方案中,冷却装置使流体流的温度降低至少约5℃、至少约10℃、至少约15℃、至少约20℃、至少约30℃、至少约40℃、至少约50℃、至少约60℃、至少约70℃、至少约80℃,或者在一些情况下至少约90℃。在一些实施方案中,冷却装置使流体流的温度降低以下范围内的量:约5℃至约30℃、约5℃至约60℃、约5℃至约90℃、约10℃至约30℃、约10℃至约60℃、约10℃至约90℃、约20℃至约30℃、约20℃至约60℃、约20℃至约90℃、约30℃至约60℃、约30℃至约90℃、或约60℃至约90℃。
在一些实施方案中,加湿器可以流体连接至任选的预处理系统。在一些情况下,预处理系统可以配置成从进入系统的流入液体流中除去一种或多种组分。在一些实施方案中,预处理系统包括任选的被配置成从液体流中除去至少一部分的悬浮和/或乳化的不混溶相的分离设备。在一些实施方案中,预处理系统包括任选的被配置成从液体流中除去至少一种成垢离子的至少一部分的离子除去设备。在一些实施方案中,预处理系统包括任选的被配置成从液体流中除去至少一部分悬浮固体的悬浮固体除去设备。在一些实施方案中,预处理系统包括任选的被配置成调节(即,增加或降低)或保持/稳定(例如,通过缓冲作用)液体流的pH的pH调节设备。在一些实施方案中,预处理系统包括任选的被配置成从液体流中除去至少一部分挥发性有机物质(VOM)的挥发性有机物质(VOM)除去设备。在一些实施方案中,预处理系统包括任选的被配置成产生基本上为固体的物质的过滤设备。预处理系统的每个部件可以直接或间接地流体连接至预处理系统的一个或更多个其他部件。
在一些实施方案中,加湿器可以流体连接至任选的沉淀设备。在一些情况下,沉淀设备可以被配置成使一种或更多种固体盐从加湿器的包含溶解盐的浓缩液体流(例如,加湿器液体出口流)中沉淀。在一些情况下,沉淀设备包括容器,例如沉降槽。在一些实施方案中,沉降槽包括低剪切混合器。低剪切混合器可以被配置成使形成的晶体在浓缩液体流中保持混合(例如,均匀混合)。根据某些实施方案,容器的尺寸被设置成使得晶体有足够的停留时间来形成和生长。在一些情况下,沉淀设备包括至少一个容器,所述容器包括浓缩液体流在其内基本上静止的体积。在一些实施方案中,液体流在基本上静止的体积内的流速小于沉淀(例如,结晶)受到抑制的流速。例如,在某些实施方案中,液体流在基本上静止的体积内的流速可以为零。在一些实施方案中,流体在基本上静止的体积内的流速可以高至足以使形成的固体(例如,晶体)悬浮但未高至足以防止固体形成(例如,晶体成核)。在一些实施方案中,容器内的基本上静止的体积可以占据容器体积的至少约1%、至少约5%、至少约10%、或至少约25%。作为一个特定实例,沉淀设备可以包括具有停滞区的容器。例如,停滞区可以位于沉淀容器底部。
在某些实施方案中,沉淀设备可以包括第二容器,其中允许在第一容器中沉淀的固体沉降。例如,可以将包含沉淀固体的水性流输送至可以允许固体沉降的沉降罐。可以将水性流的剩余内容物从沉降罐中输送出。尽管已经描述了在沉淀设备内使用两个容器,但是应理解,在另一些实施方案中,可以使用单个容器或多于两个容器。在某些实施方案中,可以操作该系统使得盐的沉淀基本上仅在沉淀容器的停滞区内发生。
在一些实施方案中,将来自沉淀设备的沉淀盐供给至固体处理设备。在某些实施方案中,固体处理设备可以被配置成除去沉淀盐所保留的至少一部分水。在一些这样的实施方案中,固体处理设备被配置成产生包含来自沉淀设备的至少一部分沉淀盐的块状物。作为一个实例,固体处理设备可以包括被配置成从包含沉淀盐的悬浮体的剩余部分中至少部分地分离沉淀盐的过滤器(例如,真空鼓式过滤机或压滤机)。在一些这样的实施方案中,可以输送盐悬浮体内的至少一部分液体通过过滤器,留下固体沉淀盐。
操作本文中所述的系统(例如,HDH系统)以实现期望性能的合适条件可以由该系统的操作者和/或通过算法来选择。在一些实施方案中,加湿器和/或减湿器中的压力在操作期间可以选择为近似环境大气压力。根据某些实施方案,加湿器和/或减湿器中的压力在操作期间可以选择为约90kPa或更小。在一些实施方案中,可以期望在操作期间加湿器中的压力小于近似环境大气压力。在一些情况下,随着加湿器内部的压力降低,经加湿的载气携带更多水蒸气的能力增加,使得当载气在减湿器中减湿时基本上纯的水的生产量增加。不希望受特定理论的束缚,这种效果可以通过湿度比来解释,湿度比通常是指潮湿空气中的水蒸气质量与干燥空气质量的比,其在低于大气压力的压力下较高。
在一些实施方案中,加湿器和/或减湿器在操作期间可以具有相对低的压降。如本文中所使用的,加湿器或减湿器的压降是指在主气体入口处进入加湿器或减湿器的气体流的压力与在主气体出口处离开加湿器或减湿器的气体流的压力之差。在一些情况下,压降可以不包括增压装置(例如,风扇、风机、压缩机、泵)的影响。例如,在某些情况下,压降可以通过从在主气体入口处进入加湿器或减湿器的气体流的压力与在主气体出口处离开加湿器或减湿器的气体流的压力之差中减去一个或更多个增压装置对气体流的影响来获得。在一些实施方案中,加湿器或减湿器的压降为约100kPa或更小、约75kPa或更小、约50kPa或更小、约20kPa或更小、约15kPa或更小、约10kPa或更小、约5kPa或更小、约2kPa或更小、或者约1kPa或更小。在某些实施方案中,加湿器或减湿器的压降(例如,主气体出口与主气体入口之间的压力差)在以下范围内:约1kPa至约2kPa、约1kPa至约5kPa、约1kPa至约10kPa、约1kPa至约15kPa、约1kPa至约20kPa、约1kPa至约50kPa、约1kPa至约75kPa、或约1kPa至约100kPa。在一些实施方案中,压降基本上为零。
根据一些实施方案,本文描述的系统(例如,HDH系统)基本上连续地操作和/或被配置成便于基本上连续的操作。如本文中所使用的,连续操作系统是指这样的系统,其中将流入液体流以与系统产生可冷凝液体流相同的速率供给至系统。在一些情况下,系统内的一个或更多个液体流可以基本上连续地移动。例如,对于鼓泡塔HDH系统,流入液体流可以供给至系统的部件(例如,第二换热器、加热装置、加湿器、减湿器),基本上连续地流过系统的加湿器或减湿器的一个或更多个级,并导致可冷凝液体流(例如,基本上纯的水流)的产生。在一些情况下,连续操作系统可以具有某些优点,包括但不限于增加的正常运行时间和/或提高的能量性能。
在一些实施方案中,系统(例如,HDH系统)基本上瞬时地操作和/或被配置成便于基本上瞬时的操作(例如,分批处理)。如本文中所使用的,瞬时操作系统是指这样的系统,其中将一定量的液体(例如,含盐水)引入系统中并保留在系统中直到达到一定条件(例如,一定盐度、一定密度)。在满足条件后,将液体从设备中排出。在某些情况下,瞬时操作可以允许在生产操作中穿插清洁操作。例如,瞬时操作对于包括压滤机、生物反应器的系统和/或其他可能需要定期清洁的系统可以是有利的。在一些情况下,瞬时操作可以有利地便于处理可能难以泵送的高粘度液体(例如,含糖原料)。
应注意,尽管在脱盐系统的背景下对本文描述的系统(例如,HDH系统)进行了一般性讨论,但是所述系统也可以用于其他类型的系统(例如,其他水处理/净化系统)。例如,所述系统可以用于分离输入液体流(例如,液体混合物)的一种或更多种组分的分离过程。在一个特定的非限制性实施方案中,所述系统可以用于从液体混合物(例如,离子溶液)中蒸馏出某些液体的蒸馏系统。可以使用本文中所述的系统从液体混合物中蒸馏出的液体的实例包括但不限于氨、苯、甲苯、苯酚、二甲苯、萘、二甲苯、汽油、甲醇、乙醇、丙醇、丁醇、异丙醇、丙二醇、正己烷、正庚烷、正辛烷、环己烷、乙酸、甲酸、硝酸、四氯化碳、乙酸甲酯和/或丙酮。
本文中所述的多个部件可以“直接流体连接”至其他部件。如本文中所使用的,当第一部件和第二部件彼此流体连接并且随着流体从第一部件输送至第二部件流体的组成基本上不变(即,流体组分的相对丰度变化不大于5%并且没有发生相变)时,第一部件与第二部件之间存在直接流体连接(并且两个部件被认为是彼此“直接流体连接”)。作为一个示例性实例,连接第一系统部件和第二系统部件并且其中流体的压力和温度被调节但流体的组成未改变的流被认为是直接流体连接第一部件和第二部件。另一方面,如果在从第一部件经过第二部件期间进行进行大大改变流内容物的组成的分离步骤和/或化学反应,则该流不被认为是直接流体连接第一部件和第二部件。
HDH系统的另一些实例在Elsharqawy等的于2012年10月23日授权的题为“WaterSeparation Under Reduced Pressure”的美国专利号8,292,272;Elsharqawy等的于2013年6月18日授权的题为“Separation of a Vaporizable Component Under ReducedPressure”的美国专利号8,465,006;Govindan等的于2012年8月28日授权的题为“WaterSeparation Under Varied Pressure”的美国专利号8,252,092;Govindan等的于2013年7月30日授权的题为“Thermodynamic Balancing of Combined Heat and Mass ExchangeDevices”的美国专利号8,496,234;Govindan等的于2013年9月3日授权的题为“Bubble-Column Vapor Mixture Condenser”的美国专利号8,523,985;Govindan等的于2014年7月15日授权的题为“Humidification-Dehumidification System Including a Bubble-Column Vapor Mixture Condenser”的美国专利号8,778,065;Govindan等的于2015年7月7日授权的题为“Bubble-Column Vapor Mixture Condenser”的美国专利号9,072,984;Govindan等的于2014年9月12日提交的题为“Systems Including a CondensingApparatus Such as a Bubble Column Condenser”的美国专利公开号2015/0129410;和Govindan等的于2014年6月6日提交的作为国际专利申请号PCT/US2014/041226且题为“Multi-Stage Bubble Column Humidifier”的国际专利公开号WO 2014/200829中进行了描述,其全部内容出于所有目的通过引用整体并入本文。
实施例
在该实施例中,描述了一种包括鼓泡塔加湿器和鼓泡塔冷凝器的HDH系统。该系统包含五个流体路径:空气流动路径、主盐水流动路径、顶盘再循环流动路径、与电加热器有关的加热液体流动路径、和纯水流动路径。
图4为HDH系统的示意图。所述系统包括多级鼓泡塔加湿器402、多级鼓泡塔冷凝器422、电加热器404、钛板框式换热器462、空气冷却换热器482和储存罐464。鼓泡塔加湿器402包括多个级,所述多个级包括第一级402A、最后一级402H和中间级402B至402G。此外,鼓泡塔加湿器402包括位于级402A至402H下方的贮槽容积402I。鼓泡塔冷凝器422包括多个级,所述多个级包括第一级422A、最后一级422H和中间级422B至422G。此外,鼓泡塔冷凝器422包括位于级422A至422H下方的贮槽容积422I。
所述系统包括空气流动路径。在加湿器402的主加湿器空气入口处,风机迫使空气流412进入加湿器402。空气流412从最后一级402H至第一级402A流过加湿器402,并且随着空气流412流过加湿器402,热和物质从液体流传递至空气流412以产生经加湿的空气流。经加湿的空气流通过主加湿器气体出口作为含蒸气的加湿器气体出口流414离开加湿器402。流414被引导以流动至鼓泡塔冷凝器422。在鼓泡塔冷凝器422中,流414从最后一级422H流动至第一级422A。在鼓泡塔冷凝器422内,热和物质从含蒸气的加湿器气体出口流414传递至液体流以产生经减湿的气体流。经减湿的气体流通过主减湿器气体出口作为减湿器气体出口流450从减湿器422中排出。
空气流通过空气流动路径的流动由风机的变频驱动器(VFD)控制,所述变频驱动器设定风机的旋转速度。通过皮托管测量风机出口处的空气流的流量。
盐水沿着两个连接的流动路径循环通过该系统:循环通过加湿器402的全部八个盘的主流动路径和顶盘再循环流动路径。
主流动路径包括加湿器402的全部八个盘、VFD控制的泵、能量回收换热器462和向系统增加热能的加热装置404。通过桨轮流量计测量体积流量,并通过K型热电偶测量温度。反馈控制系统将进入加湿器402的盐水的温度保持在基本恒定的温度。反馈控制系统调节流过加热装置404的第二流体路径的加热流体流的速率,以在盐水进入加湿器402之前将其加热到选定的温度。
顶盘再循环流动路径包括加热装置404、加湿器402的第一级402A、储存罐464和VFD控制的泵。通过换热器462与加热装置404之间的三通将再循环流注入主流中。将合并流在加热装置404中加热,然后在加湿器402的第一级402A中部分冷却并浓缩。在流过第一级402A之后,合并流的一部分410通过第二加湿器液体出口从加湿器402中被提取,所述合并流的一部分410被重力供给至储存罐464。在操作期间,通过用闸阀控制提取速率并通过泵的VFD控制注入速率使提取流与注入流相匹配。
纯水流动路径包括鼓泡塔冷凝器422、VFD控制的泵、能量回收换热器462和空气冷却换热器482。控制鼓泡塔冷凝器422的温度的空气冷却换热器482的部分旁路用闸阀控制。
顶盘再循环的作用通过以下来测量:首先在没有再循环的情况下使HDH系统达到稳态平衡条件,然后连续降低经加热的盐水温度并相应地增加顶盘再循环速率以保持顶盘的恒定焓变。最初使加湿器在180°F的顶部温度下达到平衡。
在初始稳态条件下,空气入口流量为44.4ACFM,盐水流量为3gpm,纯水流量为3gpm。加湿器和减湿器的流体入口和流体出口处的温度在表1中示出。
表1
位置 温度(°F)
加湿器盐水入口 180
加湿器空气入口 136
加湿器盐水出口 124
加湿器空气出口 167
顶盘温度 166
减湿器纯水入口 127
减湿器空气入口 167
减湿器纯水出口 166
减湿器空气出口 125
然后引入顶盘再循环,并且根据表2降低离开加热装置404的经加热的合并流408的温度。计算速率使得离开第一级402A的盐水温度和空气温度不变。保持所有其他流量。使提取流量与注入流量相匹配。
表2
设定点温度(°F) 再循环速率(gpm)
180 0
178 0.5
177 1
175 2
174 3
一旦所述系统在以上5个点中的每个点处达到稳定状态,就记录温度和流量。对每个温度和流量组合收集两组数据。
此外,使用更高的顶部盐水温度192°F重复该实验。在第二组条件下,空气入口流量为44.4ACFM,盐水流量为4gpm,纯水流量为4pm。初始温度在表3中示出。
表3
位置 温度(°F)
加湿器盐水入口 192
加湿器空气入口 149
加湿器盐水出口 134
加湿器空气出口 177
顶盘温度 176
减湿器纯水入口 139
减湿器空气入口 177
减湿器纯水出口 172
减湿器空气出口 139
被选择用于保持恒定的盐水焓变的盐水入口温度和对应的顶盘再循环流量在表4中示出。
表4
设定点温度(°F) 再循环速率(gpm)
192 0
189 1
187 2
185 3
184 4
183 5
182 6
发现加湿器空气出口温度在不同的顶部盐水温度下相对不变。不变性表明,流量和温度各自对鼓泡塔中的传热没有强烈的影响。恒定的空气温度与来自盐水的恒定的焓传递相对应,如表5所示。虽然焓传递速率存在一些变化,但该变化与经加湿的空气的焓变化的数量级相同。经加湿的空气温度的小变化与由经加湿的空气中包含的蒸气容量和潜热的变化引起的经加湿的空气的焓的大变化相对应。
表5
Figure BDA0001913569390000501
还测量了离开第二级402B的盐水的温度以评估顶盘提取和再循环对加湿器402剩余部分(即,级402B至402H)的影响。发现温度相对恒定,表明类似地,对于加湿器402的下面部分,流入条件恒定。不变性表明顶盘再循环对下游级几乎没有影响。
此外,计算了生产率和获得输出率(GOR)。生产率由空气的质量流量和减湿器的流入空气流与流出空气流之间的湿度比之差的乘积来计算。获得输出率(GOR)计算为生产率与加热装置404的焓传递速率之商,表示为蒸汽的等效质量速率。GOR是一种能量效率度量,通常用于比较热脱盐过程,其近似等于单位热能在系统中使用和再循环的次数。
在图5A中,示出了顶盘再循环对生产率、GOR和顶部盐水温度的影响。各个值通过初始稳定状态条件下的对应值而归一化。图5A中示出的生产率、GOR和顶部盐水温度的相对不变性表明顶盘再循环可以用于降低加湿器入口温度而不牺牲生产率或热效率。
结论得到了更高温度实验的支持。图5B示出了在更高温度(192°F)的实验中顶盘再循环对生产率、GOR和顶部盐水温度的影响。图5B也表明了生产率、GOR和顶部盐水温度的相对不变性。
尽管本文中已经描述和举例说明了本发明的多个实施方案,但是本领域普通技术人员将容易预见到用于执行本文中描述的功能和/或获得本文中描述的结果和/或一个或更多个优点的多种其他手段和/或结构,并且每个这样的变化和/或修改都视为在本发明的范围内。更一般地,本领域技术人员将容易理解,本文中描述的所有参数、尺寸、材料和配置旨在为示例性的,并且实际的参数、尺寸、材料和/或配置将取决于使用本发明的教导的一个或更多个具体应用。本领域技术人员仅使用常规实验就将认识到或者能够确定本文中描述的本发明具体实施方案的多个等效方案。因此应理解,前述实施方案仅作为实例呈现,并且在所附权利要求书及其等效方案的范围内,本发明可以以除具体描述和要求保护的方式之外的方式实施。本发明涉及本文中描述的各个单独的特征、系统、制品、材料和/或方法。此外,如果两个或更多个这样的特征、系统、制品、材料和/或方法不互相矛盾,则两个或更多个这样的特征、系统、制品、材料和/或方法的任意组合包括在本发明的范围内。
除非明确指示相反,否则如本文在说明书和权利要求书中使用的没有数量词修饰的对象应理解为意指“至少一个/种”。
如本文中在说明书和权利要求书中使用的短语“和/或”应理解为意指如此连接的要素中的“任一者或二者”,即,在一些情况下共同存在而在另一些情况下分开存在的要素。除非明确地指示相反,否则除了由“和/或”子句具体指出的要素之外,可以任选地存在其他要素,无论其与那些具体指出的要素有关还是无关。因此,作为一个非限制性实例,当与开放式语言如“包括”结合使用时,提到的“A和/或B”在一个实施方案中可指存在A而没有B(任选地包括除B之外的要素);在另一个实施方案中可指存在B而没有A(任选地包括除A之外的要素);在又一个实施方案中可指存在A和B二者(任选地包括其他要素);等等。
如本文中在说明书和权利要求书中所使用的“或”应理解为具有与以上所定义的“和/或”相同的含义。例如,当分开列表中的项目时,“或”或者“和/或”应理解为包括性的,即包括:多个要素或要素列表中的至少一个,但还包括多于一个,以及任选的另外的未列出项目。只有明确指示相反的术语,例如“仅一个”或“恰好一个”,或者用于权利要求书时的“由…组成”是指包括多个要素或要素列表中的恰好一个要素。一般地,如本文所使用的术语“或”在之前有排他性术语如“任一个”、“之一”、“仅一个”或者“恰好一个”时应当仅理解为指示排他性的选择(即,“一个或另一个但不是二者”)。“基本上由…组成”在用于权利要求书时应当具有如在专利法领域中使用的普通含义。
如本文中在说明书和权利要求书中所使用的,短语“至少一个”在提及一个或更多个要素的列表时应理解为意指从要素列表中的任一个或更多个要素中选择的至少一个要素,但不一定包括要素列表中具体列出的每个要素中的至少一个,也不排除要素列表中要素的任何组合。该定义还允许任选地存在除了在短语“至少一个”所提及的要素列表中具体指出的要素之外的要素,无论其与具体指出的那些要素有关还是无关。因此,作为一个非限制性实例,“A和B中的至少一个”(或者等效地“A或B中的至少一个”,或者等效地“A和/或B中的至少一个”)在一个实施方案中可指至少一个A,任选地包括多于一个A,而不存在B(并且任选地包括除B之外的要素);在另一个实施方案中可指至少一个B,任选地包括多于一个B,而不存在A(并且任选地包括除A之外的要素);在又一个实施方案中可指至少一个A,任选地包括多于一个A,以及至少一个B,任选地包括多于一个B(并且任选地包括其他要素);等等。在权利要求书中以及以上的说明书中,所有的过渡短语如“包括”、“包含”、“携带”、“具有”、“含有”、“涉及”、“容纳”等都应理解为开放式的,即,意指包括但不限于。仅过渡短语“由…组成”和“基本上由…组成”应当分别是封闭式或半封闭式的过渡短语。
在本说明书和通过引用并入、作为附件附上和/或本文中提及的文献包含冲突的公开内容和/或不一致的术语使用,和/或并入/附上/提及的文献使用或定义的术语与其在本说明书中使用或定义的不同的情况下,应以本说明书为准。

Claims (20)

1.一种操作加湿器的方法,包括:
使包含液相可冷凝流体和溶解盐的第一液体流流过第一加热装置的第一流体路径,其中所述第一液体流在所述第一加热装置内被加热以形成经加热的第一液体流;
将所述经加热的第一液体流注入包括多个级的加湿器的主液体入口,其中所述多个级包括第一级、最后一级、和位于所述第一级与所述最后一级之间的一个或更多个中间级;
将包含不凝气体的气体流注入所述加湿器的主气体入口;
使所述经加热的第一液体流以第一方向从所述第一级至所述最后一级流过所述加湿器,同时使所述气体流以第二方向从所述最后一级至所述第一级流过所述加湿器,其中热和物质从所述经加热的第一液体流传递至所述气体流以产生含蒸气的加湿器气体出口流和浓缩液体流;以及
使包含至少部分所述浓缩液体流的提取液体流从所述加湿器的中间液体出口流动至所述第一加热装置,其中所述加湿器的所述中间液体出口是所述加湿器的所述第一级的液体出口或者所述加湿器的所述一个或更多个中间级中的一者的液体出口,
其中所述方法还包括使所述第一液体流流过第二加热装置。
2.根据权利要求1所述的方法,其中在所述加湿器的所述主液体入口处所述经加热的第一液体流的温度为90℃或更低。
3.根据权利要求1所述的方法,其中在所述加湿器的所述中间液体出口处所述提取液体流的流量为在所述加湿器的主液体出口处所述浓缩液体流的流量的5%至50%。
4.根据权利要求1所述的方法,其中在所述加湿器的所述中间液体出口处所述提取液体流的流量为在所述加湿器的主液体出口处所述浓缩液体流的流量的105%至150%。
5.根据权利要求1所述的方法,其中所述加湿器为鼓泡塔加湿器。
6.根据权利要求1所述的方法,其中所述加湿器的所述多个级中的至少一个级包括气泡发生器。
7.根据权利要求6所述的方法,其中所述气泡发生器包括分布器板,所述分布器板包括多个孔。
8.根据权利要求1所述的方法,其中所述加湿器的所述多个级中的至少一个级包括包含一定量的所述经加热的第一液体流的液体层和位于邻近所述液体层的蒸气分布区域。
9.根据权利要求1所述的方法,还包括使所述含蒸气的加湿器气体出口流从所述加湿器的主气体出口流动至减湿器的主气体入口,所述减湿器被配置成从所述含蒸气的加湿器气体出口流中除去至少部分气相可冷凝流体以产生减湿器液体出口流和减湿器气体出口流。
10.根据权利要求9所述的方法,其中所述减湿器为鼓泡塔冷凝器。
11.根据权利要求1所述的方法,其中所述第一加热装置为第一换热器、集热装置、电加热器或炉。
12.根据权利要求11所述的方法,还包括使加热流体流流过所述第一加热装置的第二流体路径。
13.根据权利要求1所述的方法,其中:
所述第一加热装置为第一换热器,
所述第二加热装置为第二换热器,以及
使所述第一液体流流过所述第二加热装置包括使所述第一液体流流过所述第二换热器的第一流体路径,同时使所述减湿器液体出口流流过所述第二换热器的第二流体路径,使得热从所述减湿器液体出口流传递至所述第一液体流以形成经预热的第一液体流。
14.根据权利要求13所述的方法,还包括使所述经预热的第一液体流流动至所述第一加热装置以形成所述经加热的第一液体流。
15.根据权利要求1所述的方法,还包括使所述经加热的第一液体流流动至中间加湿器液体入口,其中所述中间加湿器液体入口为所述加湿器的所述最后一级的液体入口或者所述一个或更多个中间级中的一者的液体入口。
16.根据权利要求1所述的方法,还包括在使所述提取液体流流动至所述第一加热装置之前使所述提取液体流从所述加湿器的所述中间液体出口流动至第一罐。
17.根据权利要求1所述的方法,其中所述可冷凝流体为水。
18.根据权利要求1所述的方法,其中所述溶解盐包括NaCl。
19.一种操作加湿器的方法,包括:
使包含液相可冷凝流体和溶解盐的第一液体流流过第一加热装置的第一流体路径,其中所述第一液体流在所述第一加热装置内被加热以形成经加热的第一液体流;
将所述经加热的第一液体流注入包括多个级的加湿器的主液体入口,其中所述多个级包括第一级、最后一级、和位于所述第一级与所述最后一级之间的一个或更多个中间级;
将包含不凝气体的气体流注入所述加湿器的主气体入口;
使所述经加热的第一液体流以第一方向从所述第一级至所述最后一级流过所述加湿器,同时使所述气体流以第二方向从所述最后一级至所述第一级流过所述加湿器,其中热和物质从所述经加热的第一液体流传递至所述气体流以产生含蒸气的加湿器气体出口流和浓缩液体流;
使包含至少部分所述浓缩液体流的提取液体流从所述加湿器的中间液体出口流动至第一罐;以及
在使所述提取液体流流动至所述第一罐之后,使所述提取液体流流动至所述第一加热装置,
其中所述加湿器的所述中间液体出口是所述加湿器的所述第一级的液体出口或者所述加湿器的所述一个或更多个中间级中的一者的液体出口。
20.根据权利要求19所述的方法,其中在所述加湿器的所述主液体入口处所述经加热的第一液体流的温度为90℃或更低。
CN201780038595.1A 2016-05-20 2017-05-19 在低的顶部盐水温度下的加湿-减湿系统和方法 Active CN109415227B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/161,051 US10294123B2 (en) 2016-05-20 2016-05-20 Humidification-dehumidification systems and methods at low top brine temperatures
US15/161,051 2016-05-20
PCT/US2017/033557 WO2017201417A1 (en) 2016-05-20 2017-05-19 Humidification-dehumidification systems and methods at low top brine temperatures

Publications (2)

Publication Number Publication Date
CN109415227A CN109415227A (zh) 2019-03-01
CN109415227B true CN109415227B (zh) 2022-08-09

Family

ID=60326237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780038595.1A Active CN109415227B (zh) 2016-05-20 2017-05-19 在低的顶部盐水温度下的加湿-减湿系统和方法

Country Status (4)

Country Link
US (2) US10294123B2 (zh)
CN (1) CN109415227B (zh)
CA (1) CA3024138C (zh)
WO (1) WO2017201417A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9072984B2 (en) * 2011-09-23 2015-07-07 Massachusetts Institute Of Technology Bubble-column vapor mixture condenser
KR102424159B1 (ko) 2013-09-12 2022-07-25 그라디언트 코포레이션 기포 컬럼 응축기와 같은 응축 장치를 포함하는 시스템
US9266748B1 (en) 2015-05-21 2016-02-23 Gradiant Corporation Transiently-operated desalination systems with heat recovery and associated methods
US10463985B2 (en) 2015-05-21 2019-11-05 Gradiant Corporation Mobile humidification-dehumidification desalination systems and methods
US10143936B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region with heat recovery and/or intermediate injection
US10143935B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region
US10981082B2 (en) 2015-05-21 2021-04-20 Gradiant Corporation Humidification-dehumidification desalination systems and methods
ITUB20153429A1 (it) * 2015-09-04 2017-03-04 Smart Aquae S R L Apparato e procedimento di potabilizzazione di acqua
US20190022550A1 (en) 2016-01-22 2019-01-24 Gradiant Corporation Formation of solid salts using high gas flow velocities in humidifiers, such as multi-stage bubble column humidifiers
US10513445B2 (en) 2016-05-20 2019-12-24 Gradiant Corporation Control system and method for multiple parallel desalination systems
CA3037172C (en) * 2016-06-13 2020-06-23 Condair Group Ag Dual-stage humidifier methods and systems
CA3089000A1 (en) 2018-01-19 2019-07-25 Dri-Steem Corporation Humidifier with automatic drain interval determination
CA3087971A1 (en) 2018-01-19 2019-07-25 Dri-Steem Corporation Condensing, ultra-low nox gas-fired humidifier
JP7090434B2 (ja) * 2018-03-07 2022-06-24 オルガノ株式会社 ガス除害システム及び方法
US12006869B2 (en) * 2022-10-04 2024-06-11 General Electric Company Heat exchanger for a gas turbine engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201626848U (zh) * 2009-12-15 2010-11-10 武汉科技大学 一种用于盐水脱盐的装置
CN104495966A (zh) * 2014-12-17 2015-04-08 西北工业大学 一种鼓泡加湿与热泵循环耦合的海水淡化系统及工艺方法
US20150129410A1 (en) * 2013-09-12 2015-05-14 Gradiant Corporation Systems including a condensing apparatus such as a bubble column condenser
CN105163825A (zh) * 2012-07-16 2015-12-16 沙特阿拉伯石油公司 原油和天然气处理设备中的采出水处理工艺

Family Cites Families (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2560978A (en) 1943-05-18 1951-07-17 Persson Alef Ruben Method for aerating water
US2560073A (en) 1948-11-12 1951-07-10 Centrifix Corp Fixed centrifugal device
DE907647C (de) 1948-12-23 1958-02-13 Chloberag Chlor Betr Rheinfeld Kuehl-, Kondensations- oder Absorptionsvorrichtung fuer stark korrodierend oder aetzend wirkende Fluessigkeiten, Gase oder Daempfe
US2702696A (en) 1951-05-16 1955-02-22 Standard Oil Dev Co Apparatus for operating a countercurrent vapor-liquid processing zone
FR1096880A (fr) 1953-12-08 1955-06-27 Procédé et dispositif pour obtenir de l'eau pure à partir d'une solution saline, à une température relativement basse
GB1024572A (en) 1961-04-14 1966-03-30 Desalination Plants Apparatus for condensing vapor on ice
US3232847A (en) 1961-09-11 1966-02-01 Hoff Chemical Corp Distillation process employing direct contact heating and condensation
US3257291A (en) 1962-02-05 1966-06-21 Gerber Scient Instr Company In Means for desalting sea water by solar heat and air convection
NL274740A (zh) 1962-02-13 1900-01-01
US3214351A (en) 1962-02-26 1965-10-26 Saline Water Conversion Corp Falling film convective distillation unit with direct contact condensation
US3214349A (en) 1962-12-06 1965-10-26 Saline Water Conversion Corp Recovering pure solvent by film distillation
US3288686A (en) 1963-07-12 1966-11-29 Donald F Othmer Method for multi-flash evaporation to obtain fresh water from aqueous solution
US3243358A (en) 1964-02-24 1966-03-29 James H Mccue Water purifying means
US3425935A (en) 1964-10-09 1969-02-04 Exxon Research Engineering Co Distillation in the presence of water
US3478531A (en) 1966-07-22 1969-11-18 Blaw Knox Co Saline water conversion system
US3434701A (en) 1966-08-15 1969-03-25 Phillips Petroleum Co Vapor-liquid contacting apparatus
US3606999A (en) 1967-08-04 1971-09-21 Harold L Lawless Method of and apparatus for carrying out a chemical or physical process
GB1241174A (en) 1967-11-03 1971-07-28 British Oxygen Co Ltd Desalination of water
NL6817235A (zh) 1967-12-06 1969-06-10
US3558436A (en) 1968-07-30 1971-01-26 Auscoteng Pty Ltd Distilation apparatus for desalinisation of saline water to recover fresh water as condensate
US3583895A (en) 1969-05-20 1971-06-08 Donald F Othmer Evaporation using vapor-reheat and multieffects
US3755088A (en) 1969-08-04 1973-08-28 Hydro Chem & Mineral Corp Internally interconnected multi-stage distillation system
GB1265188A (zh) 1969-11-14 1972-03-01
US3653186A (en) 1970-02-24 1972-04-04 Hoyt B Mclendon Wet scrubber tank
US3783108A (en) 1971-01-18 1974-01-01 R Saari Method and apparatus for distilling freshwater from seawater
US3826815A (en) 1972-06-21 1974-07-30 I Mavrovic Recovery of residual ammonia from weak aqueous solutions thereof
FR2189319A1 (en) 1972-06-21 1974-01-25 Mavrovic Ivo Recovering ammonia - eg from urea synthesis liquors
JPS4975935U (zh) 1972-08-01 1974-07-02
US3860492A (en) 1973-06-27 1975-01-14 Jr Alvin Lowi Liquid separation system
US3906250A (en) 1973-07-03 1975-09-16 Univ Ben Gurion Method and apparatus for generating power utilizing pressure-retarded-osmosis
CH602492A5 (zh) 1974-08-12 1978-07-31 Pierre Martini
US4276124A (en) 1975-07-17 1981-06-30 Haakon Haakonsen Distillation system for sea water
US4105723A (en) 1976-05-24 1978-08-08 Merix Corporation Vapor-liquid contacting
US4072182A (en) 1977-01-05 1978-02-07 International Power Technology, Inc. Pressure staged heat exchanger
DE2701938C2 (de) 1977-01-19 1980-06-26 Hans-Guenther 2000 Hamburg Krugmann Verfahren und Vorrichtung zur Rückgewinnung des Lösungsmittels aus der Abluft von Trockenreinigungsmaschinen
JPS5939363B2 (ja) 1978-02-24 1984-09-22 克彦 谷 食塩製造方法
JPS559508A (en) 1978-07-06 1980-01-23 Oki Electric Ind Co Ltd Carrier liquid vapor recovery apparatus
US4363703A (en) 1980-11-06 1982-12-14 Institute Of Gas Technology Thermal gradient humidification-dehumidification desalination system
DE3147460A1 (de) 1981-12-01 1983-06-16 Karl Dipl.-Phys. 4600 Dortmund Winter "verfahren und vorrichtung zur trennung von fluessigen gemischen durch verdampfen und kondensieren"
DE3239816A1 (de) 1982-05-24 1983-11-24 Dvt Deutsch Verfahrenstech Verfahren zur destillation von suesswasser aus meerwasser
DE3222537A1 (de) 1982-06-16 1983-12-22 Gerhard 7766 Gaienhofen Beil Verfahren und vorrichtung zum entsalzen von wasser
DE3225337C2 (de) 1982-07-07 1986-10-16 Hermann Dr. 4400 Münster Stage Verfahren zum Entsalzen von Rohtallöl
US4595459A (en) 1982-11-12 1986-06-17 Mitsubishi Denki Kabushiki Kaisha Desalinization apparatus
US5124004A (en) 1983-08-22 1992-06-23 Trustees Of Dartmouth College Distillation process for ethanol
US4820456A (en) 1986-05-29 1989-04-11 Ukrainsky Nauchno-Issledovatelsky Institut Prirodnykh Gazov "Ukrniigaz" Mass-transfer apparatus
US4762593A (en) 1986-06-13 1988-08-09 Youngner Philip G Distilling apparatus
US5123481A (en) 1986-07-09 1992-06-23 Walter F. Albers Method and apparatus for simultaneous heat and mass transfer
US4832115A (en) 1986-07-09 1989-05-23 Albers Technologies Corporation Method and apparatus for simultaneous heat and mass transfer
DE3623796A1 (de) 1986-07-15 1988-01-28 Dow Chemical Rheinwerk Gmbh Vorrichtung und adsorptionsverfahren zur selektiven entfernung von ionen aus fluessigkeiten
SE455226B (sv) 1986-10-23 1988-06-27 Scandiaconsult Ab Forfarande och anordning for rokgaskondensering samt forvermning och befuktning av forbrenningsluft vid forbrenningsanleggningar
US5290403A (en) 1987-03-17 1994-03-01 Saeaesk Aapo Liquid evaporating apparatus
US5096543A (en) 1990-09-27 1992-03-17 Kamyr, Inc. Carrier gas apparatus for evaporation and condensation
US5176798A (en) 1991-05-17 1993-01-05 Shell Oil Company System for removal and disposal of minor amounts of organics from contaminated water
US5617719A (en) 1992-10-27 1997-04-08 Ginter; J. Lyell Vapor-air steam engine
US5378267A (en) 1993-04-06 1995-01-03 Carbonair Environmental Services, Inc. Apparatus for air stripping contaminants from water
FR2713219A1 (fr) 1993-11-30 1995-06-09 Desplats Philippe Dispositif et procédé de distillation d'eau salée par évaporation et condensation dans un flux d'air à pression atmosphérique.
US5552022A (en) 1995-01-31 1996-09-03 Wilson; Henry A. Desalination system utilizing transfer conduit extending above salt water siphon height
US5724828A (en) 1995-04-21 1998-03-10 Baltimore Aircoil Company, Inc. Combination direct and indirect closed circuit evaporative heat exchanger with blow-through fan
US5939031A (en) 1996-08-23 1999-08-17 Exxon Research And Engineering Co. Countercurrent reactor
AUPO775697A0 (en) 1997-07-07 1997-07-31 Inland Oil Refiners (Qld) Pty Ltd Method and apparatus for fractional distillation
FR2786708B1 (fr) 1998-12-03 2001-02-09 Jean Pierre Martel Appareil de traitement continu et rapide de liquides, comportant des moyens d'echange de matiere entre des vapeurs volatiles ou des gaz et leur liquide generateur
EP1177026A2 (en) 1999-04-23 2002-02-06 Norman L. Arrison Horizontal distillation apparatus and method
US6911121B1 (en) 1999-07-26 2005-06-28 James R. Beckman Method and apparatus for simultaneous heat and mass transfer utilizing a carrier-gas
WO2001007134A1 (en) 1999-07-26 2001-02-01 Arizona Board Of Regents Method and apparatus for simultaneous heat and mass transfer utilizing a carrier-gas
EP1077079B1 (en) 1999-08-18 2014-05-21 Tsukishima Kankyo Engineering Ltd. Gas-liquid contacting column apparatus and use thereof
KR100498583B1 (ko) 1999-08-20 2005-07-01 엘.이.티.리딩 엣지 테크놀로지즈 리미티드 이온선택성막을 사용한 물 담수화 방법
US7258767B2 (en) 2000-01-17 2007-08-21 Akzo Nobel N.V. Solar dew tube
FR2809968A1 (fr) 2000-06-13 2001-12-14 Third Millenium Water Cy Echangeurs thermiques perfectionnes procedes et appareils de distillation en faisant usage notamment pour produire de l'eau douce
US20010054354A1 (en) 2000-06-21 2001-12-27 Baudat Ned P. Direct turbine air chiller/scrubber system
GB2369783B (en) 2000-10-21 2003-07-09 Pb Power Ltd Process and plant for desalination of salt water
US20020166758A1 (en) 2001-05-02 2002-11-14 Peter Vinz Evaporation process for producing high-quality drinking water and high-grade brine from any-grade salt water
ES2185514B1 (es) 2001-10-13 2004-01-01 Hernandez Fernando M Hernandez Planta para la obtencion de agua exenta de sal a partir de aguas marinas, a baja temperatura, con funcionamiento continuo y recuperacion de entalpia.
GB2389762A (en) 2002-06-13 2003-12-17 Seiko Epson Corp A semiconductor chip which includes a text to speech (TTS) system, for a mobile telephone or other electronic product
US20040055866A1 (en) 2002-09-20 2004-03-25 Levine Michael R. Desalinization still
US7225620B2 (en) 2002-12-17 2007-06-05 University Of Florida Research Foundation, Inc. Diffusion driven water purification apparatus and process
US6919000B2 (en) 2002-12-17 2005-07-19 University Of Florida Diffusion driven desalination apparatus and process
WO2004067451A1 (de) 2003-01-27 2004-08-12 Rudolf Schober Vorrichtung zum teinigen von wasser
US20040231970A1 (en) 2003-05-21 2004-11-25 Lang Chou Fluid distillation apparatus having improved efficiency
RU2239460C1 (ru) 2003-05-22 2004-11-10 Кузьмин Анатолий Иванович Устройство для получения аэрозоля и увлажнения воздуха
FR2855766A1 (fr) 2003-06-06 2004-12-10 Third Millenium Water Company Procedes et appareils de distillation notamment pour produire de l'eau douce
DE60328534D1 (de) 2003-08-01 2009-09-03 Sergio Martins Costa Entsalzungsvorrichtung
WO2005033585A2 (en) 2003-09-30 2005-04-14 Albers Walter F Systems and methods for conditoning air and transferring heat and mass between airflows
US7431805B2 (en) 2003-12-03 2008-10-07 Arizona Board Of Regents Method and apparatus for simultaneous heat and mass transfer utilizing a carrier-gas at various absolute pressures
US7040278B2 (en) 2003-12-16 2006-05-09 Advanced Technologies, Inc. Integrated microturbine system
DE102004005689A1 (de) 2004-02-05 2005-08-25 Vinz, Peter, Dr. Ausdampfverfahren zur Reinigung und/oder Aufkonzentrierung verunreinigter Flüssigkeiten
SE526792C2 (sv) 2004-03-03 2005-11-08 Tetra Laval Holdings & Finance Anordning för evaporativ kylning av en vätskeformig produkt
FR2867771B1 (fr) 2004-03-18 2006-07-21 Int De Dessalement Soc Procede et installation de dessalement d'eau de mer par distillation a effets multiples et thermocompression de vapeur fonctionnant avec differentes pressions de vapeur motrice
US7163571B2 (en) 2004-06-24 2007-01-16 Ying Gang Ruan Exhaust gas cooler and particulate scrubbing system
IL163015A (en) 2004-07-14 2009-07-20 Gad Assaf Systems and methods for dehumidification
US8083942B2 (en) 2004-12-06 2011-12-27 Board of Regents of the Nevada System of Higher Education, on Behalf of the Universary of Nevada, Reno Systems and methods for purification of liquids
JP4583234B2 (ja) 2005-05-09 2010-11-17 日本曹達株式会社 排気ガス処理装置及びそれを用いた処理方法
JP4811991B2 (ja) 2005-07-06 2011-11-09 株式会社日立製作所 高湿分利用ガスタービン設備
WO2007132477A1 (en) 2006-05-11 2007-11-22 Raman Ahilan A pretreatment process for the saline water feeds of desalination plants
CN101547867A (zh) 2006-09-22 2009-09-30 奥特拉公司 用于生产清洁水的新型增强系统、工艺和方法及其产品
JP2010505623A (ja) 2006-10-10 2010-02-25 ザ テキサス エイ・アンド・エム ユニヴァーシティ システム 脱塩システム
US8202401B2 (en) 2006-11-08 2012-06-19 Hydrologic Industries, Inc. Methods and apparatus for distillation using phase change energy
US7832714B2 (en) 2007-01-19 2010-11-16 Heartland Technology Partners Llc Desalination system
AU2009217223B2 (en) 2008-02-22 2013-10-24 Breakthrough Technologies Pty Ltd Method for desalinating water
US8341434B2 (en) 2008-02-26 2012-12-25 International Business Machines Corporation Optimizing voltage on a power plane using a networked voltage regulation module array
WO2010027938A2 (en) 2008-09-04 2010-03-11 University Of Florida Research Foundation, Inc. Desalination apparatus and process
US8226800B2 (en) 2008-12-15 2012-07-24 Water Desalination International, Inc. Water desalination system
WO2010076841A1 (ja) 2008-12-29 2010-07-08 Takezaki Motohide 気流循環海水淡水化装置
CN101538070B (zh) 2009-04-22 2011-09-07 长安大学 一种太阳能海水淡化装置
TWM370169U (en) 2009-06-10 2009-12-01 Wistron Corp Push button component with illumination structure and electronic device
US8292272B2 (en) 2009-09-04 2012-10-23 Massachusetts Institute Of Technology Water separation under reduced pressure
US8252092B2 (en) 2009-10-05 2012-08-28 Massachusetts Institute Of Technology Water separation under varied pressure
AU2010324910B2 (en) 2009-11-25 2016-05-12 Massachusetts Institute Of Technology Water desalination using directional solvent extraction
US8695343B2 (en) 2009-12-04 2014-04-15 General Electric Company Economical and sustainable disposal of zero liquid discharge salt byproduct
JP5503990B2 (ja) 2010-02-02 2014-05-28 ローム株式会社 位相ロックループ回路およびそれを用いた電子機器
US20100314238A1 (en) 2010-04-30 2010-12-16 Sunlight Photonics Inc. Hybrid solar desalination system
US8801910B2 (en) 2010-06-21 2014-08-12 Massachusetts Institute Of Technology Method and apparatus for desalination and purification
WO2012018434A1 (en) 2010-08-06 2012-02-09 Calera Corporation Calcium carbonate compositions and methods thereof
US8647477B2 (en) 2011-02-15 2014-02-11 Massachusetts Institute Of Technology High-efficiency thermal-energy-driven water purification system
WO2012112808A2 (en) 2011-02-16 2012-08-23 Tyco Fire Products Lp Dry pilot actuator
US9393525B2 (en) 2011-04-08 2016-07-19 The United States of America, as represented by the Department of the Interior Forward osmosis: recyclable driving solutes
CA2821458C (en) 2011-05-24 2014-07-08 Saltworks Technologies Inc. Method, apparatus and system for concentrating solutions using evaporation
US8187464B2 (en) 2011-07-03 2012-05-29 King Abdulaziz City for Science and Technology “KACST” Apparatus and process for desalination of brackish water using pressure retarded osmosis
US8147697B2 (en) 2011-07-03 2012-04-03 King Abdulaziz City for Science and Technology (KACST) Apparatus and process for desalination of brackish water
AU2012308061B8 (en) 2011-09-15 2015-02-26 Saltworks Technologies Inc. A method of reducing salinity of a product in a stack
US9072984B2 (en) 2011-09-23 2015-07-07 Massachusetts Institute Of Technology Bubble-column vapor mixture condenser
CA2850941A1 (en) 2011-10-04 2013-04-11 Massachusetts Institute Of Technology Water extraction using a directional solvent
HRPK20110835B3 (hr) 2011-11-14 2014-08-01 Zvonimir Glasnović Solarna termalna hidroelektrana za istovremenu proizvodnju energije i pitke vode
US20130199921A1 (en) 2012-02-07 2013-08-08 Massachusetts Institute Of Technology Carrier-Gas Humidification-Dehumidification Using Heat-Transfer Members for Enhanced Heat Recovery
FR2988713A1 (fr) 2012-04-03 2013-10-04 Tmw Distillateur d'eau a courants d'air sature et recuperation optimisee de chaleur latente
WO2013158315A1 (en) 2012-04-18 2013-10-24 Hydration Systems, Llc Method for producing water for enhanced oil recovery
US8496234B1 (en) 2012-07-16 2013-07-30 Massachusetts Institute Of Technology Thermodynamic balancing of combined heat and mass exchange devices
US20140197022A1 (en) 2013-01-15 2014-07-17 King Abdulaziz City For Science And Technology Solar-powered humidification-dehumidification desalination system
US9120033B2 (en) 2013-06-12 2015-09-01 Massachusetts Institute Of Technology Multi-stage bubble column humidifier
CA2920256A1 (en) 2013-08-05 2015-02-12 Gradiant Corporation Water treatment systems and associated methods
CA2925869A1 (en) 2013-09-23 2015-03-26 Gradiant Corporation Desalination systems and associated methods
US20150107840A1 (en) 2013-10-23 2015-04-23 Shell Oil Company Process for recovery of oil from an oil-bearing formation
CA2899656C (en) 2013-11-26 2019-09-03 Saltworks Technologies Inc. Multiple effect concentration swap de-scaling system
WO2015095513A1 (en) 2013-12-18 2015-06-25 Gradiant Corporation Counter-flow heat/mass exchange feedback control
US9643102B2 (en) 2014-06-05 2017-05-09 King Fahd University Of Petroleum And Minerals Humidification-dehumidifaction desalination system
CA2953795A1 (en) 2014-06-30 2016-01-07 Massachusetts Institute Of Technology Thermal-energy-driven mechanical compression humidification-dehumidification water purification
US9221694B1 (en) 2014-10-22 2015-12-29 Gradiant Corporation Selective scaling in desalination water treatment systems and associated methods
WO2016130625A1 (en) 2015-02-11 2016-08-18 Massachusetts Institute Of Technology Hybridization of humidification-dehumidification and pressure-retarded osmosis
US10308526B2 (en) 2015-02-11 2019-06-04 Gradiant Corporation Methods and systems for producing treated brines for desalination
US10179296B2 (en) 2015-05-21 2019-01-15 Gradiant Corporation Transiently-operated desalination systems and associated methods
US10143936B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region with heat recovery and/or intermediate injection
US10463985B2 (en) 2015-05-21 2019-11-05 Gradiant Corporation Mobile humidification-dehumidification desalination systems and methods
US10143935B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region
US9266748B1 (en) 2015-05-21 2016-02-23 Gradiant Corporation Transiently-operated desalination systems with heat recovery and associated methods
US20180236372A1 (en) 2015-08-14 2018-08-23 Gradiant Corporation Production of multivalent ion-rich streams using humidification-dehumidification systems
US20190022550A1 (en) 2016-01-22 2019-01-24 Gradiant Corporation Formation of solid salts using high gas flow velocities in humidifiers, such as multi-stage bubble column humidifiers
US10513445B2 (en) 2016-05-20 2019-12-24 Gradiant Corporation Control system and method for multiple parallel desalination systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201626848U (zh) * 2009-12-15 2010-11-10 武汉科技大学 一种用于盐水脱盐的装置
CN105163825A (zh) * 2012-07-16 2015-12-16 沙特阿拉伯石油公司 原油和天然气处理设备中的采出水处理工艺
US20150129410A1 (en) * 2013-09-12 2015-05-14 Gradiant Corporation Systems including a condensing apparatus such as a bubble column condenser
CN104495966A (zh) * 2014-12-17 2015-04-08 西北工业大学 一种鼓泡加湿与热泵循环耦合的海水淡化系统及工艺方法

Also Published As

Publication number Publication date
US20170334736A1 (en) 2017-11-23
CN109415227A (zh) 2019-03-01
CA3024138A1 (en) 2017-11-23
US20190300386A1 (en) 2019-10-03
CA3024138C (en) 2024-01-16
WO2017201417A1 (en) 2017-11-23
US10294123B2 (en) 2019-05-21

Similar Documents

Publication Publication Date Title
CN109415227B (zh) 在低的顶部盐水温度下的加湿-减湿系统和方法
US10143936B2 (en) Systems including an apparatus comprising both a humidification region and a dehumidification region with heat recovery and/or intermediate injection
US10143935B2 (en) Systems including an apparatus comprising both a humidification region and a dehumidification region
US12023608B2 (en) Hybrid desalination systems and associated methods
US20230415068A1 (en) Systems including a condensing apparatus such as a bubble column condenser
US11007455B2 (en) Multi-stage bubble-column vapor mixture condensation
US10513445B2 (en) Control system and method for multiple parallel desalination systems
US10981082B2 (en) Humidification-dehumidification desalination systems and methods
US10463985B2 (en) Mobile humidification-dehumidification desalination systems and methods
EP2480501B1 (en) Thermal distillation system and process
WO2016187601A2 (en) Humidification-dehumidification desalination systems and methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant