CN109411743A - 一种高性能镍镁共掺杂尖晶石型锰酸锂材料的制备方法 - Google Patents

一种高性能镍镁共掺杂尖晶石型锰酸锂材料的制备方法 Download PDF

Info

Publication number
CN109411743A
CN109411743A CN201811289091.XA CN201811289091A CN109411743A CN 109411743 A CN109411743 A CN 109411743A CN 201811289091 A CN201811289091 A CN 201811289091A CN 109411743 A CN109411743 A CN 109411743A
Authority
CN
China
Prior art keywords
nickel
magnesium
acetate
positive electrode
lini
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811289091.XA
Other languages
English (en)
Inventor
向明武
于月
白红丽
郭俊明
苏长伟
刘晓芳
白玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Minzu University
Original Assignee
Yunnan Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Minzu University filed Critical Yunnan Minzu University
Priority to CN201811289091.XA priority Critical patent/CN109411743A/zh
Publication of CN109411743A publication Critical patent/CN109411743A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种高性能镍镁共掺杂尖晶石型锰酸锂LiNixMg0.05Mn1.95‑xO4正极材料的制备方法。具体方法是制备掺杂剂分散液、制备燃料剂分散液、混合和合成产物等步骤,机械搅拌均匀后得到混合物浆料,然后置于瓷坩锅中,再放入预设温度为500℃的马弗炉中,在空气气氛中燃烧反应1 h,取出在空气中冷却,研磨后放入650℃马弗炉中焙烧6 h,取出在空气中冷却、研磨后得到LiNixMg0.05Mn1.95‑xO4(x=0.03‑0.15)正极材料。本发明合成的镍镁共掺杂锰酸锂正极材料的倍率性能明显优于现有的LiMn2O4。该方法具有固液水体系易混合均匀、机械搅拌混合时间短、混合浆料不需要干燥即可直接加热进行燃烧反应等优点,并且制备方法简单、快速,电化学性能优异。

Description

一种高性能镍镁共掺杂尖晶石型锰酸锂材料的制备方法
技术领域
本发明涉及一种高性能镍镁共掺杂尖晶石型锰酸锂材料和所述镍镁共掺杂锰酸锂LiNixMg0.05Mn1.95-xO4材料的制备方法,属于锂离子电池正极材料技术领域。
背景技术
锂离子电池 (LIB)广泛用于电动和混合动力电动汽车 (EV / HEV),还用于储能系统 (ESS)。具有三维晶体结构的尖晶石型LiMn2O4以其比容量高、成本低、环境友好和无记忆效应等优点受到了广泛的关注。然而尖晶石型LiMn2O4存在Jahn-Teller效应,导致在充放电循环过程中容量快速衰减,尤其在高温条件下(≧55℃),从而制约其发展。目前,为解决尖晶石型LiMn2O4容量衰减的研究主要集中在包覆和元素掺杂。阳离子掺杂主要集中在掺杂小含量的过渡金属元素,比如Fe、Al、Mg、Ni、Cu、Co等。结果表明,掺杂合适的阳离子取代Mn3 +,可以抑制Jahn-Teller效应,提高材料的结构稳定性。但是,Mn3+的含量减小会使初始放电比容量降低,并且还会存在一定的Jahn-Teller效应。因此,本发明通过掺杂镍和镁离子,在抑制Jahn-Teller效应的基础上,利用镍和镁离子的协同作用来提高材料的结构稳定性,改善其电化学性能。例如 Xiang M W等人,题目“Rapid synthesis of high-cyclingperformance LiMgxMn2-xO4 (x≤0.20) cathode materials by a low-temperaturesolid-state combustion method”,《Electrochemica Acta》,2014,125:524-529;Zhao HY等人,题目“A simple and mass production preferred solid-state procedure toprepare the LiSixMgxMn2-2xO4 (0≤x≤0.10) with enhanced cycling stability andrate capability”,《Journal of Alloys and Compounds》,2016,671:304-311;Zhang H等人,题目“Structure and performance of dual-doped LiMn2O4 cathode materialsprepared via microwave synthesis method”,《Electrochemica Acta》,2014,125:225-231;Chen M F等人,题目“Ni, Mo co-doped lithium manganate with significantlyenhanced discharge capacity and cycling stability”,《Electrochemica Acta》,2016,206:356-365;Zhao H Y等人,题目“Enhanced Cycling Stability of LiCuxMn1.95- xSi0.05O4 Cathode Material Obtained by Solid-State Method”,《Materials》,2018,11:1302。
CN106784657A公开了一种钠和铁共掺杂制备高性能锰酸锂正极材料的方法,其制备方法是(1)锰源前驱体的制备;(2)将锰源、锂源、钠源和铁源置于烧杯中加入100 mL无水乙醇震荡60 min后干燥,然后再研磨10-120 min。(3)将研磨物预烧结2-10 h后,再在650~850℃马弗炉中煅烧10-30 h,即得钠和铁双掺杂的锰酸锂正极材料。CN106450285A公开了一种钠、镁双掺杂提高锰酸锂正极材料电化学性能的制备方法,其制备方法是(1)将硫酸锰、碳酸氢铵分别溶于100-500 mL去离子水中;(2)将碳酸氢铵溶液分3次缓慢滴加到硫酸锰溶液中,得到的悬浊液经搅拌、陈化、抽滤和洗涤后干燥8-12 h得到碳酸锰粉末;(3)将碳酸锰粉末烧结得到二氧化锰黑色粉末;(4)将锂源、锰源、钠源和镁源置于研磨中充分研磨后,在650-850℃马弗炉中烧结10-24 h,得到Li1-xNaxMgyMn2-yO4正极材料。
上述方法都存在加工工艺复杂、反应时间长、反应温度高等缺陷。因此,针对这些技术缺陷,本发明人在总结现有技术基础之上,通过大量实验研究与分析,完成了本发明。
发明内容
本发明采用固液水混合体系,机械搅拌混合时间短,反应混合物浆料不需要干燥,直接加热进行燃烧反应,制备方法简单、快速,并且电化学性能优异,目的是提供一种抑制Jahn-Teller效应、增强尖晶石型锰酸锂结构稳定性的基础上,制备一种结构稳定、高倍率性能镍镁共掺杂的尖晶石型锰酸锂正极材料。
本发明涉及一种高性能镍镁共掺杂尖晶石型锰酸锂材料的制备方法。
该合成方法以碳酸锂为锂源、碳酸锰为锰源、醋酸镍为镍掺杂剂和醋酸镁为镁掺杂剂,按照化学计量比Li: Mn: Ni: Mg =1: (1.95-x) : x : 0.05 (x=0.03-0.15)配比原料,添加原料总质量的5 wt.%柠檬酸为燃料。其特征在于该方法的步骤如下:
A、制备掺杂剂分散液
按照化学计量比Li: Mn: Ni: Mg =1: (1.95-x) : x : 0.05 (x=0.03-0.15)称量固体醋酸镍和醋酸镁,然后以克计醋酸镍和醋酸镁的总质量,以毫升计去离子水的体积,按照质量与体积比为1:5-10,将醋酸镍和醋酸镁添加到去离子水中,使醋酸镍和醋酸镁完全溶解,得到均匀的镍镁掺杂剂分散液;
B、制备燃料剂分散液
按照以克计柠檬酸和以毫升计去离子水的比为1: 1-5,将柠檬酸燃料加到去离子水中,充分溶解得到一种均匀的燃料剂分散液;
C、混合
按照化学计量比Li: Mn =1: (1.95-x) (x=0.03-0.15)称量固体碳酸锂和碳酸锰置于烧杯中,然后按照化学计量比Li: Mn: Ni: Mg =1: (1.95-x) : x : 0.05 (x=0.03-0.15),准确加入以毫升计的镍镁掺杂剂分散液(步骤A所得),再准确加入以毫升计的柠檬酸燃料剂分散液(步骤B所得),最后机械搅拌一定时间得到一种均匀混合物浆料;
D、合成产物
将所得到的均匀混合物浆料移入瓷坩埚中,然后将装有混合物浆料的瓷坩埚直接放入预设温度为500 ℃马弗炉,在空气气氛中加热直至发生燃烧反应1 h,取出自然冷却,得到黑色燃烧产物。然后,把焙烧产物研磨后放入650 ℃马弗炉,在空气气氛中焙烧6 h,取出在空气中自然冷却、研磨后得到产物LiNixMg0.05Mn1.95-xO4 (x=0.03-0.15)正极材料粉末。
采用X射线衍射分析仪,例如Bruker公司的D8 ADVANCE型X射线衍射仪,以Cu-Kα靶为辐射源,在工作电压40kV、工作电流40mA、扫描范围2θ为10-70°与扫描速率4°/min的条件下测试分析,其结果列于附图1。通过材料测试的XRD与LiMn2O4标准PDF卡(JCPDS No. 35-0782)对比分析确定表明该产物均为单相,无杂质,具有尖晶石型结构,空间点群为Fd3m,具体参见附图1。
本发明合成方法合成得到的产物进行了常规电子显微镜分析。采用美国FEI公司的NOVA NANOSEM 450型场发射扫描电子显微镜与TEM,JEM-2100透射电子显微镜,在常规的条件下测试,Ni-Mg共掺杂LiNi0.03Mg0.05Mn1.92O4材料的扫描电子显微镜结果列于附图2 (a)中。附图2 (a)表明,LiNi0.03Mg0.05Mn1.92O4样品的颗粒尺寸在120-220 nm之间,其透射电子显微镜结果列于附图2 (b)和(c)中。
采用Land恒电流充放电测试系统在1 C倍率与温度25℃下测试充放电1000次,本发明实施例1与对比实施例1的充放电循环性能参见附图3 (a)。
采用Land恒电流充放电测试系统在0.5、1、2、5、8、10和0.5C倍率与温度25 ℃时分别各测试充放电10次,本发明实施例1与对比实施例1的倍率性能参见附图3 (b)。
采用Land恒电流充放电测试系统在20 C倍率与温度25℃下测试充放电1000次,本发明实施例1与对比实施例1的高倍率充放电循环性能参见附图3 (c)。
采用Land恒电流充放电测试系统在1 C倍率与温度55℃下测试充放电500次,本发明实施例1与对比实施例1的高温充放电循环性能参见附图3 (d)。
附图说明
图1是实施例1得到的镍镁离子共掺杂前后锰酸锂正极材料的XRD图。
图2是实施例1得到的LiNi0.03Mg0.05Mn1.92O4正极材料的扫描电子显微镜(SEM)和透射电子显微镜 (TEM)图。图中:
(a) LiNi0.03Mg0.05Mn1.92O4正极材料的扫描电子显微镜图;
(b) LiNi0.03Mg0.05Mn1.92O4正极材料的透射电子显微镜图;
(c) LiNi0.03Mg0.05Mn1.92O4正极材料的高分辨透射电子显微镜图。
图3是实施例1得到的镍镁离子共掺杂前后锰酸锂正极材料的电性能图。图中:
(a)采用恒电流充放电测试在1 C、25℃下的循环性能图;
(b)采用恒电流充放电测试在0.5、1、2、5、8、10和0.5C,25℃下的倍率电性能图;
(c)采用恒电流充放电测试在20 C、25℃下的循环性能图;
(d)采用恒电流充放电测试在1 C、55℃下的循环性能图。
具体实施方式
通过下述实施例将能够更好地理解本发明。
实施例1:本发明镍镁掺杂锰酸锂正极材料合成
该实施例的实施步骤如下:
该合成方法以碳酸锂为锂源、碳酸锰为锰源、醋酸镍为镍掺杂剂和醋酸镁为镁掺杂剂,按照化学计量比Li: Mn: Ni: Mg =1: 1.92: 0.03: 0.05配比原料,添加原料总质量的5wt.%柠檬酸为燃料。其特征在于该方法的步骤如下:
A、制备掺杂剂分散液
按照化学计量比Li: Mn: Ni: Mg =1: 1.92 : 0.03 : 0.05称量固体醋酸镍和醋酸镁,然后以克计准确称量醋酸镍和醋酸镁的总质量,以毫升计去离子水的体积,按照质量与体积比为1:6,将醋酸镍和醋酸镁添加到去离子水中,使醋酸镍和醋酸镁完全溶解,得到均匀的镍镁掺杂剂分散液;
B、制备燃料剂分散液
按照以克计柠檬酸和以毫升计去离子水的比为1: 4,将柠檬酸燃料加到去离子水中,充分溶解得到一种均匀的燃料剂分散液;
C、混合
按照化学计量比Li: Mn =1: 1.92称量0.7959 g碳酸锂和4.7051g碳酸锰置于烧杯中,然后按照化学计量比Li: Mn: Ni: Mg =1: 1.92 : 0.03 : 0.05,准确加入以毫升计的镍镁掺杂剂分散液(含0.1624 g醋酸镍和0.2332 g醋酸镁),再准确加入以毫升计的柠檬酸燃料剂分散液(含0.3000 g柠檬酸),机械搅拌1 h后得到一种均匀混合物浆料;
D、合成产物
将所得到的均匀混合物浆料移入瓷坩埚中,然后将装有混合物浆料的瓷坩埚直接放入预设温度为500 ℃马弗炉,在空气气氛中加热直至发生燃烧反应1 h,取出自然冷却,得到黑色燃烧产物。然后,把焙烧产物研磨后放入650 ℃马弗炉,在空气气氛中焙烧6 h,取出在空气中自然冷却、研磨后得到产物LiNi0.03Mg0.05Mn1.92O4正极材料粉末。
实施例2:本发明镍、镁掺杂锰酸锂正极材料合成
该实施例的实施步骤如下:
以碳酸锂为锂源、碳酸锰为锰源、醋酸镍为镍掺杂剂和醋酸镁为镁掺杂剂,按照化学计量比Li: Mn: Ni: Mg =1: 1.90: 0.05: 0.05配比原料,添加原料总质量的5 wt.%柠檬酸为燃料。其特征在于该方法的步骤如下:
A、制备掺杂剂分散液
按照化学计量比Li: Mn: Ni: Mg =1: 1.90 : 0.05 : 0.05称量固体醋酸镍和醋酸镁,然后以克计准确称量醋酸镍和醋酸镁的总质量,以毫升计去离子水的体积,按照质量与体积比为1:7,将醋酸镍和醋酸镁添加到去离子水中,使醋酸镍和醋酸镁完全溶解,得到均匀的镍镁掺杂剂分散液;
B、制备燃料剂分散液
按照以克计柠檬酸和以毫升计去离子水的比为1: 3,将柠檬酸燃料加到去离子水中,充分溶解得到一种均匀的燃料剂分散液;
C、混合
按照化学计量比Li: Mn =1: 1.90称量0.7959 g碳酸锂和4.7051 g碳酸锰置于烧杯中,然后按照化学计量比Li: Mn: Ni: Mg =1: 1.90 : 0.05 : 0.05,准确加入以毫升计的镍镁掺杂剂分散液(含0.2681 g醋酸镍和0.2310 g醋酸镁),再准确加入以毫升计的柠檬酸燃料剂分散液(含0.3000 g柠檬酸),机械搅拌1.5 h后得到一种均匀混合物浆料;
D、合成产物
将所得到的均匀混合物浆料移入瓷坩埚中,然后将装有混合物浆料的瓷坩埚直接放入预设温度为500 ℃马弗炉,在空气气氛中加热直至发生燃烧反应1 h,取出自然冷却,得到黑色燃烧产物。然后,把焙烧产物研磨后放入650 ℃马弗炉,在空气气氛中焙烧6 h,取出在空气中自然冷却、研磨后得到产物LiNi0.05Mg0.05Mn1.92O4正极材料粉末。
对比实施例1:本发明未掺杂尖晶石型锰酸锂正极材料合成
以碳酸锂和碳酸锰为原料,按照化学计量比Li: Mn =1: 2配比原料,添加原料总质量的5 wt.%柠檬酸为燃料。该实施例的实施步骤如下:
A、制备燃料剂分散液
按照以克计柠檬酸和以毫升计去离子水的比为1: 5,将柠檬酸加到去离子水中,充分溶解得到一种均匀的柠檬酸燃料剂分散液;
B、混合
按照化学计量比Li: Mn =1: 2称取0.8307 g碳酸锂和5.1693 g碳酸锰置于烧杯中,然后加入以毫升计的柠檬酸燃料剂分散液(含0.3000 g柠檬酸),并添加适量去离子水,机械搅拌1 h均匀后得到一种反应混合物浆料;
C、合成产物
将所得到的均匀混合物浆料移入瓷坩埚中,然后将装有混合物浆料的瓷坩埚直接放入预设温度为500 ℃马弗炉,在空气气氛中加热直至发生燃烧反应1 h,取出自然冷却,得到黑色燃烧产物。然后,把焙烧产物研磨后放入650 ℃马弗炉,在空气气氛中焙烧6 h,取出在空气中自然冷却、研磨后得到产物LiMn2O4正极材料粉末。
通过比较对比实施例1与实施例1合成正极材料,本发明合成的镍镁共掺杂LiNixMg0.05Mn1.95-xO4(x=0.03-0.15)正极材料的循环性能和倍率明显优于对比例实施例1合成的LiMn2O4,表明本发明具有很好的电化学性能。

Claims (7)

1.一种高性能镍镁共掺杂尖晶石型锰酸锂材料的制备方法,以碳酸锂为锂源、碳酸锰为锰源、醋酸镍为镍掺杂剂和醋酸镁为镁掺杂剂,按照化学计量比Li: Mn: Ni: Mg =1:(1.95-x) : x : 0.05 (x=0.03-0.15)配比原料,添加原料总质量的5 wt.%柠檬酸为燃料。其特征在于该方法的步骤如下:
A、制备掺杂剂分散液
按照化学计量比Li: Mn: Ni: Mg =1: (1.95-x) : x : 0.05 (x=0.03-0.15)称量固体醋酸镍和醋酸镁,然后以克计醋酸镍和醋酸镁的总质量,以毫升计去离子水的体积,按照质量与体积比为1:5-10,将醋酸镍和醋酸镁添加到去离子水中,使醋酸镍和醋酸镁完全溶解,得到均匀的镍镁掺杂剂分散液。
B、制备燃料剂分散液
按照以克计柠檬酸和以毫升计去离子水的比为1: 1-5,将柠檬酸燃料加到去离子水中,充分溶解得到一种均匀的燃料剂分散液。
C、混合
按照化学计量比Li: Mn =1: (1.95-x) (x=0.03-0.15)称量固体碳酸锂和碳酸锰置于烧杯中,然后按照化学计量比Li: Mn: Ni: Mg =1: (1.95-x) : x : 0.05 (x=0.03-0.15),准确加入以毫升计的镍镁掺杂剂分散液(步骤A所得),再准确加入以毫升计的柠檬酸燃料剂分散液(步骤B所得),最后机械搅拌一定时间得到一种均匀混合物浆料。
D、合成产物
将所得到的均匀混合物浆料移入瓷坩埚中,然后将装有混合物浆料的瓷坩埚直接放入预设温度为500 ℃马弗炉,在空气气氛中加热直至发生燃烧反应1 h,取出自然冷却,得到黑色燃烧产物。然后,把焙烧产物研磨后放入650 ℃马弗炉,在空气气氛中焙烧6 h,取出在空气中自然冷却、研磨后得到产物LiNixMg0.05Mn1.95-xO4 (x=0.03-0.15)正极材料粉末。
2.根据权利要求1所述的合成方法,其特征在于所述加入以毫升计的柠檬酸燃料剂分散液的体积中需含有原料总质量5 wt.%柠檬酸。
3.根据权利要求1所述的合成方法,其特征在于所述机械搅拌时间为1-2h。
4.根据权利要求1所述的合成方法,其特征在于所述均匀混合物浆料不需要干燥,直接在瓷坩埚中加热直至发生燃烧反应。
5.根据权利要求1-4中任一项权利要求所述制备方法合成得到的材料为LiNixMg0.05Mn1.95-xO4 (x=0.03-0.15)正极材料。
6.根据权利要求5所述的LiNixMg0.05Mn1.95-xO4 (x=0.03-0.15)正极材料,其特征在于具有尖晶石型结构,空间点群为Fd3m,其形貌为多面体,颗粒尺寸在120-220nm之间。
7.根据权利要求4所述的LiNixMg0.05Mn1.95-xO4 (x=0.03-0.15)正极材料,其特征在于在充放电倍率为1 C时它具有下述电性能:
首次放电比容量为74.2~112.3 mAh·g-1
第1000次放电比容量为47.8~82.8 mAh·g-1
CN201811289091.XA 2018-10-31 2018-10-31 一种高性能镍镁共掺杂尖晶石型锰酸锂材料的制备方法 Pending CN109411743A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811289091.XA CN109411743A (zh) 2018-10-31 2018-10-31 一种高性能镍镁共掺杂尖晶石型锰酸锂材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811289091.XA CN109411743A (zh) 2018-10-31 2018-10-31 一种高性能镍镁共掺杂尖晶石型锰酸锂材料的制备方法

Publications (1)

Publication Number Publication Date
CN109411743A true CN109411743A (zh) 2019-03-01

Family

ID=65470609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811289091.XA Pending CN109411743A (zh) 2018-10-31 2018-10-31 一种高性能镍镁共掺杂尖晶石型锰酸锂材料的制备方法

Country Status (1)

Country Link
CN (1) CN109411743A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263237A (zh) * 2010-11-19 2011-11-30 中信国安盟固利动力科技有限公司 正尖晶石改性锰酸锂正极材料的制备方法
CN104143626A (zh) * 2014-07-25 2014-11-12 江南大学 一种阴阳离子共掺杂的锰酸锂正极材料及其制备方法
CN106450285A (zh) * 2016-11-25 2017-02-22 桂林理工大学 镁、钠双掺杂提高锰酸锂正极材料电化学性能的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263237A (zh) * 2010-11-19 2011-11-30 中信国安盟固利动力科技有限公司 正尖晶石改性锰酸锂正极材料的制备方法
CN104143626A (zh) * 2014-07-25 2014-11-12 江南大学 一种阴阳离子共掺杂的锰酸锂正极材料及其制备方法
CN106450285A (zh) * 2016-11-25 2017-02-22 桂林理工大学 镁、钠双掺杂提高锰酸锂正极材料电化学性能的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUANG ZHANG等: "Structure and Performance of Dual-doped LiMn2O4 Cathode Materials Prepared via Microwave Synthesis Method", 《ELECTROCHIMICA ACTA》 *
ZHOU XIANYAN等: "Preparation and electrochemical properties of spinel LiMn2O4 prepared by solid-state Mgmbustion synthesis", 《VACUUM》 *

Similar Documents

Publication Publication Date Title
CN108390022B (zh) 碳-金属氧化物复合包覆的锂电池三元正极材料、其制备方法及锂电池
CN109524642A (zh) 一种混合三元正极材料及其制备方法
Hu et al. Effects of synthesis conditions on layered Li [Ni1/3Co1/3Mn1/3] O2 positive-electrode via hydroxide co-precipitation method for lithium-ion batteries
CN113428907A (zh) 锂离子电池阴极组合物的制备方法和使用其的锂离子电池
Han et al. Preparation of layered Ni-rich LiNi0. 9Co0. 05Mn0. 05O2 cathode materials with excellent electrochemical properties by controllable lithium supply and sintering
CN110112371A (zh) 一种表面包覆改性尖晶石相正极材料的方法
CN210006820U (zh) 一种具有掺杂和包覆双修饰的锂离子电池正极结构
CN113437266A (zh) 用于锂离子电池的阴极组合物
JP7284281B2 (ja) 高い熱安定性を有する固体状充電式リチウムイオン電池用の固体電解質を含む正極材料
Jiang et al. Synthesis of High-Performance Cycling LiNi x Mn2− x O4 (x≤ 0.10) as Cathode Material for Lithium Batteries
Yang et al. A novel method for the preparation of submicron-sized LiNi0. 8Co0. 2O2 cathode material
CN109411743A (zh) 一种高性能镍镁共掺杂尖晶石型锰酸锂材料的制备方法
CN108400295B (zh) 一种银包覆尖晶石型LiMn2O4材料及其制备方法
CN109411731A (zh) 一种高倍率镍镁复合掺杂锰酸锂正极材料的制备方法
Şahan et al. Synthesis and cycling performance of double metal doped LiMn 2 O 4 cathode materials for rechargeable lithium ion batteries
CN109244453A (zh) 一种镍掺杂制备高性能锰酸锂正极材料的方法
CN113707873A (zh) 一种使用低共熔锂盐的锂离子电池正极材料及其制备方法
CN113437283A (zh) 一种锂复合化合物
CN109437334A (zh) 一种高倍率镍钴共掺杂尖晶石型锰酸锂材料的制备方法
Wang et al. Comparison of electrochemical performance of LiNi0. 7Co0. 15Mn0. 15O2 with different surface composition
CN110182780A (zh) 一种致密化球形磷酸铁锂及其制备方法
CN109301241A (zh) 一种高温长循环镍钴共掺杂锰酸锂正极材料的制备方法
CN109411744A (zh) 一种镁掺杂制备高性能锰酸锂正极材料的方法
RU2776156C1 (ru) Катодный материал с высокой объемной плотностью энергии для литий-ионных аккумуляторов
Hou et al. From Silica Leachate of Laterite Nickel Ore to Silicate Cathode Material: Preparation of Li2MnSiO4/C as Lithium-ion Battery Cathode Material by Two-Stage Roasting Method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190301