CN109301416A - 悬置基片集成波导传输线 - Google Patents

悬置基片集成波导传输线 Download PDF

Info

Publication number
CN109301416A
CN109301416A CN201811217253.9A CN201811217253A CN109301416A CN 109301416 A CN109301416 A CN 109301416A CN 201811217253 A CN201811217253 A CN 201811217253A CN 109301416 A CN109301416 A CN 109301416A
Authority
CN
China
Prior art keywords
layer
transmission line
dielectric
slab
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811217253.9A
Other languages
English (en)
Other versions
CN109301416B (zh
Inventor
肖建康
王会侠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201811217253.9A priority Critical patent/CN109301416B/zh
Publication of CN109301416A publication Critical patent/CN109301416A/zh
Application granted granted Critical
Publication of CN109301416B publication Critical patent/CN109301416B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/18Waveguides; Transmission lines of the waveguide type built-up from several layers to increase operating surface, i.e. alternately conductive and dielectric layers

Landscapes

  • Waveguides (AREA)

Abstract

本发明公开了一种悬置基片集成波导传输线,主要解决现有平面传输线功率容量低,损耗大,用其设计的谐振器Q值低的问题。其包括主电路层(1),腔体层(2)、附加层(3)、馈线(4)和过渡带(5);主电路层由上介质板和两层金属层组成,该上介质板沿横向方向开有的两排金属通孔,构成窄边,上介质板的上下面铺设金属层,上面金属层两端通过过渡带(5)连接到馈线(4)形成输入输出端口;腔体层(2)的中介质板中间去除介质形成空气腔,构成悬置传输线结构;附加层(3)下层表面敷铜,位于腔体层(2)的下面,各层介质板间粘合为一体。本发明提高了传输线的传输性能,扩展了传输线的传输带宽,可用于制作高Q值的微波元器件。

Description

悬置基片集成波导传输线
技术领域
本发明属于微波技术领域,特别涉及一种悬置基片集成波导传输线,可应用于微波分布式电路设计。
背景技术
麦克斯韦方程组为微波技术奠定了坚实的理论基础,第二次世界大战期间雷达的研制极大推动了微波技术的发展。20世纪60年代以后,由于微波具有频率高、频带宽、信息量大的特点,被广泛地应用于各种通信业务中,微波接力通信、卫星通信在这以后得到了快速的发展。时至今日,微波的应用已经体现在我们生活中的方方面面。
在无线通信系统中,我们使用的元器件多为分布参数器件。而这些元器件就是在传输线的基础上实现的。传统的微波传输线根据其传输波的类型可以分为两种:一种是可以传输TEM模或准TEM模的传输线,主要工作在微波波段的低、中频区域,主要有同轴线、带状线和微带线等;另一种传输线是只能传输TE模或TM模的导波结构,其结构形状是由一根不同截面形状的空心金属管构成,这种空心金属管一般认为是理想导体,主要工作在微波波段的中、高频区域,传输线的主要形式有矩形波导、圆波导以及脊波导等。基于传统的传输线实现的元器件在使用过程中存在导体损耗、介质损耗等,微带线等平面结构还存在辐射损耗,这些损耗会严重影响微波元器件的性能和传输效率。所以优化和研究新型传输线成为一项艰巨的任务。
随着无线通信技术的发展和对工作在更高频段的高性能微波元器件的需要,一些新的传输线逐渐涌现,基片集成波导就是其中的一种。基片集成波导在结构上无异于平面传输线,但是具有类似矩形波导的高通传输特性。传统基片集成波导高通传输的频率范围比较窄,用其所设计的微波无源器件的Q值虽然比微带等平面传输线大很多,但是仍然不能满足实际应用中对更高性能、更高Q值和更高功率容量的微波元件的设计要求。
发明内容
本发明的目的在于针对上述现有技术的不足,提供一种悬置基片集成波导传输线,以进一步提高基于该传输线所设计的微波元器件的Q值,满足实际应用中不断增长的电路性能要求。
为实现上述目的,本发明包括:主电路层和输入输出端口馈线,其特征在于:
主电路层的下方设有腔体层,用以改变电磁场分布并将其封闭,减小介质损耗;
腔体层的下方设有附加层,用以封闭腔体并调节电路性能;
所述主电路层、腔体层、附加层这三层粘合为一体,形成悬置基片集成波导结构。
进一步,腔体层通过在介电常数为2.2的介质板内部开设方形空腔构成,空腔中的介质为空气,内壁敷铜。
进一步,主电路层包括介电常数为2.2的上介质板和两层金属层,该上介质板沿横向方向开设两排金属通孔,第一金属层贴敷在上介质板的上表面,两边分别通过过渡带与输入输出端口馈线连接,第二金属层贴敷在上介质板的下表面,直接与腔体层相接。
进一步,所述附加层包括介电常数为2.3的下介质板和下金属层,该下金属层贴敷在下介质板的下表面。
进一步,所述输入输出端口馈线由满足50Ω阻抗的金属导体构成。
进一步,所述过渡带,采用宽度介于第一金属层和输入输出馈线之间的方形导体结构,设置在输入端口馈线与第一金属层和输出端口馈线与第一金属层之间,主要用来减小能量损耗,使输入输出达到最大程度匹配。
本发明与现有技术相比具有如下优点:
1.本发明由于在基片集成波导结构下方设置腔体层,使得基片集成波导传输线的电磁分布发生改变并减小了介质损耗,同时由于在腔体层的下方设置附加层,对空气腔进行封闭,从而减小了能量损耗并可以调节电路性能。
2.本发明由于三层结构之间是采用粘合技术,形成悬置基片集成波导结构,拓展了其高通传输的频率范围。
3.本发明由于在主电路层的馈线和第一金属层间设置有过渡带,避免了传输线在传输过程中由于阻抗的变化而产生谐振以及损耗增大的问题。
实验表明,利用本发明提供的悬置基片集成波导结构传输线,可进行多种微波无源器件的设计,并能明显提高无源器件的Q值。
附图说明
图1是本发明实施例的整体结构分层图;
图2是本发明中的主电路层参数标注图:
图3是传统基片集成波导结构的散射参数曲线图。
图4是本发明实施例的散射参数曲线图。
图5是基于传统基片集成波导结构的滤波器的散射参数曲线图。
图6是基于本发明实施例的滤波器的散射参数曲线图。
具体实施方式
为了使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。本实例均在以本发明技术方案为前提的情况下进行,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于以下实例。
参照图1和图2,本实施例包括:主电路层1、腔体层2、附加层3、馈线4和过渡带5。其中:
所述主电路层1,由介电常数εr=2.2、厚度为0.508mm的上层介质板和两层金属层构成,该上层介质板的横向方向上开设的两排金属通孔,用来模拟矩形波导的窄边,限制上层介质板中的磁场边界范围,第一金属层贴敷在上层介质板的上表面,第二金属层贴敷在上层介质板的下表面,用来限制上层介质板中的电场的分布范围,主电路层1是传输线中电磁能量的主要传输路径。
所述腔体层2,由介电常数εr=2.2、厚度为1.8mm-2.5mm的中层介质板构成,本实例采用厚度为2.1mm的中层介质板,该中层介质板内部开有10mm*10mm的方形空腔,空腔内填充空气介质,在空腔内壁四周贴敷金属层,以使传输在主电路层1中的电磁场发生改变,减小介质损耗,空腔内壁贴敷的金属层下沿与腔体层2的中层介质板下表面齐平,金属层上沿与主电路层1的下表面第二金属层之间设有0.1mm-0.3mm的间隙,防止与主电路层下表面第二金属层相接构成回路产生不必要的谐振和损耗。
所述附加层3,由介电常数εr=2.3、厚度介于0.508mm-1.2mm之间的下层介质板和其下表面贴敷的金属层构成,本实例采用厚度为0.508mm的中层介质板,用附加层3来封闭腔体层2的中层介质板中所开设的方形空腔,以达到封闭电磁能量和调节电路性能的作用。
所述馈线4,由满足50Ω阻抗的方形导体构成,以便于和其它元器件进行匹配连接。
所述过渡带5,由宽度为w1=2.4mm,长度介于1.5mm-2.2mm之间方形导体构成,本实例采用长度为L1=2mm的导体,过渡带位于主电路层1的上层第一金属层和馈线4之间,用于减小主电路层1的特性阻抗到馈线50Ω阻抗变化幅度,从而减小由于阻抗突变所引起的失配及其导致的损耗,提高传输线的传输性能。过渡带的形式不限于方形导体结构,也可以是梯形或者其他适合的导体结构。
主电路层1、腔体层2、附加层3这三者自上而下设置,即腔体层2与主电路层1的下表面的第二金属层相接,附加层3与腔体层2的下表面紧贴,主电路层1、腔体层2和附加层3这三层之间通过粘合剂固定,形成悬置基片集成波导结构,主电路层1的上介质板的第一金属层的两端分别通过过渡带5与馈线4连接,形成输入输出端口。主电路层1、腔体层2、附加层3这三者粘合形成的悬置基片集成波导结构总体厚度不能超过5mm。
本实例的物理结构参数设置如下:
如图2(a),主电路层1的介质板的横向上开设的两排金属通孔之间距离为w=9mm,金属通孔的直径为d=0.8mm,相邻两通孔间的间距与该传输线所要传输的最大截止波长有关,本实例采用的间距为s=0.72mm,金属通孔的总长度为L=10mm。
如图2(b),主电路层1的介质板上表面贴敷的第一金属层宽度为w0=13mm,长度为L=10mm,与第一金属层两端相连的过渡带的宽度为w1=2.4mm、长度为L1=2mm。
本发明的效果可通过以下仿真进一步说明:
1.仿真条件
使用射频仿真软件HFSS,对实施例建模仿真。
2.仿真内容
仿真1,在输入输出端口施加激励,对基片集成波导在传输频率为1GHz-30GHz的频率范围内进行仿真,获取传输线的传输特性,用散射S参数表示,结果如图3所示,图3中实线为S11表示回波损耗,虚线为S21表示插入损耗。从图3传输线的散射参数仿真结果可以看出,当基片集成波导传输线具有高通的传输特性,当其工作在12.19GHz-23.75GHz频率范围时,回波损耗在-35dB以下,插入损耗在-0.2dB以上。
仿真2,在输入输出端口施加激励,对本实施例在传输频率为1GHz-40GHz的范围内进行仿真,获取传输线的传输特性,用散射参数S表示,结果如图4所示,图中实线为S11表示回波损耗,虚线为S21表示插入损耗。从图4传输线的散射参数仿真结果可以看出,当悬置基片集成波导传输线在11.98GHz-35.20GHz频率范围内工作时,回波损耗在-30dB以下,插入损耗在-0.3dB以上。
仿真3,基于基片集成波导传输线设计了一个中心频率为27.75GHz的微波带通滤波器,在滤波器的输入输出端口施加激励,对该滤波器在20GHz-40GHz的频率范围内进行仿真,获取传输线的传输特性,用散射参数S表示,结果如图5所示,图5中实线为S11表示回波损耗,虚线为S21表示插入损耗。从图5滤波器的散射参数仿真结果可以看出,该滤波器的通带范围为27.13GHz-28.37GHz,带宽为1.24GHz,通带两边分别各有一个传输零点,通带范围内回波损耗在-30dB以下,插入损耗在-1.3dB以上,Q值为4380。
仿真4,基于本发明的悬置结构将基片集成波导滤波器悬置,在滤波器的输入输出端口施加激励,对该滤波器在1GHz-40GHz的频率范围内进行仿真,获取传输线的传输特性,用散射参数S表示,结果如图6所示,图6中实线为S11表示回波损耗,虚线为S21表示插入损耗。从图6滤波器的散射参数仿真结果可以看出,该滤波器的通带范围为26.98GHz-28.34GHz,带宽为1.36GHz,通带两边分别各有一个传输零点,通带范围内回波损耗在-30dB以下,插入损耗在-1.2dB以上,Q值为7071。
为了能更直观地体现基于基片集成波导结构传输线所设计的滤波器和基于本实例所设计的滤波器性能差异,分别给出两种结构滤波器的中心频率、带宽和Q值进行对比,结果如表1所示。
表1
从表1可以直接看出,相比于传统基片集成波导结构所设计的滤波器,基于本实例所设计的滤波器在不改变中心频率的情况下滤波器带宽增加了9.7%,Q值提高了2692。
以上描述仅是本发明的一个具体实例,并未构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修改和改变,比如结构物理参数的改变、介质基板材料及厚度的改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

Claims (8)

1.一种悬置基片集成波导传输线,包括:主电路层(1)和输入输出端口馈线(4),其特征在于:
主电路层(1)的下方设有腔体层(2),用以改变电磁场分布并将其封闭,减小介质损耗;
腔体层(2)的下方设有附加层(3),用以封闭腔体内的电磁场并调节电路性能;
所述主电路层(1)、腔体层(2)、附加层(3)这三层粘合为一体,形成悬置基片集成波导结构。
2.根据权利要求1所述的悬置基片集成波导传输线,其特征在于:腔体层(2)通过在介电常数为2.2的介质板内部开设方形空腔构成,空腔中的介质为空气,腔体内壁敷铜。
3.根据权利要求1所述的悬置基片集成波导传输线,其特征在于:主电路层(1)包括介电常数为2.2、厚度为0.508mm的上介质板和两层金属层,该上介质板沿横向方向开设两排金属通孔,第一金属层贴敷在上介质板的上表面,两边分别通过过渡带(5)与输入输出端口馈线(4)连接,第二金属层贴敷在上介质板的下表面,且直接与腔体层(2)相接。
4.根据权利要求1所述的悬置基片集成波导传输线,其特征在于,附加层(3)包括介电常数为2.3的下介质板和下金属层,该下金属层贴敷在下介质板的下表面。
5.根据权利要求1所述的悬置基片集成波导传输线,其特征在于:输入输出馈线(4)由满足50Ω阻抗的金属导体构成。
6.根据权利要求2所述的悬置基片集成波导传输线,其特征在于:所述过渡带(5),采用宽度介于第一金属层和输入输出馈线之间的方形导体结构,设置在输入端口馈线与第一金属层和输出端口馈线与第一金属层之间,主要用来减小能量损耗,使输入输出达到最大程度匹配。
7.根据权利要求6所述的悬置基片集成波导传输线,其特征在于:过渡带长度介于1.5mm-2.2mm之间。
8.根据权利要求1所述的悬置基片集成波导传输线,其特征在于:腔体层(2)厚度在1.8mm—2.5mm之间,附加层(3)的厚度在0.508mm-1.2mm之间;主电路层(1)、腔体层(2)及附加层(3)这三层粘合一体的总厚度不超过5mm。
CN201811217253.9A 2018-10-18 2018-10-18 悬置基片集成波导传输线 Active CN109301416B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811217253.9A CN109301416B (zh) 2018-10-18 2018-10-18 悬置基片集成波导传输线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811217253.9A CN109301416B (zh) 2018-10-18 2018-10-18 悬置基片集成波导传输线

Publications (2)

Publication Number Publication Date
CN109301416A true CN109301416A (zh) 2019-02-01
CN109301416B CN109301416B (zh) 2021-04-27

Family

ID=65157263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811217253.9A Active CN109301416B (zh) 2018-10-18 2018-10-18 悬置基片集成波导传输线

Country Status (1)

Country Link
CN (1) CN109301416B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082292A1 (zh) * 2019-10-28 2021-05-06 南京邮电大学 一种用于改善微波无源器件性能的基片集成慢波空波导
CN113161312A (zh) * 2021-01-25 2021-07-23 博微太赫兹信息科技有限公司 一种芯片和传输线间渐变金带互联结构及其装配方法
CN114069182A (zh) * 2021-12-13 2022-02-18 西安电子科技大学 多层介质集成槽波导传输线
CN114284666A (zh) * 2021-11-24 2022-04-05 电子科技大学 一种可加载直流电场偏置的siw传输线
CN115275550A (zh) * 2022-08-24 2022-11-01 西安电子科技大学 一种小型化低插损双工器
CN115395197A (zh) * 2022-08-25 2022-11-25 天津大学 基于介质集成悬置平行带线的慢波传输线结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428760A (zh) * 2015-12-20 2016-03-23 西安电子工程研究所 一种小型化基片集成波导高通滤波器
CN105896013A (zh) * 2016-04-28 2016-08-24 西安电子科技大学 用于太赫兹波的硅基悬置微带线结构及其制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428760A (zh) * 2015-12-20 2016-03-23 西安电子工程研究所 一种小型化基片集成波导高通滤波器
CN105896013A (zh) * 2016-04-28 2016-08-24 西安电子科技大学 用于太赫兹波的硅基悬置微带线结构及其制作方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082292A1 (zh) * 2019-10-28 2021-05-06 南京邮电大学 一种用于改善微波无源器件性能的基片集成慢波空波导
CN113161312A (zh) * 2021-01-25 2021-07-23 博微太赫兹信息科技有限公司 一种芯片和传输线间渐变金带互联结构及其装配方法
CN113161312B (zh) * 2021-01-25 2023-07-18 博微太赫兹信息科技有限公司 一种芯片和传输线间渐变金带互联结构及其装配方法
CN114284666A (zh) * 2021-11-24 2022-04-05 电子科技大学 一种可加载直流电场偏置的siw传输线
CN114069182A (zh) * 2021-12-13 2022-02-18 西安电子科技大学 多层介质集成槽波导传输线
CN114069182B (zh) * 2021-12-13 2022-07-26 西安电子科技大学 多层介质集成槽波导传输线
CN115275550A (zh) * 2022-08-24 2022-11-01 西安电子科技大学 一种小型化低插损双工器
CN115275550B (zh) * 2022-08-24 2023-03-14 西安电子科技大学 一种小型化低插损双工器
CN115395197A (zh) * 2022-08-25 2022-11-25 天津大学 基于介质集成悬置平行带线的慢波传输线结构
CN115395197B (zh) * 2022-08-25 2024-03-01 天津大学 基于介质集成悬置平行带线的慢波传输线结构

Also Published As

Publication number Publication date
CN109301416B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
CN109301416A (zh) 悬置基片集成波导传输线
CN109904571B (zh) 基于电磁混合耦合的基片集成波导滤波器
CN201898182U (zh) 一种多层1/4模基片集成波导滤波器
CN103413995B (zh) 基于ltcc技术的c波段高性能平衡滤波器
CN103326093A (zh) 新型交叉耦合基片集成波导带通滤波器
RU2001135843A (ru) Волноводно-полосковый переход
CN106654497B (zh) 小型化宽带慢波半模基片集成波导耦合器及其设计方法
US10170815B2 (en) Filter and method of designing same
CN208189756U (zh) 一种新型3dB定向耦合器
CN109830789B (zh) 一种基于折叠基片集成波导和互补开口谐振环的宽带带通滤波器
CN108598654A (zh) 一种基于基片集成间隙波导的耦合器
WO2021248392A1 (zh) 一种基于印刷脊间隙波导的四阶Ka波段带通滤波器
WO2020173243A1 (zh) 一种传输零点可控的基片集成波导滤波器
CN110350282A (zh) 基于双脊集成基片间隙波导的定向耦合器
CN104659451B (zh) 基于1/3等边三角形基片集成谐振器的四模带通滤波器
CN109149044A (zh) 基于多内层结构的介质集成悬置线耦合器
CN103268968A (zh) 一种无需匹配网络带有超宽带频道的高隔离微带双工器
CN110277621A (zh) 基于基片集成波导的滤波功分器
CN110364799A (zh) 双脊集成基片间隙波导
Huang et al. Design and modeling of microstrip line to substrate integrated waveguide transitions
CN105789810A (zh) 一种宽带半模波纹基片集成波导耦合器及其设计方法
CN105720330A (zh) 基于新型互补开口谐振环结构的基片集成波导带通滤波器
CN106549203B (zh) 一种耦合微带线到矩形波导的转换电路
CN112072223A (zh) 负斜率频率相关性耦合结构及交叉耦合siw带通滤波器
CN111092281B (zh) 一种基于人工磁导体的四阶耦合谐振器滤波器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant