CN109396416A - 一种新型铁基非晶合金粉末及基于其的复合磁粉芯的制备方法 - Google Patents

一种新型铁基非晶合金粉末及基于其的复合磁粉芯的制备方法 Download PDF

Info

Publication number
CN109396416A
CN109396416A CN201811336934.7A CN201811336934A CN109396416A CN 109396416 A CN109396416 A CN 109396416A CN 201811336934 A CN201811336934 A CN 201811336934A CN 109396416 A CN109396416 A CN 109396416A
Authority
CN
China
Prior art keywords
powder
based amorphous
mixed
alloy
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811336934.7A
Other languages
English (en)
Inventor
孙忠裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yuhu New Materials Science And Technology Development Co Ltd
Original Assignee
Jiangsu Yuhu New Materials Science And Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Yuhu New Materials Science And Technology Development Co Ltd filed Critical Jiangsu Yuhu New Materials Science And Technology Development Co Ltd
Priority to CN201811336934.7A priority Critical patent/CN109396416A/zh
Publication of CN109396416A publication Critical patent/CN109396416A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • H01F1/1535Preparation processes therefor by powder metallurgy, e.g. spark erosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种新型铁基非晶合金粉末及基于其的复合磁粉芯的制备方法,是采用气雾化法将具有高非晶形成能力的FeSiBPNb合金制成铁基非晶合金粉末,然后将其与FeSi金属粉末复合并进行钝化、偶联和绝缘包覆处理,再经压制成型和退火处理,即获得铁基非晶复合磁粉芯。本发明采用气雾化法制备非晶合金粉末,可解决传统非晶带材破碎法存在的诸多问题;通过复合FeSi金属粉末,可以提高磁粉芯的密度,从而提高磁导率和饱和磁化强度,所制备的非晶复合磁粉芯在1MHz频率下磁导率可达到70H/m以上。

Description

一种新型铁基非晶合金粉末及基于其的复合磁粉芯的制备 方法
技术领域
本发明属于非晶软磁粉芯技术领域,具体涉及一种新型铁基非晶合金粉末及基于其的复合磁粉芯的制备方法。
背景技术
磁粉芯是采用粉末冶金工艺,由软磁合金粉末和绝缘介质混合压制而成的。传统的磁粉芯主要有铁粉芯、铁硅粉芯、铁硅铝粉芯、铁镍粉芯和铁镍钼粉芯等,其中:铁粉芯价格低廉,但高频特性和损耗特性不佳;铁硅粉芯价格适中、直流叠加性能优异,但高频损耗高;铁硅铝粉芯应用面广、损耗低、频率性能好、具有优良的性价比,但直流叠加特性不够理想;铁镍粉芯具有最佳的直流偏磁特性,但是价格较高、损耗也高;铁镍钼性能最优越,但是价格也最昂贵,高昂的价格限制了其应用范围。
铁硅硼非晶磁粉芯是最近发展起来的新型磁粉芯,具有高强度、高硬度及较好的软磁性能等特点,且成本低廉,近年来逐渐成为研究和应用的热点。付敏等(兵器材料科学与工程, 2014(37):90)研究了绝缘包覆工艺中的钝化剂、绝缘剂和粘结剂对带材破碎FeSiB非晶磁粉芯性能的影响,研究结果表明,磁粉芯的有效磁导率随绝缘包覆剂含量的增大而减小、品质因数Q随添加量的增加而增大,钝化剂的质量分数在4%~8%时,磁粉芯性能优异,磁导率达到45。王红霞等(金属功能材料,2010(17):8)研究了不同钝化剂及其含量对FeSiB非晶磁粉芯的性能影响,发现钝化工艺可显著改善磁粉芯的成形性,提高压制密度、改善磁性能,所选3种钝化剂中磷化液的钝化效果最好,当磷化液浓度为8%时,对非晶粉末钝化1小时后,有效磁导率衰减变化值最低,为25%左右,100kHz、0.05T条件下的损耗也最低,非晶磁粉芯具有最佳性能。申请号为201310018768.7的发明专利公布了一种软磁合金磁粉芯的制备方法,包括非晶带材脆化处理、粉碎成粉末、筛分和配比、钝化处理和绝缘包覆、压制成型、退火处理和喷涂等步骤,磁粉芯的高频性能优异。
然而,上述论文及专利中制备非晶磁粉芯的合金成分均为铁硅硼合金,由于铁硅硼系合金的非晶形成能力较低,仅能制备出数十微米厚的非晶带材,然后通过非晶带材破碎法来制备非晶粉末,在球磨破碎的过程中易引入杂质,导致粉末组分不均匀,同时,所获得的粉末多为带棱角的片状,难以绝缘,导致磁粉芯的损耗较高。
发明内容
为解决上述问题,本发明的目的在于提供一种新型铁基非晶合金粉末及基于其的复合磁粉芯的制备方法。
本发明为实现发明目的,采用如下技术方案:
本发明首先公开了一种新型铁基非晶合金粉末,其按照各元素原子百分比的成分构成为 (Fe0.76Si0.09B0.1P0.05)99Nb1
所述新型铁基非晶合金粉末的制备方法,包括如下步骤:
步骤一、按照所需铁基非晶合金粉末的成分,采用真空感应熔炼炉熔炼母合金;
步骤二、对所得母合金经二次熔融后,采用气雾化法雾化制粉,获得铁基非晶合金粉末;
步骤三、对所得铁基非晶合金粉末通过干燥和筛分处理,获得目标粒径的铁基非晶合金粉末。
优选的,所述气雾化法的雾化压力为60~120MPa。
优选的,步骤二所述二次熔融是将母合金在高于熔点150~300℃的温度下保温10~30min。
优选的,步骤三所述的筛分处理是将铁基非晶合金粉末通过200目筛网。
本发明进一步公开了一种新型铁基非晶复合磁粉芯的制备方法,包括如下步骤:
步骤一、将上述的铁基非晶合金粉末与Si质量含量为2~6%的FeSi金属粉末混合均匀,获得混合粉末,其中FeSi金属粉末的加入量占铁基非晶合金粉末质量的1~40%;
步骤二、分别采用钝化剂、偶联剂、绝缘剂和粘结剂对所述混合粉末依次进行钝化、偶联和绝缘包覆处理,获得处理后混合粉末;
步骤三、将所述处理后混合粉末压制成型,然后进行退火处理,即获得新型铁基非晶复合磁粉芯。
优选的,所述铁基非晶合金粉末的粒径不大于75μm,所述FeSi金属粉末的粒径为1~10μm。
优选的,所述钝化剂为磷化液,所述偶联剂为硅烷偶联剂,所述绝缘剂为云母粉,所述粘结剂为环氧树脂。
优选的,步骤二的具体方法为:将质量浓度为1wt~10wt%的磷化液加入到混合粉末中,直至漫过混合粉末,搅拌均匀、过滤、干燥;然后将钝化后混合粉末加入到占混合粉末质量 1wt~3wt%的偶联剂中,搅拌均匀、过滤、干燥;最后将偶联后混合粉末加入到占混合粉末质量1wt~5wt%的云母和占混合粉末质量1wt~5wt%的环氧树脂的丙酮溶液中,搅拌均匀、过滤、干燥,获得处理后混合粉末。
优选的,步骤三所述压制成型的压力为10~26t/cm2,所述退火处理是在400~550℃下进行1~3小时。退火可以在空气中进行,也可以在氩气、氮气等保护气氛中进行,还可以在氢气等还原性气氛中进行。
本发明具有如下有益效果:
1、本发明所筛选的(Fe0.76Si0.09B0.1P0.05)99Nb1合金的非晶形成能力高,可通过气雾化法制得铁基非晶合金粉末,避免了传统非晶带材破碎法存在的混入杂质、成分不均匀和存在尖锐棱角的问题,利于绝缘包覆,降低磁粉芯的损耗。
2、本发明在制备复合磁粉芯时,通过复合FeSi金属粉末,可以提高磁粉芯的密度,从而提高磁导率和饱和磁化强度,所制备的非晶复合磁粉芯在1MHz频率下磁导率可达到70H/m以上。
3、本发明通过压制成型和退火处理,得到了组织均匀、高强度、高致密度和磁导率恒定的铁基非晶复合磁粉芯。
附图说明
图1为实施例1中制备的铁基非晶合金粉末的XRD图谱。
图2为实施例1中制备的铁基非晶复合磁粉芯的外观形貌图。
图3为实施例1~4中铁基非晶复合磁粉芯及对比例1中非晶磁粉芯的磁导率随频率的变化趋势图。
图4为实施例2中经钝化、偶联和绝缘包覆处理后的混合粉末的XRD图谱。
具体实施方式
下面通过本发明优选的实施方式对制备新型铁基非晶合金粉末及其复合磁粉芯的方法进行说明。
实施例1
1、制备铁基非晶合金粉末
按照各元素原子百分比的成分构成为(Fe0.76Si0.09B0.1P0.05)99Nb1,采用真空感应熔炼炉熔炼母合金。
将母合金在高于熔点200℃的温度下保温10min,然后采用气雾化法雾化制粉,获得 (Fe0.76Si0.09B0.1P0.05)99Nb1合非晶合金粉末,雾化压力为60MPa,喷嘴直径为5mm。
将合金粉末在真空干燥箱中干燥后,用200目筛网对粉末进行筛分,获得目标粉末,用X射线衍射仪(XRD)检测其结构,结果如图1所示,可以看出,XRD图谱上没有任何结晶相对应的衍射峰,仅有一个宽的漫散射峰,说明所制备的粉末是完全非晶态的。
2、制备铁基非晶复合磁粉芯
将上述的(Fe0.76Si0.09B0.1P0.05)99Nb1非晶合金粉末与Si质量含量为2~6%的FeSi金属粉末混合均匀,获得混合粉末,其中FeSi金属粉末的加入量占铁基非晶合金粉末质量的10%。
将质量浓度为2wt%的磷化液加入到混合粉末中,直至漫过混合粉末,搅拌均匀、过滤、干燥;然后将钝化后混合粉末加入到占混合粉末质量1wt%的偶联剂中,搅拌均匀、过滤、干燥;最后将偶联后混合粉末加入到占混合粉末质量1wt%的云母和占混合粉末质量2wt%的环氧树脂的丙酮溶液中,搅拌均匀、过滤、干燥,然后经过100目筛网重新筛分,获得处理后混合粉末。
将处理后混合粉末投入到液压成型机中,使用20t/cm2的压强压制成外径27mm、内径 14.8mm、高度为6.5mm(Φ27×14.8×6.5mm)的环形磁粉芯,保压时间为5s。成型后磁粉芯的表面组成均匀,无明显缺陷,磁粉芯的外观形貌如图2所示。
将成型的磁粉芯在400℃下进行1个小时的热处理,获得目标产品铁基非晶复合磁粉芯,测定所得磁粉芯的磁导率、损耗和直流偏置性能。
经测试,本实施例所得磁粉芯在1MHz频率下的磁导率为60H/m,同时,频率稳定性优异,如图3(a)所示;在50kHz、0.1T条件下,损耗为159W/kg;在100Oe外加磁场下,磁导率仍能保持在未加磁场时的78%。
实施例2
本实施例按实施例1相同的方法制备铁基非晶合金粉末和铁基非晶复合磁粉芯,区别仅在于FeSi金属粉末的加入量占铁基非晶合金粉末质量的20%。
经测试,本实施例所得磁粉芯在1MHz频率下的磁导率为67H/m,同时,频率稳定性优异,如图3(b)所示;在50kHz、0.1T条件下,损耗为170W/kg;在100Oe外加磁场下,磁导率仍能保持在未加磁场时的76%。
实施例3
本实施例按实施例1相同的方法制备铁基非晶合金粉末和铁基非晶复合磁粉芯,区别仅在于FeSi金属粉末的加入量占铁基非晶合金粉末质量的30%。
经测试,本实施例所得磁粉芯在1MHz频率下的磁导率为70.5H/m,如图3(c)所示;在50kHz、0.1T条件下,损耗为178W/kg;在100Oe外加磁场下,磁导率仍能保持在未加磁场时的76%。
实施例4
本实施例按实施例1相同的方法制备铁基非晶合金粉末和铁基非晶复合磁粉芯,区别仅在于:FeSi金属粉末的加入量占铁基非晶合金粉末质量的40%。
经测试,本实施例所得磁粉芯在1MHz频率下的磁导率为71H/m,如图3(d)所示;在50kHz、0.1T条件下,损耗为178W/kg;在100Oe外加磁场下,磁导率仍能保持在未加磁场时的77%。
对比例1
1、制备铁基非晶合金粉末
同实施例1。
2、制备铁基非晶磁粉芯
将质量浓度为2wt%的磷化液加入到步骤1制备的(Fe0.76Si0.09B0.1P0.05)99Nb1非晶合金粉末中,直至漫过粉末,搅拌均匀、过滤、干燥;然后将钝化后粉末加入到占粉末质量1wt%的偶联剂中,搅拌均匀、过滤、干燥;最后将偶联后粉末加入到占粉末质量1wt%的云母和占粉末质量2wt%的环氧树脂的丙酮溶液中,搅拌均匀、过滤、干燥,然后经过100目筛网重新筛分,获得处理后粉末。
将处理后粉末投入到液压成型机中,使用20t/cm2的压强压制成尺寸为Φ27×14.8×6.5mm 的环形磁粉芯,保压时间为5s。成型后磁粉芯的表面组成均匀,无明显缺陷。将成型的磁粉芯在400℃下进行1个小时的热处理,获得目标产品铁基非晶磁粉芯,测定所得磁粉芯的磁导率、损耗和直流偏置性能。
经测试,本实施例所得磁粉芯在1MHz频率下的磁导率为56H/m;在50kHz、0.1T条件下,损耗为176W/kg;在100Oe外加磁场下,磁导率仍能保持在未加磁场时的77%。
从图3可以看到,实施例1、实施例2和对比例1产品的磁导率随着频率的变化较为稳定,但实施例2的磁导率最高,实施例3、实施例4产品的磁导率随着频率的增加而减小,且不稳定。本发明的最优方案为实施例2。
用X射线衍射仪检测实施例2经钝化、偶联和绝缘包覆处理后的混合粉末,如图4所示,通过与标准卡片PDF#87-0722对比,得到45°、65°、83°处的衍射峰属于Fe的衍射峰,在20°处的非晶峰属于包裹物的衍射峰。因为Fe的衍射峰较强,所以覆盖了原来45°处的非晶粉末的非晶峰。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或等同替换等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种新型铁基非晶合金粉末,其特征在于:所述铁基非晶合金粉末按照各元素原子百分比的成分构成为(Fe0.76Si0.09B0.1P0.05)99Nb1
2.一种权利要求1所述新型铁基非晶合金粉末的制备方法,其特征在于,包括如下步骤:
步骤一、按照所需铁基非晶合金粉末的成分,采用真空感应熔炼炉熔炼母合金;
步骤二、对所得母合金经二次熔融后,采用气雾化法雾化制粉,获得铁基非晶合金粉末;
步骤三、对所得铁基非晶合金粉末通过干燥和筛分处理,获得目标粒径的铁基非晶合金粉末。
3.根据权利要求2所述的新型铁基非晶合金粉末的制备方法,其特征在于:所述气雾化法的雾化压力为60~120MPa。
4.根据权利要求2所述的新型铁基非晶合金粉末的制备方法,其特征在于:步骤二所述二次熔融是将母合金在高于熔点150~300℃的温度下保温10~30min。
5.根据权利要求2所述的新型铁基非晶合金粉末的制备方法,其特征在于:步骤三所述的筛分处理是将铁基非晶合金粉末通过200目筛网。
6.一种新型铁基非晶复合磁粉芯的制备方法,其特征在于,包括如下步骤:
步骤一、将权利要求1所述的铁基非晶合金粉末与Si质量含量为2~6%的FeSi金属粉末混合均匀,获得混合粉末,其中FeSi金属粉末的加入量占铁基非晶合金粉末质量的1~40%;
步骤二、分别采用钝化剂、偶联剂、绝缘剂和粘结剂对所述混合粉末依次进行钝化、偶联和绝缘包覆处理,获得处理后混合粉末;
步骤三、将所述处理后混合粉末压制成型,然后进行退火处理,即获得新型铁基非晶复合磁粉芯。
7.根据权利要求6所述的新型铁基非晶复合磁粉芯的制备方法,其特征在于:所述铁基非晶合金粉末的粒径不大于75μm,所述FeSi金属粉末的粒径为1~10μm。
8.根据权利要求6所述的新型铁基非晶复合磁粉芯的制备方法,其特征在于:所述钝化剂为磷化液,所述偶联剂为硅烷偶联剂,所述绝缘剂为云母粉,所述粘结剂为环氧树脂。
9.根据权利要求6所述的新型铁基非晶复合磁粉芯的制备方法,其特征在于,步骤二的具体方法为:
将质量浓度为1wt~10wt%的磷化液加入到混合粉末中,直至漫过混合粉末,搅拌均匀、过滤、干燥;然后将钝化后混合粉末加入到占混合粉末质量1wt~3wt%的偶联剂中,搅拌均匀、过滤、干燥;最后将偶联后混合粉末加入到占混合粉末质量1wt~5wt%的云母和占混合粉末质量1wt~5wt%的环氧树脂的丙酮溶液中,搅拌均匀、过滤、干燥,获得处理后混合粉末。
10.根据权利要求6所述的新型铁基非晶复合磁粉芯的制备方法,其特征在于:步骤三所述压制成型的压力为10~26t/cm2,所述退火处理是在400~550℃下进行1~3小时。
CN201811336934.7A 2018-11-12 2018-11-12 一种新型铁基非晶合金粉末及基于其的复合磁粉芯的制备方法 Pending CN109396416A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811336934.7A CN109396416A (zh) 2018-11-12 2018-11-12 一种新型铁基非晶合金粉末及基于其的复合磁粉芯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811336934.7A CN109396416A (zh) 2018-11-12 2018-11-12 一种新型铁基非晶合金粉末及基于其的复合磁粉芯的制备方法

Publications (1)

Publication Number Publication Date
CN109396416A true CN109396416A (zh) 2019-03-01

Family

ID=65472538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811336934.7A Pending CN109396416A (zh) 2018-11-12 2018-11-12 一种新型铁基非晶合金粉末及基于其的复合磁粉芯的制备方法

Country Status (1)

Country Link
CN (1) CN109396416A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110834091A (zh) * 2019-11-25 2020-02-25 佛山市中研非晶科技股份有限公司 非晶成品粉末及其制备方法
CN112846180A (zh) * 2021-01-05 2021-05-28 北京科技大学 一种通过粉末烧结制备高磁性能含磷硅钢薄片的方法
CN113345703A (zh) * 2021-04-19 2021-09-03 马鞍山市鑫洋永磁有限责任公司 一种复合磁粉的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150444A (ja) * 1987-12-08 1989-06-13 Toyobo Co Ltd 一方向樹枝状組織を有する高靭性及び高柔軟性の金属繊維
CN106229104A (zh) * 2016-08-31 2016-12-14 北京康普锡威科技有限公司 一种软磁复合粉末及其磁粉芯制备方法
CN107170575A (zh) * 2017-05-18 2017-09-15 河北工业大学 一种软磁复合粉芯的制备方法
CN107818854A (zh) * 2017-10-30 2018-03-20 东莞理工学院 一种铁基非晶态软磁粉芯的制备方法及应用
CN108010654A (zh) * 2017-10-27 2018-05-08 东莞理工学院 一种新型球形铁基非晶合金粉末及非晶磁粉芯的制备方法
CN108172359A (zh) * 2017-11-28 2018-06-15 嘉兴长维新材料科技有限公司 球形铁基非晶合金粉末及其制备方法和在制备非晶磁粉芯中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150444A (ja) * 1987-12-08 1989-06-13 Toyobo Co Ltd 一方向樹枝状組織を有する高靭性及び高柔軟性の金属繊維
CN106229104A (zh) * 2016-08-31 2016-12-14 北京康普锡威科技有限公司 一种软磁复合粉末及其磁粉芯制备方法
CN107170575A (zh) * 2017-05-18 2017-09-15 河北工业大学 一种软磁复合粉芯的制备方法
CN108010654A (zh) * 2017-10-27 2018-05-08 东莞理工学院 一种新型球形铁基非晶合金粉末及非晶磁粉芯的制备方法
CN107818854A (zh) * 2017-10-30 2018-03-20 东莞理工学院 一种铁基非晶态软磁粉芯的制备方法及应用
CN108172359A (zh) * 2017-11-28 2018-06-15 嘉兴长维新材料科技有限公司 球形铁基非晶合金粉末及其制备方法和在制备非晶磁粉芯中的应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110834091A (zh) * 2019-11-25 2020-02-25 佛山市中研非晶科技股份有限公司 非晶成品粉末及其制备方法
CN112846180A (zh) * 2021-01-05 2021-05-28 北京科技大学 一种通过粉末烧结制备高磁性能含磷硅钢薄片的方法
CN113345703A (zh) * 2021-04-19 2021-09-03 马鞍山市鑫洋永磁有限责任公司 一种复合磁粉的制备方法
CN113345703B (zh) * 2021-04-19 2022-11-29 马鞍山市鑫洋永磁有限责任公司 一种复合磁粉的制备方法

Similar Documents

Publication Publication Date Title
CN105810383A (zh) 一种铁基纳米晶磁粉芯的制备方法
CN109396416A (zh) 一种新型铁基非晶合金粉末及基于其的复合磁粉芯的制备方法
KR101296818B1 (ko) 압분자심 및 초크
CN108172359A (zh) 球形铁基非晶合金粉末及其制备方法和在制备非晶磁粉芯中的应用
CN100486738C (zh) Fe-6.5Si合金粉末的制造方法及磁粉芯的制造方法
Chang et al. Low core loss combined with high permeability for Fe-based amorphous powder cores produced by gas atomization powders
JP6436082B2 (ja) 圧粉磁心、これを用いたコイル部品および圧粉磁心の製造方法
JP5058031B2 (ja) コアシェル型磁性粒子、高周波磁性材料および磁性シート
CN107170575B (zh) 一种软磁复合粉芯的制备方法
CN108010654A (zh) 一种新型球形铁基非晶合金粉末及非晶磁粉芯的制备方法
CN107578877B (zh) 一种磁导率μ=90的铁基纳米晶磁粉芯及其制备方法
CN106816252A (zh) 一种高绝缘电阻FeSiCr金属软磁材料的制造方法
JP6530164B2 (ja) ナノ結晶軟磁性合金粉末およびそれを用いた圧粉磁芯
CN109273185A (zh) 一种用铁基纳米晶合金粉末制备磁粉芯的方法
WO2009067861A1 (fr) Poudre d'alliage magnétique doux amorphe à base de fe, noyau de poudre magnétique comprenant la poudre et son procédé de fabrication
WO2018179812A1 (ja) 圧粉磁心
CN100413002C (zh) 电磁波吸收薄片及其制造方法
CN108461270A (zh) 一种低损耗非晶磁粉芯的制备方法
CN107275033A (zh) 一种软磁合金材料及其制备方法
CN110085385A (zh) 一种高磁导率复合材料粉末及其制备方法
CN105268997A (zh) 一种NiFe204@α-Fe核壳结构微纳米复合材料的制备方法
KR20170131209A (ko) 압분 코어, 당해 압분 코어의 제조 방법, 그 압분 코어를 구비하는 인덕터, 및 그 인덕터가 실장된 전자·전기 기기
CN104795195A (zh) 一种铁硅铝磁粉芯
CN111696747A (zh) 一种低损耗铁硅铝软磁粉心及其制备方法
CN111696744A (zh) 一种高直流偏置性能铁硅铝软磁粉心及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190301