CN109374740B - 基于阵列误差校正的合成孔径music损伤定位方法 - Google Patents

基于阵列误差校正的合成孔径music损伤定位方法 Download PDF

Info

Publication number
CN109374740B
CN109374740B CN201811108068.6A CN201811108068A CN109374740B CN 109374740 B CN109374740 B CN 109374740B CN 201811108068 A CN201811108068 A CN 201811108068A CN 109374740 B CN109374740 B CN 109374740B
Authority
CN
China
Prior art keywords
array
signal
damage
music
time delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811108068.6A
Other languages
English (en)
Other versions
CN109374740A (zh
Inventor
袁慎芳
鲍峤
邱雷
王妍雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201811108068.6A priority Critical patent/CN109374740B/zh
Publication of CN109374740A publication Critical patent/CN109374740A/zh
Application granted granted Critical
Publication of CN109374740B publication Critical patent/CN109374740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0427Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了基于阵列误差校正的合成孔径MUSIC损伤定位方法。本发明首先根据激励源阵列各阵元至扫描位置的距离计算其驱动时的响应信号时延,选择对应扫描方向上的事先测量的激励源阵列相位误差补偿信号时延并叠加;然后经MUSIC算法对叠加的阵列信号预处理后,同样选择对应扫描方向上的传感器阵列相位误差校正MUSIC算法中的导向矢量并计算空间谱;最终完成监测区域搜索后,寻找空间谱谱峰,即为损伤位置。本发明提高了MUSIC损伤定位方法在复合材料航空结构上的定位精度和可靠性,在真实复合材料结构的损伤监测中具有广泛的应用前景。

Description

基于阵列误差校正的合成孔径MUSIC损伤定位方法
技术领域
本发明属于工程结构健康监测技术领域,特别涉及了一种合成孔径MUSIC损伤定位方法。
背景技术
复合材料由于比重小、比强度高、比模量大并具有可设计性,因此逐步应用于航空航天领域。但复合材料结构在使用过程中容易受到低速冲击而造成结构内部损伤。这些内部损伤不仅使得结构强度大幅度下降且常规检测方法无法检测出来,使得结构存在严重的安全隐患。
基于Lamb波的结构健康监测方法具有对小损伤敏感、传播距离远、可实现大面积区域监测以及既可主动监测也可被动监测等特点。因此,基于Lamb波的结构健康监测方法被公认为最有前景的方法之一。由于传感器阵列易于在结构上布置且具有方向扫描的功能,阵列信号处理方法逐渐被引入结构健康监测区域。多重信号分类(Multiple signalclassification,MUSIC)算法是近年来新引入Lamb波结构健康监测的一种阵列信号处理方法。其算法的基本思想是将任意阵列输出数据的协方差矩阵进行特征值分解,从而得到与信号分量相对应的信号子空间和与信号分量相正交的噪声子空间,然后利用这两个子空间的正交性来估计信号的参数。
然而,由于Lamb波在复合材料结构上传播时衰减快、信噪比低,从而使得MUSIC算法的定位精度下降;其次,传感器阵列的响应信号存在各种幅值、相位误差,使得理论计算的导向矢量与实际的阵列导向矢量之间存在一定程度的偏差,此时MUSIC算法的定位精度也会急剧下降。特别是航空复合材料结构的各向异性引起Lamb波传播速度沿不同方向而差异明显,从而导致阵列导向矢量产生相位误差。
因此,在基于MUSIC算法的损伤定位中需要提高损伤散射信号的信噪比,且对阵列误差进行校正是非常必要的。
发明内容
为了解决上述背景技术提出的技术问题,本发明提供基于阵列误差校正的合成孔径MUSIC损伤定位方法,旨在提高MUSIC损伤定位方法在复合材料航空结构上的定位精度和可靠性。
为了实现上述技术目的,本发明的技术方案为:
一种基于阵列误差校正的合成孔径MUSIC损伤定位方法,包括以下步骤:
(1)沿传感器阵列S各方向上施加冲击,采集冲击阵列响应信号;利用小波变换从冲击阵列响应信号中提取相应的窄带信号,根据自适应阈值法测量各阵元相对于参考阵元的实际时延;根据阵列信号传播模型,计算各阵元相对于参考阵元的理论时延;将实际时延与理论时延作差,计算获得传感器阵列S各方向上的阵列相位误差;
(2)按照步骤(1)中的过程,测量获得激励源阵列A各方向上的阵列相位误差;
(3)在结构处于健康状态时,轮流驱动激励源阵列A中的阵元,并采集传感器阵列S的响应信号,记为基准信号;在损伤监测过程中,采用同样的驱动方法采集传感器阵列S的响应信号,记为监测信号;将监测信号减去基准信号,获得损伤的散射阵列信号;
(4)根据监测区域的尺寸,设置MUSIC算法的搜索范围及初始扫描位置;
(5)相对于参考激励阵元,计算激励源阵列A各阵元至扫描位置的相对距离;根据Lamb波传播速度,计算激励源阵列A各阵元至扫描位置的相对时延,再结合步骤(2)得到的激励源阵列A的阵列相位误差,补偿此时延,并延时叠加获得聚焦的损伤散射阵列信号;
(6)对聚焦的损伤散射阵列信号的协方差矩阵进行特征分解,获得小特征值对应的特征向量张成的噪声子空间;
(7)计算导向矢量,并结合步骤(1)得到的传感器阵列S的阵列相位误差校正导向矢量;
(8)根据步骤(6)中获得的噪声子空间和步骤(7)中计算的导向矢量计算当前扫描位置的空间谱;
(9)根据设置的MUSIC算法搜索步进,设置下一步扫描位置,重复步骤(5)~(8),直至搜索完监测区域;
(10)按照获得的每个扫描位置的空间谱,对监测区域进行成像;搜索监测区域的空间谱谱峰,即为损伤位置。
进一步地,所述阵列A和阵列S均为一维均匀线阵,两个阵列均包含2M+1个阵元,阵列A中的各个阵元用Ai表示,阵列S中的各个阵元用Si表示,i=-M,-(M-1),…,0,…,M-1,M。
进一步地,在步骤(1)中,以传感器阵列S中心为圆心、半径为R的圆上施加冲击,则各阵元相对于参考阵元的理论时延Δtq
Figure BDA0001808403540000031
上式中,d为传感器阵列的阵元间距,θ为冲击角度,c为Lamb波的传播速度,q=-M,-(M-1),…,0,…,M-1,M。
进一步地,在步骤(1)中,传感器阵列S的阵列相位误差ΓS(θ):
Figure BDA0001808403540000032
上式中,diag{}表示将数组元素组成对角矩阵,Δtq′为各阵元相对于参考阵元的实际时延,e为自然常数,j为虚数单位,ω表示频域。
进一步地,在步骤(5)中,激励源阵列A各阵元至扫描位置的相对时延tp
Figure BDA0001808403540000041
上式中,r′和θ′分别为扫描位置的半径和角度,l为激励源阵列与传感器阵列之间的间距。
进一步地,在步骤(5)中,聚焦的损伤散射阵列信号X:
Figure BDA0001808403540000042
上式中,Xp表示激励源阵列A中第p个阵元激励时采集到的传感器阵列S的损伤散射信号,
Figure BDA0001808403540000043
表示沿θ′方向上激励源阵列A的阵列相位误差对角阵中的第p个元素,ω0为传播信号的中心频率。
进一步地,在步骤(6)中,聚焦的损伤散射阵列信号的协方差矩阵
Figure BDA0001808403540000044
Figure BDA0001808403540000045
上式中,上标H表示Hermitian转置,L为采集信号长度;
Figure BDA0001808403540000046
进行特征值分解:
Figure BDA0001808403540000047
上式中,US、UN分别为信号子空间与噪声子空间,∑S、∑N分别为信号子空间对应的大特征值与噪声子空间对应的小特征值。
进一步地,在步骤(7)中,计算扫描位置(r′,θ′)上的导向矢量A(r′,θ′):
A(r′,θ′)=[a-M(r′,θ′),a-M+1(r′,θ′),…,aM(r′,θ′)]T
Figure BDA0001808403540000048
Figure BDA0001808403540000049
上式中,τq表示传感器阵列中各阵元相对参考阵元的波达到时间延迟,ω0为传播信号的中心频率;
根据扫描方向上的传感器阵列S的阵列相位误差对导向矢量进行校正:
A′(r′,θ′)=ΓS(θ′)A(r′,θ′)
上式中,A′(r′,θ′)为校正后的导向矢量。
进一步地,在步骤(8)中,计算当前扫描位置的空间谱PMUSIC(r′,θ′):
Figure BDA0001808403540000051
采用上述技术方案带来的有益效果:
本发明有效提高了损伤散射阵列信号的信噪比,测量了航空结构上压电传感器阵列的相位误差,补偿了阵列相位误差对合成孔径聚焦性能和MUSIC算法定位精度的影响,提高了MUSIC损伤定位方法在复合材料航空结构上的定位精度和可靠性。
附图说明
图1为本发明的方法流程图;
图2为实施例中复合材料结构及传感器阵列布置示意图;
图3为实施例中的冲击响应信号图和窄带阵列信号图,其中(a)为冲击响应阵列信号图,(b)为提取的窄带阵列信号图;
图4为实施例中自适应阈值法测量时延示意图;
图5为实施例中阵列相位误差测量结果图,其中(a)为激励源阵列的相位误差图;(b)传感器阵列的相位误差图;
图6为实施例中损伤位置示意图;
图7为实施例中散射阵列信号图;
图8为实施例中MUSIC损伤成像结果图。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
如图1所示,本发明提出了一种基于阵列误差校正的合成孔径MUSIC损伤定位方法,具体步骤如下。
步骤1:沿传感器阵列各方向上施加冲击,采集冲击阵列响应信号;利用小波变换提取相应的窄带信号,根据自适应阈值法测量各阵元相对于参考阵元的实际时延;根据阵列信号传播模型,计算各阵元的理论时延;将实际时延与理论时延作差,计算获得传感器阵列各方向上的阵列相位误差;
步骤2:按照步骤1中的步骤,测量激励源阵列各方向上的阵列相位误差;
步骤3:在结构处于健康状态时,轮流驱动激励源阵列中的阵元,并采集传感器阵列的响应信号,记为基准信号;损伤监测过程中,采用同样的驱动方法采集传感器阵列的响应信号,记为监测信号;将监测信号减去基准信号,获得损伤的散射阵列信号;
步骤4:根据监测区域的尺寸,设置MUSIC算法的搜索范围及初始扫描位置;
步骤5:相对于参考激励阵元,计算激励源阵列各阵元至扫描位置的相对距离;结合Lamb波传播速度,计算激励源阵列各阵元至扫描位置的相对时延;结合事先测量的激励源阵列的阵列相位误差,补偿此时延,并延时叠加获得聚焦的损伤散射阵列信号;
步骤6:对聚焦的损伤散射阵列信号的协方差矩阵进行特征分解,获得小特征值对应的特征向量张成的噪声子空间;
步骤7:计算导向矢量,并结合事先测量的传感器阵列的阵列相位误差校正导向矢量;
步骤8:根据步骤6中获得的噪声子空间和步骤7中计算的导向矢量计算该扫描位置的空间谱;
步骤9:根据设置的MUSIC算法搜索步进,设置下一步扫描位置,重复步骤5~8,直至搜索完监测区域;
步骤10:按照获得的每个扫描位置的空间谱,对监测区域进行成像;搜索监测区域的空间谱谱峰,即为损伤位置。
为了更好地说明本发明,下文采用加筋复合材料结构上的损伤实验说明本方法的具体实施过程。
如图2所示,加筋复合材料结构的尺寸为72cm×40cm×0.3cm。结构表面布置了激励源阵列A和传感器阵列S,均为一维均匀线阵。复合材料板中间有一条加强筋,加强筋宽为5cm。传感器阵列之间的距离设定为20cm。其中,阵列A与阵列S之间经过加强筋。每组一维线型阵列均为7个阵元,阵元间距为1.3cm。
针对复合材料结构上的损伤定位,具体实施方式如下:
1.测量激励源阵列和传感器阵列的相位误差
1.1施加冲击
以测量传感器阵列的相位误差为例。以传感器阵列中心为圆心,半径为R=15cm的圆上施加冲击,冲击角度由0°至180°,步进为15°。采集传感器阵列的冲击响应阵列信号,如图3中的(a)所示。
1.2提取窄带信号
利用Shannon小波变换,可从各阵元的冲击响应信号中提取主动激励频率时对应的窄带信号,如图3中的(b)所示。根据提取的窄带信号,采用自适应阈值法可得到各阵元相对于参考阵元的实际到达时间差,Δtq′,如图4所示。本实验中,自适应系数设置为C=0.7,Vp为直达波次波峰的幅值。
1.3计算阵列相位误差
假设某冲击角度为θ,那么冲击源至阵元q的距离可求得:
Figure BDA0001808403540000081
式中,d为传感器阵列的阵元间距。根据Lamb波传播速度,可求得各阵元相对于参考阵元的理论到达时间差,即:
Figure BDA0001808403540000082
式中,c为Lamb波的传播速度。那么阵列相位误差即为实际到达时间差与理论到达时间差的作差:
Figure BDA0001808403540000083
式中,diag{}表示将数组元素组成对角矩阵。按照同样的步骤便可测量激励源阵列的阵列相位误差ΓA(θ),如图5所示。
2.采集损伤散射阵列信号
在结构处于健康状态时,轮流驱动激励源阵列中的阵元,并采集传感器阵列的响应信号,记为基准信号;损伤监测过程中,采用同样的驱动方法采集传感器阵列的响应信号,记为监测信号;将监测信号减去基准信号,获得损伤的散射阵列信号,记作Xp,表示激励源阵列中第p个阵元激励时采集到的传感器阵列的损伤散射信号,如图6、7所示。
3.合成孔径获得聚焦损伤散射信号
当MUSIC算法扫描位置为(r′,θ′),可计算激励源阵列各阵元至扫描位置的相对距离,结合Lamb波传播速度,计算激励源阵列各阵元至扫描位置的相对时延:
Figure BDA0001808403540000084
式中,
Figure BDA0001808403540000091
为激励源阵列第p个阵元至损伤的距离,
Figure BDA0001808403540000092
为激励源阵列中参考阵元至损伤的距离,l为激励源阵列与传感器阵列之间的间距。结合事先测量的激励源阵列的阵列相位误差,补偿此时延,并延时叠加获得聚焦的损伤散射阵列信号:
Figure BDA0001808403540000093
式中,
Figure BDA0001808403540000094
表示沿θ′方向上阵列相位误差对角阵中的第p个元素,ω0为传播信号的中心频率。
4.补偿导向矢量并计算空间谱
计算聚焦的损伤散射阵列信号的协方差矩阵:
Figure BDA0001808403540000095
式中XH为X的Hermitian转置,L为采集信号长度。
Figure BDA0001808403540000096
进行特征值分解:
Figure BDA0001808403540000097
式中,US、UN分别为信号子空间与噪声子空间,∑S、∑N分别为信号子空间对应的大特征值与噪声子空间对应的小特征值。
同时根据阵列信号传播模型,可计算位置(r′,θ′)上的导向矢量,
Figure BDA0001808403540000098
式中,
Figure BDA0001808403540000099
为传感器阵列第q个阵元至损伤的距离,τq表示传感器阵列中各阵元相对参考阵元的波达到时间延迟。根据扫描方向上的传感器阵列相位误差对导向矢量进行补偿:
A′(r′,θ′)=ΓS(θ′)A(r′,θ′) (9)
根据校正的导向矢量,计算基于MUSIC算法的空间谱:
Figure BDA0001808403540000101
5.搜索监测区域并实现损伤定位
在区域内进行方位角、距离的二维搜索,方位角和距离的搜索步长分别为1度和1mm。重复步骤3和步骤4,直至搜索完监测区域,获得整个监测区域的空间谱,如图8所示。在空间谱图中存在一个明显的波峰,即表示损伤的位置。其中横坐标表示信号源的波达方向,此为损伤方向的初步估计
Figure BDA0001808403540000102
纵坐标表示信号源的距离,此为损伤方向的初步估计
Figure BDA0001808403540000103
实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (9)

1.一种基于阵列误差校正的合成孔径MUSIC损伤定位方法,其特征在于,包括以下步骤:
(1)沿传感器阵列S各方向上施加冲击,采集冲击阵列响应信号;利用小波变换从冲击阵列响应信号中提取相应的窄带信号,根据自适应阈值法测量各阵元相对于参考阵元的实际时延;根据阵列信号传播模型,计算各阵元相对于参考阵元的理论时延;将实际时延与理论时延作差,计算获得传感器阵列S各方向上的阵列相位误差;
(2)按照步骤(1)中的过程,测量获得激励源阵列A各方向上的阵列相位误差;
(3)在结构处于健康状态时,轮流驱动激励源阵列A中的阵元,并采集传感器阵列S的响应信号,记为基准信号;在损伤监测过程中,采用同样的驱动方法采集传感器阵列S的响应信号,记为监测信号;将监测信号减去基准信号,获得损伤的散射阵列信号;
(4)根据监测区域的尺寸,设置MUSIC算法的搜索范围及初始扫描位置;
(5)相对于参考激励阵元,计算激励源阵列A各阵元至扫描位置的相对距离;根据Lamb波传播速度,计算激励源阵列A各阵元至扫描位置的相对时延,再结合步骤(2)得到的激励源阵列A的阵列相位误差,补偿此时延,并延时叠加获得聚焦的损伤散射阵列信号;
(6)对聚焦的损伤散射阵列信号的协方差矩阵进行特征分解,获得小特征值对应的特征向量张成的噪声子空间;
(7)计算导向矢量,并结合步骤(1)得到的传感器阵列S的阵列相位误差校正导向矢量;
(8)根据步骤(6)中获得的噪声子空间和步骤(7)中计算的导向矢量计算当前扫描位置的空间谱;
(9)根据设置的MUSIC算法搜索步进,设置下一步扫描位置,重复步骤(5)~(8),直至搜索完监测区域;
(10)按照获得的每个扫描位置的空间谱,对监测区域进行成像;搜索监测区域的空间谱谱峰,即为损伤位置。
2.根据权利要求1所述基于阵列误差校正的合成孔径MUSIC损伤定位方法,其特征在于:所述阵列A和阵列S均为一维均匀线阵,两个阵列均包含2M+1个阵元,阵列A中的各个阵元用Ai表示,阵列S中的各个阵元用Si表示,i=-M,-(M-1),…,0,…,M-1,M。
3.根据权利要求2所述基于阵列误差校正的合成孔径MUSIC损伤定位方法,其特征在于:在步骤(1)中,以传感器阵列S中心为圆心、半径为R的圆上施加冲击,则各阵元相对于参考阵元的理论时延Δtq
Figure FDA0002436550250000021
上式中,d为传感器阵列的阵元间距,θ为冲击角度,c为Lamb波的传播速度,q=-M,-(M-1),…,0,…,M-1,M。
4.根据权利要求3所述基于阵列误差校正的合成孔径MUSIC损伤定位方法,其特征在于:在步骤(1)中,传感器阵列S的阵列相位误差ΓS(θ):
Figure FDA0002436550250000022
上式中,diag{}表示将数组元素组成对角矩阵,Δtq′为各阵元相对于参考阵元的实际时延,e为自然常数,j为虚数单位,ω表示频域。
5.根据权利要求4所述基于阵列误差校正的合成孔径MUSIC损伤定位方法,其特征在于:在步骤(5)中,激励源阵列A各阵元至扫描位置的相对时延tp
Figure FDA0002436550250000031
上式中,r′和θ′分别为扫描位置的半径和角度,l为激励源阵列与传感器阵列之间的间距。
6.根据权利要求5所述基于阵列误差校正的合成孔径MUSIC损伤定位方法,其特征在于:在步骤(5)中,聚焦的损伤散射阵列信号X:
Figure FDA0002436550250000032
上式中,Xp表示激励源阵列A中第p个阵元激励时采集到的传感器阵列S的损伤散射信号,
Figure FDA0002436550250000033
表示沿θ′方向上激励源阵列A的阵列相位误差对角阵中的第p个元素,ω0为传播信号的中心频率。
7.根据权利要求6所述基于阵列误差校正的合成孔径MUSIC损伤定位方法,其特征在于:在步骤(6)中,聚焦的损伤散射阵列信号的协方差矩阵
Figure FDA0002436550250000034
Figure FDA0002436550250000035
上式中,上标H表示Hermitian转置,L为采集信号长度;
Figure FDA0002436550250000036
进行特征值分解:
Figure FDA0002436550250000037
上式中,US、UN分别为信号子空间与噪声子空间,∑S、∑N分别为信号子空间对应的大特征值与噪声子空间对应的小特征值。
8.根据权利要求7所述基于阵列误差校正的合成孔径MUSIC损伤定位方法,其特征在于:在步骤(7)中,计算扫描位置(r′,θ′)上的导向矢量A(r′,θ′):
A(r′,θ′)=[a-M(r′,θ′),a-M+1(r′,θ′),…,aM(r′,θ′)]T
Figure FDA0002436550250000038
Figure FDA0002436550250000039
上式中,τq表示传感器阵列中各阵元相对参考阵元的波达到时间延迟,ω0为传播信号的中心频率;
根据扫描方向上的传感器阵列S的阵列相位误差对导向矢量进行校正:
A′(r′,θ′)=ΓS(θ′)A(r′,θ′)
上式中,A′(r′,θ′)为校正后的导向矢量。
9.根据权利要求8所述基于阵列误差校正的合成孔径MUSIC损伤定位方法,其特征在于:在步骤(8)中,计算当前扫描位置的空间谱PMUSIC(r′,θ′):
Figure FDA0002436550250000041
CN201811108068.6A 2018-09-21 2018-09-21 基于阵列误差校正的合成孔径music损伤定位方法 Active CN109374740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811108068.6A CN109374740B (zh) 2018-09-21 2018-09-21 基于阵列误差校正的合成孔径music损伤定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811108068.6A CN109374740B (zh) 2018-09-21 2018-09-21 基于阵列误差校正的合成孔径music损伤定位方法

Publications (2)

Publication Number Publication Date
CN109374740A CN109374740A (zh) 2019-02-22
CN109374740B true CN109374740B (zh) 2020-07-07

Family

ID=65401674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811108068.6A Active CN109374740B (zh) 2018-09-21 2018-09-21 基于阵列误差校正的合成孔径music损伤定位方法

Country Status (1)

Country Link
CN (1) CN109374740B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579534B (zh) * 2019-09-05 2022-06-07 华东理工大学 基于互易性受损的带焊缝钢板缺陷无基线检测及定位方法
CN112881529B (zh) * 2021-01-08 2022-12-20 温州大学 基于激光压电技术的复合材料结构损伤监测方法及系统
CN112946070B (zh) * 2021-01-08 2023-01-03 温州大学 基于传递路径误差补偿来识别冲击源位置的方法及系统
CN113365345B (zh) * 2021-08-11 2021-10-29 网络通信与安全紫金山实验室 相位偏差校正方法、装置、计算机设备和存储介质
CN114047256B (zh) * 2021-10-25 2023-10-20 扬州大学 基于动态阵元合成孔径聚焦的平板陶瓷膜缺陷超声成像方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050105817A1 (en) * 2003-11-17 2005-05-19 Guleryuz Onur G. Inter and intra band prediction of singularity coefficients using estimates based on nonlinear approximants
CN103698748B (zh) * 2013-12-16 2017-06-27 南京航空航天大学 复合材料中基于信号波速与衰减补偿的2d‑music冲击定位方法
CN105717198A (zh) * 2016-05-12 2016-06-29 南京航空航天大学 一种面向结构冲击定位的单频-重估计music方法
CN108169327B (zh) * 2017-12-14 2019-04-05 南京航空航天大学 基于激励波束成型和加权图像融合的music腐蚀监测方法

Also Published As

Publication number Publication date
CN109374740A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
CN109374740B (zh) 基于阵列误差校正的合成孔径music损伤定位方法
CN101865758B (zh) 基于多重信号分类算法的冲击载荷定位方法
Qiu et al. A time reversal focusing based impact imaging method and its evaluation on complex composite structures
US10697937B2 (en) MUSIC corrosion monitoring method via excitation beam forming and weighted image fusing
CN104035095B (zh) 基于空时最优处理器的低空风切变风速估计方法
CN104155648B (zh) 基于阵列数据重排的高频地波雷达单次快拍music测向方法
CN103698748B (zh) 复合材料中基于信号波速与衰减补偿的2d‑music冲击定位方法
CN104730579B (zh) 一种基于表层横波速度反演的纵横波联合静校正方法
CN108761419A (zh) 基于组合空时主通道自适应处理的低空风切变风速估计方法
CN113359183B (zh) 一种针对极地冰层的震源定位方法
CN108181557B (zh) 一种确定特高频局部放电信号方位的方法
CN104111449B (zh) 一种改进的基于广义内积的空时二维自适应处理方法
CN104730513A (zh) 一种分级子阵聚焦mvdr波束形成方法
CN109471063B (zh) 基于延迟快拍的均匀线列阵高分辨波达方向估计方法
CN107843875A (zh) 基于奇异值分解降噪的贝叶斯压缩感知雷达数据融合方法
CN105717198A (zh) 一种面向结构冲击定位的单频-重估计music方法
CN101874744A (zh) 用于长骨分析的超声导波参数测量方法
CN106646466A (zh) 一种基于主成分分析的加权后向投影算法的成像方法
CN101510263A (zh) 基于时间和空间域导向波模式的识别方法
Pham et al. Real-time implementation of MUSIC for wideband acoustic detection and tracking
CN113009572B (zh) 一种基于横波偏振分析预测裂缝方位角的方法
CN102062851A (zh) 基于改进l阵的星载宽带多目标的测向方法
CN109814065A (zh) 基于相位因子加权的波束形成方法
CN112612027B (zh) 一种浅海环境下利用声能量起伏的海洋内波监测方法
CN109115894B (zh) 一种基于Toeplitz近似法的复合材料板损伤检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant