WO2021082292A1 - 一种用于改善微波无源器件性能的基片集成慢波空波导 - Google Patents

一种用于改善微波无源器件性能的基片集成慢波空波导 Download PDF

Info

Publication number
WO2021082292A1
WO2021082292A1 PCT/CN2020/072976 CN2020072976W WO2021082292A1 WO 2021082292 A1 WO2021082292 A1 WO 2021082292A1 CN 2020072976 W CN2020072976 W CN 2020072976W WO 2021082292 A1 WO2021082292 A1 WO 2021082292A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
waveguide
dielectric
substrate
board
Prior art date
Application number
PCT/CN2020/072976
Other languages
English (en)
French (fr)
Inventor
羌静霞
许锋
Original Assignee
南京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京邮电大学 filed Critical 南京邮电大学
Publication of WO2021082292A1 publication Critical patent/WO2021082292A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate

Definitions

  • the invention relates to a substrate integrated slow-wave empty waveguide for improving the performance of microwave passive devices, which can be used in the field of microwave technology.
  • Substrate integrated waveguides are widely used in microwave circuits because of their high Q value, low loss, and easy integration.
  • the presence of dielectric limits the performance of the device, and the loss of the substrate increases the insertion loss and reduces the quality factor.
  • the medium is removed from the substrate integrated waveguide to form an air waveguide, which maintains its advantages of low cost and low profile. therefore.
  • the application research of high-Q substrate integrated circuits has not only important theoretical value but also engineering practical significance for realizing high-performance modern microwave and millimeter-wave passive devices and active circuits.
  • the substrate integrated hollow waveguide Due to the characteristics of the substrate integrated hollow waveguide to remove the medium, its size is relatively large, the substrate integrated folded hollow waveguide will greatly increase the profile, and the substrate integrated half-mode hollow waveguide will cause the Q value to be greatly reduced. Therefore, how to maintain it On the basis of high Q value, reducing its size is also a problem that needs to be solved.
  • the purpose of the present invention is to solve the above-mentioned problems in the prior art and propose a substrate-integrated slow-wave hollow waveguide for improving the performance of microwave passive devices.
  • a substrate-integrated slow-wave empty waveguide for improving the performance of microwave passive devices including an upper dielectric board, a middle dielectric board and a lower dielectric board, the upper dielectric board, The middle-layer dielectric board and the lower-layer dielectric board are fixedly connected.
  • the upper-layer dielectric board, the middle-layer dielectric board, and the lower-layer dielectric board form a three-layer waveguide structure from top to bottom.
  • the lower surface of the upper-layer dielectric board is covered with the first bottom metal layer.
  • the upper surface of the dielectric board is covered with a first top metal layer
  • the upper surface of the lower dielectric board is covered with a second top metal layer
  • the lower surface is covered with a second bottom metal layer.
  • At least eight through holes matching the connecting member are distributed around the upper dielectric plate, the middle dielectric plate and the lower dielectric plate, and the size of each through hole is the same, and the connecting member is Screw.
  • the upper dielectric board, the middle dielectric board and the lower dielectric board all use Rogers 4003C dielectric boards, with a dielectric constant of 3.55, a loss tangent of 0.027, and a thickness of 0.813 mm.
  • the transmission part of the middle layer dielectric plate is hollowed out as a whole to form a rectangular air waveguide
  • the feeding port is arranged on the first top metal layer
  • the rectangular air waveguide is provided with a tapered transition structure
  • the feeding port is from the middle layer dielectric plate to the air.
  • the tapered asymptote of the waveguide transition performs impedance matching
  • the sidewalls of the rectangular air waveguide are electric walls except for the vicinity of the feeding asymptote, that is, all are metal.
  • the transition structure of the feed port of the intermediate dielectric layer decreases exponentially, and the end of the transition structure is arc-shaped.
  • the width of the feeding port is equal to the impedance matching width of the integrated slow-wave empty waveguide of the substrate.
  • a feeding port is provided on the left side of the first top metal layer of the intermediate layer dielectric plate, and the feeding port is connected with a tapered asymptote.
  • the lower dielectric plate is provided with two rows of evenly spaced first metallized through holes along the metal wall of the air waveguide of the middle dielectric layer, the spacing between each of the through holes is equal, and the middle of the lower dielectric plate is provided with evenly dense
  • the second metalized through holes are evenly distributed under the air waveguide of the intermediate dielectric layer, that is, inside the two rows of first metalized through holes.
  • the top layer of the lower dielectric plate is disposed outside the two rows of first metallized through holes, that is, the outer side of the air waveguide in the middle dielectric layer, and is made of metal; the bottom layer of the lower dielectric plate is ground, that is, metal.
  • the length of the upper dielectric board is less than the length of the middle dielectric board and the lower dielectric board, the length of the middle dielectric board and the lower dielectric board are the same, and the height and width of the upper dielectric board, the middle dielectric board and the lower dielectric board are the same.
  • this technical solution combines the slow wave effect while maintaining the advantages of the substrate integrated hollow waveguide, and overcomes the problem of the difficulty of combining high Q and miniaturization. It has important application value in low-loss microwave integrated circuits.
  • the technical solution is based on the substrate integrated hollow waveguide, and evenly arrange the metal through holes in the lower dielectric plate, so that the electric field is concentrated in the air waveguide, and the magnetic field is still distributed in the entire structure, so that the longitudinal and lateral dimensions are reduced at the same time.
  • the waveguide Compared with the traditional substrate-integrated slow-wave structure, the waveguide has improved Q value by nearly 8 times, greatly reducing the insertion loss; at the same time, compared with the traditional substrate-integrated hollow waveguide structure, the waveguide structure is more compact .
  • the present invention does not increase the processing difficulty and cost, realizes the combination of high Q value and miniaturization, and is more suitable for applications with strict requirements such as miniaturization, high Q value, and low loss. Microwave circuit system.
  • Fig. 1 is a top view of a substrate-integrated slow-wave hollow waveguide used for improving the performance of microwave passive devices of the present invention.
  • Fig. 2 is a top view of a fourth-order filter integrated with a slow wave hollow waveguide on a substrate for improving the performance of a microwave passive device according to the present invention.
  • Fig. 3 is a schematic diagram of the intermediate layer air waveguide of the substrate-integrated slow-wave air waveguide used to improve the performance of the microwave passive device of the present invention.
  • Fig. 4 is a three-dimensional sectional view of a substrate-integrated slow-wave hollow waveguide used to improve the performance of microwave passive devices according to the present invention.
  • Fig. 5 is a three-dimensional cross-sectional view of a fourth-order substrate-integrated slow-wave hollow waveguide filter used for improving the performance of microwave passive devices according to the present invention.
  • Fig. 6 is a cross-sectional view of the internal electric field of the substrate integrated slow-wave empty waveguide for improving the performance of the microwave passive device according to the present invention.
  • Fig. 7 is a cross-sectional view of the internal magnetic field of the substrate integrated slow-wave empty waveguide for improving the performance of the microwave passive device according to the present invention.
  • Fig. 8 is a simulation diagram of S-parameters of a substrate-integrated slow-wave empty waveguide used for improving the performance of microwave passive devices according to the present invention.
  • Fig. 9 is a comparison of S-parameter simulation and actual measurement results of a fourth-order filter integrated with a slow wave hollow waveguide on a substrate for improving the performance of microwave passive components of the present invention.
  • the present invention discloses a substrate integrated slow-wave hollow waveguide for improving the performance of microwave passive devices.
  • the substrate integrated slow-wave hollow waveguide includes an upper dielectric
  • the upper dielectric board 1, the middle dielectric board 2 and the lower dielectric board 3 are fixedly connected, and the upper dielectric board 1, the middle dielectric board 2 and the lower dielectric board 3 are connected by the upper dielectric board 1, the middle dielectric board 2 and the lower dielectric board 3.
  • the three-layer waveguide structure is formed in sequence from the bottom to the bottom.
  • the length of the upper dielectric board 1 is less than the length of the middle dielectric board 2 and the lower dielectric board 3.
  • the middle dielectric board 2 and the lower dielectric board 3 have the same length, and the upper dielectric board 1, the middle dielectric board 2 and the lower dielectric board 3 have the same length.
  • the width is the same.
  • the lower surface of the upper dielectric board is covered with a first bottom metal layer 4, the upper surface of the middle dielectric board is covered with a first top metal layer 5, the upper surface of the lower dielectric board is covered with a second top metal layer 6, and the lower surface is covered with a first metal layer.
  • At least eight through holes 8 matching the connecting pieces are distributed around the upper dielectric board 1, the middle dielectric board 2 and the lower dielectric board 3, and the size of each through hole is the same. It is a screw.
  • the upper dielectric board 1, the middle dielectric board 2 and the lower dielectric board 3 all use Rogers 4003C dielectric boards, with a dielectric constant of 3.55, a loss tangent of 0.027, and a thickness of 0.813 mm.
  • the transmission part of the middle layer dielectric plate 2 is hollowed out to form a rectangular air waveguide.
  • the feeding port 9 is arranged on the first top metal layer 5, and the rectangular air waveguide is provided with a tapered transition structure 10, and the feeding port 9 is formed from the middle layer dielectric plate.
  • the tapered asymptote transitioning to the air waveguide performs impedance matching.
  • the sidewalls of the rectangular air waveguide are electrically wall 13 except for the vicinity of the feeding asymptote, that is, all are metal.
  • the transition structure of the feed port of the middle dielectric layer decreases exponentially, and the end of the transition structure is arc-shaped.
  • the width of the feeding port 9 is equal to the impedance matching width of the integrated slow-wave empty waveguide of the substrate.
  • a feed port 9 is provided on the left side of the first top metal layer 5 of the intermediate layer dielectric plate, and the feed port 9 is connected with a tapered asymptote.
  • the lower dielectric plate is provided with two rows of evenly spaced first metallized through holes 11 along the metal wall 13 of the air waveguide of the middle dielectric layer.
  • the distance between each of the through holes is equal, and the middle of the lower dielectric plate is provided with evenly dense
  • the second metalized through holes 12 are evenly distributed under the air waveguide of the intermediate dielectric layer, that is, inside the two rows of first metalized through holes 11.
  • the top layer of the lower dielectric plate is arranged on the outer side of the two rows of first metallized through holes, that is, the outer side of the air waveguide of the middle dielectric layer, which is metal; the bottom layer of the lower dielectric plate is ground, that is, metal.
  • the substrate-integrated slow-wave hollow waveguide includes the upper dielectric substrate, the upper bottom metal layer, the middle top metal layer, the middle dielectric substrate, the lower top metal layer, and the lower dielectric from top to bottom.
  • the substrate and the lower bottom metal layer are the upper dielectric substrate, the upper bottom metal layer, the middle top metal layer, the middle dielectric substrate, the lower top metal layer, and the lower dielectric from top to bottom. The substrate and the lower bottom metal layer.
  • the upper dielectric board 1, the middle dielectric board 2 and the lower dielectric board 3 all use Rogers 4003C dielectric boards, with a dielectric constant of 3.55, a loss tangent of 0.027, and a thickness of 0.813 mm. Metal is evenly distributed on the lower dielectric substrate. ⁇ Transition hole.
  • the substrate integrated slow-wave hollow waveguide is 14.45mm wide, and the substrate integrated hollow waveguide under the same working frequency band is 19.05mm wide.
  • the substrate integrated slow-wave hollow waveguide of the present invention has a size reduced by 24%.
  • the unloaded Q value of the substrate-integrated slow-wave hollow waveguide is as high as 1680, which is 5.35 times the Q value of the substrate-integrated waveguide and 6.04 times the Q-value of the substrate-integrated slow-wave waveguide.
  • the microstrip line is connected to the substrate integrated slow-wave empty waveguide through the tapered transition structure, which serves as the input port of the waveguide.
  • the tapered transition structure is exponentially distributed gradually, and the end is arc-shaped.
  • Figures 6 and 7 are cross-sectional views of the internal electric and magnetic fields of the substrate integrated slow-wave hollow waveguide used to improve the performance of microwave passive devices according to the present invention.
  • the lower dielectric plate is punched with metallized through holes, without affecting the magnetic field distribution. , Concentrating the electric field to the middle air layer, realizing the slow wave effect.
  • Figure 8 is the S-parameter simulation results of a substrate-integrated slow-wave empty waveguide used to improve the performance of microwave passive devices.
  • the abscissa in the figure represents the frequency and the ordinate represents the amplitude.
  • the return loss of the waveguide is greater than 18dB, the higher the frequency, the gradual mismatch of the input port causes the return loss to gradually decrease.
  • Figure 9 is a graph of the S parameter simulation and test results of the fourth-order filter.
  • the abscissa in the figure represents the frequency, and the ordinate represents the amplitude.
  • the center frequency of the fourth-order filter designed using the substrate integrated slow-wave empty waveguide is 11.22GHz, the relative bandwidth is 7.6%, the return loss is greater than 20dB, the insertion loss simulation value is less than 0.88dB, and the test value is less than 1.2dB.
  • the error is mainly Process loss of joint welding.
  • the substrate integrated waveguide fourth-order filter with the same working frequency band has an insertion loss of 2dB
  • the substrate integrated slow-wave waveguide fourth-order filter with the same working frequency band has an insertion loss of up to 3.2dB.
  • the substrate integrated slow-wave empty waveguide fourth-order filter of the present invention greatly reduces the loss and improves the transmission performance.
  • the size of the fourth-order substrate integrated empty waveguide filter in the same working frequency band is 14.29cm 2
  • the actual size of the fourth-order substrate integrated slow-wave empty waveguide filter of the present invention is 9 cm 2 , which is 37% less than the same period of the previous year, realizing compact structure And the combination of low loss and high Q value.
  • the substrate-integrated slow-wave hollow waveguide is a substrate-integrated slow-wave hollow waveguide improved from the substrate-integrated hollow waveguide.
  • the improved bottom dielectric layer forms a slow wave effect in the waveguide by opening uniform and dense metallized through holes. Without changing the magnetic field distribution, the electric field is concentrated in the middle air layer, achieving a high Q value while reducing The horizontal and vertical dimensions of the waveguide are reduced, and finally the combination of high Q value and miniaturization is realized.
  • the present invention can realize the slow wave effect on the basis of the three-layer structure of the substrate integrated hollow waveguide, and at the same time realize the low loss transmission of the waveguide.
  • the present invention significantly reduces its
  • the present invention greatly increases the Q value, reduces the insertion loss, and has better practicability.
  • the present invention designs a substrate-integrated slow-wave empty waveguide fourth-order filter for improving the performance of microwave passive devices, with low insertion loss, high Q value, and relatively small size, which fully demonstrates the waveguide structure The excellent characteristics.
  • the present invention can smoothly realize the combination of the slow wave effect and the substrate integrated hollow waveguide.
  • the present invention realizes the coexistence of high Q value and miniaturization, easy processing, compact structure, and compact structure. There are broad application prospects in microwave circuits and systems with strict requirements such as chemical conversion, high Q value, and low loss.

Landscapes

  • Waveguides (AREA)

Abstract

本发明揭示了一种用于改善微波无源器件性能的基片集成慢波空波导,该基片集成慢波空波导包括上层介质板、中层介质板和下层介质板,上层介质板、中层介质板和下层介质板固定连接,上层介质板、中层介质板和下层介质板由上至下按序组成三层波导结构,上层介质板的下表面覆盖有第一底层金属层,中层介质板的上表面覆盖有第一顶层金属层,下层介质板的上表面覆盖有第二顶层金属层,下表面覆盖有第二底层金属层。本技术方案在保持基片集成空波导优点的同时,结合慢波效应,克服了高Q值与小型化难以结合的问题,在低损耗微波集成化电路中具有重要的应用价值,更适合应用于小型化、高Q值、低损耗等多方面要求严格的微波电路系统中。

Description

一种用于改善微波无源器件性能的基片集成慢波空波导 技术领域
本发明涉及一种用于改善微波无源器件性能的基片集成慢波空波导,可用于微波技术领域。
背景技术
随着现代技术的迅速发展,无线通信技术正在向小型化,高性能和高集成方向发展。基片集成波导因其高Q值、低损耗、易于集成等特点,广泛应用于微波电路中。随着电路的发展,特别是在高频中,介质的存在限制了器件的性能,衬底的损耗增加了插入损耗并降低了质量因数。为了解决这一问题,在基片集成波导中去除介质,形成空气波导,保持了其低成本、低剖面的优点。因此。高Q值的基片集成电路的应用研究,对实现高性能的现代微波毫米波无源器件和有源电路,不仅具有重要的理论价值还具有工程实际意义。
由于基片集成空波导去除介质的特点,其尺寸相对较大,基片集成折叠空波导会使剖面大大增加,基片集成半模空波导会导致Q值大大减小,因此,如何在保持其高Q值的基础上,减小其尺寸同样也是一个需要解决的难题。
发明内容
本发明的目的就是为了解决现有技术中存在的上述问题,提出一种用于改善微波无源器件性能的基片集成慢波空波导。
本发明的目的将通过以下技术方案得以实现:一种用于改善微波无源器件性能的基片集成慢波空波导,包括上层介质板、中层介质板和下层介质板,所述上层介质板、中层介质板和下层介质板固定连接,所述上层介质板、中层介质板和下层介质板由上至下按序组成三层波导结构,上层介质板的下表面覆盖有第一底层金属层,中层介质板的上表面覆盖有第一顶层金属层,下层介质板的上表面覆盖有第二顶层金属层,下表面覆盖 有第二底层金属层。
优选地,所述上层介质板、中层介质板和下层介质板的四周分别均分布有至少八个与连接件相匹配的通孔,每个所述通孔的大小均一致,所述连接件为螺钉。
优选地,所述上层介质板、中层介质板和下层介质板均采用Rogers 4003C介质板,介电常数为3.55,损耗角正切为0.027,厚度为0.813mm。
优选地,所述中层介质板传输部分整体挖空形成矩形空气波导,馈电端口设置于第一顶层金属层上,矩形空气波导上设置有锥形过渡结构,馈电端口从中层介质板到空气波导过渡的锥形渐近线进行阻抗匹配,矩形空气波导的侧壁除了馈电的渐近线附近都为电壁,即全部为金属。
优选地,中间介质层馈电端口的过渡结构呈指数递减,过渡结构的末端为圆弧型。
优选地,所述馈电端口的宽度等于该基片集成慢波空波导阻抗匹配的宽度。
优选地,所述中间层介质板的第一顶层金属层左侧设置有馈电端口,馈电端口与锥形渐近线相连。
优选地,下层介质板沿中间介质层空气波导的金属壁设置了两排间距均匀的第一金属化通孔,每个所述通孔之间的间距相等,下层介质板的中部设置有均匀密集的第二金属化通孔,第二金属化通孔均匀地分布于中间介质层空气波导的下方,即两排第一金属化通孔内侧。
优选地,所述下层介质板顶层设置于两排第一金属化通孔外侧,即中间介质层空气波导外侧,为金属;下层介质板底层为地,即金属。
优选地,所述上层介质板的长度小于中层介质板和下层介质板的长度,中层介质板和下层介质板的长度一致,上层介质板、中层介质板和下层介质板的高度、宽度均一致。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:本技术方案在保持基片集成空波导优点的同时,结合慢波效应,克服了高Q值与小型化难以结合的问题,在低损耗微波集成化电路中具有重要的应用价值。本技术方案是在基片集成空波导基础 上,在下层介质板中均匀排列金属通孔,使电场集中在空气波导中,磁场仍分布在整个结构中,使得纵向与横向的尺寸同时减小。
相比于传统的基片集成慢波结构,该波导提升了近8倍的Q值,大大地减小了插入损耗;同时相比于传统的基片集成空波导结构,该波导结构更为紧凑。本发明在保持空波导三层结构的基础上,没有增加加工难度与成本,实现了高Q值与小型化的结合,更适合应用于小型化、高Q值、低损耗等多方面要求严格的微波电路系统中。
附图说明
图1是本发明用于改善微波无源器件性能的基片集成慢波空波导的俯视图。
图2是本发明用于改善微波无源器件性能的基片集成慢波空波导的四阶滤波器的俯视图。
图3是本发明用于改善微波无源器件性能的基片集成慢波空波导的中间层空气波导的示意图。
图4是本发明用于改善微波无源器件性能的基片集成慢波空波导的三维剖分图。
图5是本发明用于改善微波无源器件性能的基片集成慢波空波导四阶滤波器的三维剖分图。
图6是本发明用于改善微波无源器件性能的基片集成慢波空波导内部电场横截面图。
图7是本发明用于改善微波无源器件性能的基片集成慢波空波导内部磁场横截面图。
图8是本发明用于改善微波无源器件性能的基片集成慢波空波导S参数仿真图。
图9是本发明用于改善微波无源器件性能的基片集成慢波空波导的四阶滤波器S参数仿真与实测结果对比。
具体实施方式
本发明的目的、优点和特点,将通过下面优选实施例的非限制性说明进行图示和解释。这些实施例仅是应用本发明技术方案的典型范例,凡采取等同替换或者等效变换而形成的技术方案,均落在本发明要求保护的范围之内。
本发明揭示了一种用于改善微波无源器件性能的基片集成慢波空波导,如图1、图2、图3和图4所示,该基片集成慢波空波导,包括上层介质板1、中层介质板2和下层介质板3,所述上层介质板1、中层介质板2和下层介质板3固定连接,所述上层介质板1、中层介质板2和下层介质板3由上至下按序组成三层波导结构。
所述上层介质板1的长度小于中层介质板2和下层介质板3的长度,中层介质板2和下层介质板3的长度一致,上层介质板1、中层介质板2和下层介质板3的高度、宽度均一致。
上层介质板的下表面覆盖有第一底层金属层4,中层介质板的上表面覆盖有第一顶层金属层5,下层介质板的上表面覆盖有第二顶层金属层6,下表面覆盖有第二底层金属层7。
所述上层介质板1、中层介质板2和下层介质板3的四周分别均分布有至少八个与连接件相匹配的通孔8,每个所述通孔的大小均一致,所述连接件为螺钉。所述上层介质板1、中层介质板2和下层介质板3均采用Rogers 4003C介质板,介电常数为3.55,损耗角正切为0.027,厚度为0.813mm。
所述中层介质板2传输部分整体挖空形成矩形空气波导,馈电端口9设置于第一顶层金属层上5,矩形空气波导上设置有锥形过渡结构10,馈电端口9从中层介质板到空气波导过渡的锥形渐近线进行阻抗匹配,矩形空气波导的侧壁除了馈电的渐近线附近都为电壁13,即全部为金属。中间介质层馈电端口的过渡结构呈指数递减,过渡结构的末端为圆弧型。所述馈电端口9的宽度等于该基片集成慢波空波导阻抗匹配的宽度。所述中间层介质板的第一顶层金属层5左侧设置有馈电端口9,馈电端口9与锥形渐近线相连。
下层介质板沿中间介质层空气波导的金属壁13设置了两排间距均匀的第一金属化通孔11,每个所述通孔之间的间距相等,下层介质板的中部设置有均匀密集的第二金属化通孔12,第二金属化通孔均匀地分布于中间介质层空气波导的下方,即两排第一金属 化通孔11内侧。所述下层介质板顶层设置于两排第一金属化通孔外侧,即中间介质层空气波导外侧,为金属;下层介质板底层为地,即金属。
如图5所示,基片集成慢波空波导由上至下依次包含上层介质基片、上层底面金属层、中间层顶面金属层、中间层介质基片、下层顶面金属层、下层介质基片和下层底面金属层。
所述上层介质板1、中层介质板2和下层介质板3均采用Rogers 4003C介质板,介电常数为3.55,损耗角正切为0.027,厚度为0.813mm,在下层的介质基片上均匀分布着金属化通孔。基片集成慢波空波导宽14.45mm,相同工作频段下的基片集成空波导宽19.05mm,本发明的基片集成慢波空波导减小了24%的尺寸。基片集成慢波空波导的无载Q值高达1680,是基片集成波导Q值的5.35倍,是基片集成慢波波导Q值的6.04倍。
如图3所示,微带线通过锥形过渡结构接入基片集成慢波空波导,作为波导的输入端口。为了更好的阻抗匹配,锥形过渡结构呈指数分布渐变,末端为圆弧形。
图6和图7为本发明用于改善微波无源器件性能的基片集成慢波空波导内部电场和磁场横截面图,下层介质板通过打金属化通孔,在不影响磁场分布的情况下,把电场集中到中间空气层,实现了慢波效应。
图8是用于改善微波无源器件性能的基片集成慢波空波导的S参数仿真结果图,图中横坐标代表频率,纵坐标代表幅度,在中层介质板和下层介质板同等厚度的情况下,该波导的回波损耗大于18dB,频率越高,输入端口逐渐不匹配导致回波损耗逐渐减小。
图9为该四阶滤波器的S参数仿真和测试的结果图,图中横坐标代表频率,纵坐标代表幅度。利用基片集成慢波空波导设计的四阶滤波器中心频率为11.22GHz,相对带宽为7.6%,回波损耗大于20dB,插入损耗仿真值小于0.88dB,测试值小于1.2dB,其误差主要在于接头焊接的工艺损耗。同工作频段的基片集成波导四阶滤波器,插入损耗为2dB,同工作频段的基片集成慢波波导四阶滤波器,插入损耗高达3.2dB,本发明的基片集成慢波空波导四阶滤波器大大降低损耗,提高了传输性能。同工作频段的基片集成空 波导四阶滤波器尺寸为14.29cm 2,本发明基片集成慢波空波导四阶滤波器实际尺寸为9cm 2,同比减小了37%,实现了结构的紧凑和低损耗高Q值的结合。
该基片集成慢波空波导是由基片集成空波导改进的基片集成慢波空波导。改进的底层介质层通过打通均匀密集的金属化通孔,在波导中形成慢波效应,在不改变磁场分布的情况下,把电场集中在中间空气层,达到了保持高Q值的同时,减小了该波导横向与纵向的尺寸,最终实现了高Q值与小型化的结合。
本发明能在基片集成空波导的三层结构基础上,实现了慢波效应,同时实现了该波导的低损耗传输,相对于同等技术的基片集成空波导,本发明明显减小了其尺寸,更易于平面电路的集成,相对于同等技术的基片集成慢波波导,本发明大大增加了Q值,减小了插入损耗,实用性更好。
利用该波导结构,本发明设计了一种用于改善微波无源器件性能的基片集成慢波空波导四阶滤波器,插损低、Q值高、尺寸相对减小,充分说明该波导结构的优良特性。本发明能顺利实现慢波效应与基片集成空波导的结合,相比于同等技术的基片集成空波导,本发明实现了高Q值与小型化的共存,易于加工、结构紧凑,在小型化、高Q值、低损耗等多方面要求严格的微波电路和系统中,有着广阔的应用前景。
本发明尚有多种实施方式,凡采用等同变换或者等效变换而形成的所有技术方案,均落在本发明的保护范围之内。

Claims (10)

  1. 一种用于改善微波无源器件性能的基片集成慢波空波导,其特征在于:包括上层介质板(1)、中层介质板(2)和下层介质板(3),所述上层介质板(1)、中层介质板(2)和下层介质板(3)固定连接,所述上层介质板(1)、中层介质板(2)和下层介质板(3)由上至下按序组成三层波导结构,
    上层介质板的下表面覆盖有第一底层金属层(4),中层介质板的上表面覆盖有第一顶层金属层(5),下层介质板的上表面覆盖有第二顶层金属层(6),下表面覆盖有第二底层金属层(7)。
  2. 根据权利要求1所述的一种用于改善微波无源器件性能的基片集成慢波空波导,其特征在于:所述上层介质板(1)、中层介质板(2)和下层介质板(3)的四周分别均分布有至少八个与连接件相匹配的通孔(8),每个所述通孔的大小均一致,所述连接件为螺钉。
  3. 根据权利要求1所述的一种用于改善微波无源器件性能的基片集成慢波空波导,其特征在于:所述上层介质板(1)、中层介质板(2)和下层介质板(3)均采用Rogers4003C介质板,介电常数为3.55,损耗角正切为0.027,厚度为0.813mm。
  4. 根据权利要求1所述的一种用于改善微波无源器件性能的基片集成慢波空波导,其特征在于:所述中层介质板(2)传输部分整体挖空形成矩形空气波导,馈电端口(9)设置于第一顶层金属层上(5),矩形空气波导上设置有锥形过渡结构(10),馈电端口(9)从中层介质板到空气波导过渡的锥形渐近线进行阻抗匹配,矩形空气波导的侧壁除了馈电的渐近线附近都为电壁(13),即全部为金属。
  5. 根据权利要求4所述的一种用于改善微波无源器件性能的基片集成慢波空波导,其特征在于:中间介质层馈电端口的过渡结构呈指数递减,过渡结构的末端为圆弧型。
  6. 根据权利要求4所述的一种用于改善微波无源器件性能的基片集成慢波空波导,其特征在于:所述馈电端口(9)的宽度等于该基片集成慢波空波导阻抗匹配的宽度。
  7. 根据权利要求1所述的一种用于改善微波无源器件性能的基片集成慢波空波导,其特征在于:所述中间层介质板的第一顶层金属层(5)左侧设置有馈电端口(9),馈电端口(9)与锥形渐近线相连。
  8. 根据权利要求1所述的一种用于改善微波无源器件性能的基片集成慢波空波导,其特征在于:下层介质板沿中间介质层空气波导的金属壁(13)设置了两排间距均匀的第一金属化通孔(11),每个所述通孔之间的间距相等,下层介质板的中部设置有均匀密集的第二金属化通孔(12),第二金属化通孔均匀地分布于中间介质层空气波导的下方,即两排第一金属化通孔(11)内侧。
  9. 根据权利要求8所述的一种用于改善微波无源器件性能的基片集成慢波空波导,其特征在于:所述下层介质板顶层设置于两排第一金属化通孔外侧,即中间介质层空气波导外侧,为金属;下层介质板底层为地,即金属。
  10. 根据权利要求1所述的一种用于改善微波无源器件性能的基片集成慢波空波导,其特征在于:所述上层介质板(1)的长度小于中层介质板(2)和下层介质板(3)的长度,中层介质板(2)和下层介质板(3)的长度一致,上层介质板(1)、中层介质板(2)和下层介质板(3)的高度、宽度均一致。
PCT/CN2020/072976 2019-10-28 2020-01-19 一种用于改善微波无源器件性能的基片集成慢波空波导 WO2021082292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911029405.7A CN110718732B (zh) 2019-10-28 2019-10-28 一种用于改善微波无源器件性能的基片集成慢波空波导
CN201911029405.7 2019-10-28

Publications (1)

Publication Number Publication Date
WO2021082292A1 true WO2021082292A1 (zh) 2021-05-06

Family

ID=69213359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072976 WO2021082292A1 (zh) 2019-10-28 2020-01-19 一种用于改善微波无源器件性能的基片集成慢波空波导

Country Status (2)

Country Link
CN (1) CN110718732B (zh)
WO (1) WO2021082292A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991272A (zh) * 2021-10-28 2022-01-28 深圳市环波科技有限责任公司 一种低成本基片集成波导、微波无源器件及制作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171864A (zh) * 2021-12-14 2022-03-11 南京邮电大学 基于基片集成慢波空波导的多层滤波器
CN114335937B (zh) * 2021-12-20 2023-05-09 南京邮电大学 基片集成空腔慢波混合电磁耦合滤波器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958662B1 (en) * 2000-10-18 2005-10-25 Nokia Corporation Waveguide to stripline transition with via forming an impedance matching fence
CN105576332A (zh) * 2016-03-02 2016-05-11 电子科技大学 具有滤波特性的波导到微带过渡结构
CN105680136A (zh) * 2016-03-21 2016-06-15 南京邮电大学 共面波导到槽线到基片集成非辐射介质波导的过渡电路
CN106099379A (zh) * 2016-06-03 2016-11-09 南京邮电大学 基片集成非辐射介质波导漏波天线
CN106953153A (zh) * 2017-04-13 2017-07-14 南京邮电大学 基片集成非辐射介质波导人字型功分器
CN107154524A (zh) * 2017-05-17 2017-09-12 电子科技大学 介质集成悬置线电路到矩形波导的过渡结构
CN109301416A (zh) * 2018-10-18 2019-02-01 西安电子科技大学 悬置基片集成波导传输线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317079A (zh) * 2017-06-15 2017-11-03 云南大学 基于基片集成间隙波导弯曲微带线封装
SG10201705250QA (en) * 2017-06-23 2019-01-30 Thales Solutions Asia Pte Ltd Interposer and substrate incorporating same
CN109004341B (zh) * 2018-09-02 2020-04-28 西南电子技术研究所(中国电子科技集团公司第十研究所) 基片集成波导正弦调制漏波天线
CN110098450B (zh) * 2019-04-12 2021-04-30 电子科技大学 一种等长度3d空心基片集成波导移相器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958662B1 (en) * 2000-10-18 2005-10-25 Nokia Corporation Waveguide to stripline transition with via forming an impedance matching fence
CN105576332A (zh) * 2016-03-02 2016-05-11 电子科技大学 具有滤波特性的波导到微带过渡结构
CN105680136A (zh) * 2016-03-21 2016-06-15 南京邮电大学 共面波导到槽线到基片集成非辐射介质波导的过渡电路
CN106099379A (zh) * 2016-06-03 2016-11-09 南京邮电大学 基片集成非辐射介质波导漏波天线
CN106953153A (zh) * 2017-04-13 2017-07-14 南京邮电大学 基片集成非辐射介质波导人字型功分器
CN107154524A (zh) * 2017-05-17 2017-09-12 电子科技大学 介质集成悬置线电路到矩形波导的过渡结构
CN109301416A (zh) * 2018-10-18 2019-02-01 西安电子科技大学 悬置基片集成波导传输线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991272A (zh) * 2021-10-28 2022-01-28 深圳市环波科技有限责任公司 一种低成本基片集成波导、微波无源器件及制作方法
CN113991272B (zh) * 2021-10-28 2022-07-29 深圳市环波科技有限责任公司 一种低成本基片集成波导、微波无源器件及制作方法

Also Published As

Publication number Publication date
CN110718732A (zh) 2020-01-21
CN110718732B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
WO2021082292A1 (zh) 一种用于改善微波无源器件性能的基片集成慢波空波导
CN109462000B (zh) 一种多层基片集成波导三阶滤波功分器
CN112952322B (zh) 基于折叠基片集成波导谐振腔的双模带通滤波器
CN206541917U (zh) 一种介质加载的基片集成波导毫米波滤波器
CN110890628B (zh) 一种基于siw结构的差分端射天线
CN110797614B (zh) 一种具有高次模抑制的小型化基片集成波导滤波器
CN110474137A (zh) 一种基于siw的多层三路功分滤波器
CN102709658B (zh) 一种平衡微带线过渡的半模双脊基片集成波导
CN106099268A (zh) 一种宽带功分滤波器
CN105514545A (zh) 一种紧凑型宽阻带高选择性微带滤波器
CN106450611A (zh) 基于基片集成波导的高频率选择性平衡带通滤波器
CN110085955B (zh) 超宽带isgw带通滤波器
CN109830789B (zh) 一种基于折叠基片集成波导和互补开口谐振环的宽带带通滤波器
CN108923104B (zh) 高选择性基片集成间隙波导带通滤波器
CN110752430B (zh) 小型化慢波半模基片集成波导e面耦合器
CN112670685A (zh) 一种小型化三角腔双层siw带通滤波器
CN110336103B (zh) 一种频带可调滤波器
CN109755711B (zh) 双层半模基片集成波导宽带滤波耦合器
CN104466316A (zh) 一种2x波段缺陷接结构-半模基片集成波导滤波器
CN112002974B (zh) 一种小型化siw谐振腔及其构成的宽阻带siw滤波器
CN212725534U (zh) 一种小型化siw谐振腔及其构成的宽阻带siw滤波器
CN200950463Y (zh) 基片集成波导准感性通孔滤波器
CN114171864A (zh) 基于基片集成慢波空波导的多层滤波器
CN209913004U (zh) 基于共面波导的宽阻带微波滤波器
CN111564683A (zh) 八分之一模和四分之一模组合的基片集成波导滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882907

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20882907

Country of ref document: EP

Kind code of ref document: A1