CN109295016B - 与耐受高浓度甲醇相关的蛋白质 - Google Patents

与耐受高浓度甲醇相关的蛋白质 Download PDF

Info

Publication number
CN109295016B
CN109295016B CN201710608354.8A CN201710608354A CN109295016B CN 109295016 B CN109295016 B CN 109295016B CN 201710608354 A CN201710608354 A CN 201710608354A CN 109295016 B CN109295016 B CN 109295016B
Authority
CN
China
Prior art keywords
ala
leu
gly
val
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710608354.8A
Other languages
English (en)
Other versions
CN109295016A (zh
Inventor
张翀
崔兰玉
关长阁
邢新会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710608354.8A priority Critical patent/CN109295016B/zh
Publication of CN109295016A publication Critical patent/CN109295016A/zh
Application granted granted Critical
Publication of CN109295016B publication Critical patent/CN109295016B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0028Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with NAD or NADP as acceptor (1.5.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0093Oxidoreductases (1.) acting on CH or CH2 groups (1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y105/00Oxidoreductases acting on the CH-NH group of donors (1.5)
    • C12Y105/01Oxidoreductases acting on the CH-NH group of donors (1.5) with NAD+ or NADP+ as acceptor (1.5.1)
    • C12Y105/01038FMN reductase (NADPH) (1.5.1.38)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y117/00Oxidoreductases acting on CH or CH2 groups (1.17)
    • C12Y117/04Oxidoreductases acting on CH or CH2 groups (1.17) with a disulfide as acceptor (1.17.3)
    • C12Y117/04001Ribonucleoside-diphosphate reductase (1.17.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y601/00Ligases forming carbon-oxygen bonds (6.1)
    • C12Y601/01Ligases forming aminoacyl-tRNA and related compounds (6.1.1)
    • C12Y601/01012Aspartate-tRNA ligase (6.1.1.12)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及与耐受高浓度甲醇相关的蛋白质,以及编码这些蛋白质的碱基序列。尤其是涉及与扭脱甲基杆菌耐受高浓度甲醇相关的蛋白质变体,以及编码这些变体的碱基序列。

Description

与耐受高浓度甲醇相关的蛋白质
技术领域
本发明涉及与高浓度甲醇耐受性相关的蛋白质变体,以及编码这些变体的碱基序列。尤其是涉及与扭脱甲基杆菌耐受高浓度甲醇相关的蛋白质变体,以及编码这些变体的碱基序列。
背景技术
甲基营养微生物能够以一碳化合物作为唯一碳源和能源,广泛存在于自然界中,在全球碳循环中发挥重要作用。自1960年扭脱甲基杆菌 AM1(Methylobacteriumextorquens AM1)发现以来,已经成为研究甲基营养代谢的模式菌株。扭脱甲基杆菌能够以甲醇作为唯一碳源和能源,但对甲醇的耐受能力不超过5%(v/v),高浓度甲醇对扭脱甲基杆菌具有毒害作用,不利于发酵过程的控制,但尚未有关于扭脱甲基杆菌高耐受甲醇机理解析的研究。
有机溶剂对微生物细胞造成胁迫,细胞对有机溶剂的耐受能力由基因决定并受环境影响。通过对微生物的基因改造可以提高微生物的有机溶剂耐受性。利用基因工程、代谢工程、转录工程的手段理性提高微生物的有机溶剂耐受能力,是快速有效获得有机溶剂耐受菌的方式。但理性改造需要对微生物耐受有机溶剂的基因有明确的解析,由于生物系统的复杂性以及对基因型和表型相互关系的认识不足。对有机溶剂耐受机理不清楚的宿主菌,利用ARTP诱变结合适应性实验室进化(Adaptive Laboratory Evolution,ALE)是在短时间内提高微生物性能、获得目的菌株的有效方式,通过反向代谢工程对获得的突变位点进行验证,能够迅速获得与目的表型相关的基因位点(参考文献:Kildegaard K R,
Figure BDA0001358934890000011
B M,Blicher T H, et al.Evolution reveals a glutathione-dependentmechanism of 3-hydroxypropionic acid tolerance.Metab Eng,2014,26:57-66.)。
发明内容
随着对扭脱甲基杆菌AM1研究的逐渐深入,从2014年开始,许多研究者开始尝试利用基因工程手段表达多种外源产物如:功能化PHB(Orita I, Nishikawa K,Nakamura S,etal.Biosynthesis of polyhydroxyalkanoate copolymers from methanol byMethylobacterium extorquens AM1and the engineered strains under cobalt-deficient conditions.Appl Microbiol Biotechnol, 2014,98:3715-3725.)、生物能源(Hu B,Lidstrom M E.Metabolic engineering of Methylobacterium extorquensAM1for 1-butanol production.Biotechnol Biofuels,2014,7:156-159.)、富康酸(Sonntag F,Buchhaupt M,Schrader J. Thioesterases for ethylmalonyl-CoA pathwayderived dicarboxylic acid production in Methylobacterium extorquens AM1.ApplMicrobiol Biotechnol, 2014,98:4533-4544.)和蛇麻烯(Sonntag F,Kroner C,LubutaP,et al. Engineering Methylobacterium extorquens for de novo synthesis of thesesquiterpenoidα-humulene from methanol.Metab Eng,Elsevier,2015,32: 82-94.)等。扭脱甲基杆菌AM1是实现甲醇基生物制造的重要底盘细胞,因此以扭脱甲基杆菌AM1作为模型,提高甲基菌的甲醇耐受能力具有重要的应用价值。
扭脱甲基杆菌AM1不能耐受超过5%(v/v)的甲醇,而且其甲醇耐受机理尚不清楚。采用传统诱变或长期驯化的方式提高菌株耐受性方法操作简单,但由于传统诱变效率低,导致筛选工作量大,研究周期长M.extorquens AM1 的细胞倍增时间约4.5h(Cui L,LiangW,Zhu W,et al.Medium redesign for stable cultivation and high production ofmevalonate by recombinant Methtylobacterium extorquens AM1with mevalonatesynthetic pathway. Biochem Eng J,2017,119:67-73.),更加延长了研究周期。适应性实验室进化是指经过一定的时间,获得能够耐受选择压力的微生物的过程,能够高效的获得具有优良性能的工业菌株(Williams T C,Pretorius I S,Paulsen I T. SyntheticEvolution of Metabolic Productivity Using Biosensors.Trends Biotechnol,2016,34:371-381.)。通过实验室进化的方式,经过375次传代 (>375天),选择在≥40℃生长更好、产乙醇更高的酿酒酵母菌株,利用全基因组测序和代谢组学解析,揭示了酿酒酵母耐高温的机制(Caspeta L,Chen Y, Ghiaci P,et al.Altered sterol composition rendersyeast thermotolerant.Science, 2013,944:1-5.)。通过实验室适应性进化的方式,经过大约200次传代(>200 天),使酿酒酵母对3-羟基丙酸的耐受浓度提高到50g/L(KildegaardK R,
Figure BDA0001358934890000031
B M,Blicher T H,et al.Evolution reveals a glutathione-dependentmechanism of 3-hydroxypropionic acid tolerance.Metab Eng,2014,26:57-66.)。进化得到的菌株可以进一步通过全基因测序和系统生物学工具获得基因型- 表型的关系,用于菌株的理性改造。利用常压室温等离子体(Atmospheric and Room Temperature Plasmas,也简称为ARTP)生物诱变育种技术结合实验室适应性进化的方法,有望能在短时间内得到高耐受菌株。
通过ARTP诱变结合实验室适应性进化,获得了耐受甲醇浓度超过5%的新菌株CLY-2-5。通过第二代基因测序,获得了突变基因位点。以反向代谢工程的方法,利用低拷贝质粒,对突变位点进行验证,从而完成了本发明。
详细来说,本发明涉及以下方案:
1.一种NADPH依赖性(黄素单核苷酸)FMN还原酶(arsH),其序列如 SEQ ID:No.1所示。
2.一种重金属外排泵蛋白(acrB),其序列如SEQ ID:No.2所示。
3.一种天冬氨酸-tRNA合成酶(aspS),其序列如SEQ ID:No.3所示。
4.一种荚膜多糖外排膜蛋白(suga),其序列如SEQ ID:No.4所示。
5.一种核糖核苷二磷酸还原酶α亚基(nrd),其序列如SEQ ID:No.5所示。
6.一种反式硫酸酶(metY),其序列如SEQ ID:No.6所示。
7.一种家族转录调控因子蛋白(gntR),其序列如SEQ ID:No.7所示。
8.一种DNA,其编码项1~7中任一项所述的蛋白质。
9.一种重组载体,其具有项8所述的DNA。
10.一种宿主细胞,其包含项8所述的DNA或项9所述的载体。
上述项1~项7涉及的蛋白质均与扭脱甲基杆菌AM1能够耐受高浓度甲醇相关,具有上述项1~项7蛋白质的扭脱甲基杆菌AM1能够耐受5%(V/V) 以上浓度,优选6%(V/V)以上浓度的甲醇。
附图说明
图1用于检测甲醇浓度的标准曲线。
图2 ARTP处理扭脱甲基杆菌AM1菌液的致死率曲线。
图3将突变基因通过pCM110质粒导入原始菌(扭脱甲基杆菌AM1-dcel,参见实施例部分)并利用下文表3中列出的引物进行单菌落PCR验证,其中泳道1,2,3,4,5,6,7,8,9,10分别为扩增得到的片段M-arsH, M-acrB,M-zntA,M-alip,M-aspS,M-suga,M-elec,M-nrd,M-MetY, M-gntR(参见实施例)。
图4将突变基因通过pCM110质粒导入原始菌(扭脱甲基杆菌AM1-dcel) 后,重组菌的AM1-dcel-M-arsH(arsH),AM1-dcel-M-acrB(acrB), AM1-dcel-M-zntA(zntA),AM1-dcel-M-alip(alip),AM1-dcel-M-aspS(aspS), AM1-dcel-M-suga(suga),AM1-dcel-M-elec(elec),AM1-dcel-M-nrd(nrd), AM1-dcel-M-MetY(metY),AM1-dcel-M-gntR(gntR)的生长情况(在5%甲醇培养基中),以及CLY-2-5(control+),含有pCM110空质粒原始菌(control-) 的生长情况。
图5将原始基因通过pCM110质粒导入原始菌进行单菌落PCR验证。泳道1、2、3、4、5、6、7分别为arsH,acrB,aspS,suga,nrd,MetY和 gntR。
图6将原始基因通过pCM110质粒导入原始菌(扭脱甲基杆菌AM1-dcel) 后,重组菌AM1-dcel-arsH(arsH),AM1-dcel-acrB(acrB), AM1-dcel-aspS(aspS),AM1-dcel-suga(suga),AM1-dcel-nrd(nrd), AM1-dcel-MetY(MetY)和AM1-dcel-gntR(gntR)的生长情况(5%甲醇培养基)。以及CLY-2-5为阳性对照(control+),含有pCM110空质粒原始菌为阴性对照(control-)的生长情况。
具体实施方式
以下,对本文的详细内容和实施方式进行具体说明。
如无特殊说明,本文中所用术语的含义与本领域技术人员一般理解的含义相同,但如有冲突,则以本文中的定义为准。本文中,所涉及的数值一般指重量或重量百分比,除非特殊说明。
本发明涉及一种NADPH依赖性(黄素单核苷酸)FMN还原酶(arsH)。目前,在NCBI数据库中有约9000个arsH相关序列,其中细菌中的ArsH序列占总量的97.7%。arsH基因与能够将三价砷氧化为低毒的五价砷化合物有关(参见:Yang H C,Rosen B P.New mechanismsof bacterial arsenic resistance. Biomed.J,2016,39:5-13)。而作为一种黄素蛋白,arsH通过NADPH和FMN 之间的电子传递,参与细胞中的氧化还原反应(Chen J,Bhattacharjee H,Rosen B P.ArsH is an organoarsenical oxidase that confersresistance to trivalent forms of the herbicide monosodium methylarsenate andthe poultry growth promoter roxarsone.Mol Microbiol,2015,96:1042-1052.),可能与M.extorquens AM1的甲醇氧化途径相关,但目前未有相关报道。本发明涉及的NADPH依赖性(黄素单核苷酸)FMN还原酶(arsH)的序列如SEQ ID:No.1所示,与来源于扭脱甲基杆菌AM1的NADPH依赖性(黄素单核苷酸)FMN还原酶相比,第163 位氨基酸从甘氨酸(G)突变为精氨酸(R)(G163R)。
本发明涉及一种重金属外排泵蛋白质(acrB),外排泵是存在于细菌细胞膜上的一类蛋白质,研究发现,许多细菌可以通过外排泵系统将进入胞内的抗菌药物泵出胞外,从而使菌体内药物浓度降低而导致耐药。acrB为 AcrAB-TolC的重要组成部分。目前表征最完善的外排泵是大肠杆菌的 AcrAB-TolC,能够将多种物质从细胞周质或者内膜泵送到胞外。本发明涉及的重金属外排泵(acrB)的序列如SEQ ID:No.2所示,与来源于扭脱甲基杆菌 AM1的重金属外排泵(acrB)相比,其第96位的氨基酸从苯丙氨酸(F)突变到丝氨酸(S),第893位的氨基酸从亮氨酸(L)突变为缬氨酸(V),第901位的氨基酸从丙氨酸(A)突变到甘氨酸(G)(F96S,L893V,A901G)。本发明涉及一种天冬氨酸-tRNA合成酶(aspS),其序列如SEQ ID:No.3所示,与来源于扭脱甲基杆菌AM1的天冬氨酸-tRNA合成酶(aspS)相比,其第538位的氨基酸从甘氨酸(G)突变到天冬氨酸(D)(G538D)。
本发明涉及一种荚膜多糖外排膜蛋白质(suga)。革兰氏阴性细菌能够分泌多种多糖,有的会直接分泌到胞外,用作为细胞外多糖(extracellular polysaccharides,EPS),有的与细胞结合,形成荚膜多糖(capsular polysaccharides CPS),有的形成细胞外膜脂多糖(lipopolysaccharides LPS)(Yuan B,Cheng A,Wang M.Polysaccharide exportouter membrane proteins in Gram-negative bacteria..Future Microbiol.,2013,8:525-35.)。目前,革兰阴性菌通过外膜的多糖排出机制尚不清楚,荚膜多糖外排膜蛋白与荚膜多糖的组装密切相关(Yuan B,Cheng A,Wang M.Polysaccharide export outermembrane proteins in Gram-negative bacteria..Future Microbiol.,2013,8: 525-35.),荚膜多糖是致病菌重要的毒力因子,与细胞耐干燥性能呈正相关并可能会受胞外渗透压的调控(Ophir T,Gutnick D L.A role for exopolysaccharides in theprotection of microorganisms from desiccation.Appl. Environ.Microbiol.,1994,60:740-745)。M.flagellatus兼性甲基营养菌的基因组过程中认为荚膜多糖外排膜蛋白(suga)可能与该菌能够利用葡萄糖作为碳源有关(Ludmila Chistoserdova,AllaLapidus,Cliff Han,et al.Genome of Methylobacillus flagellatus,Molecular Basisfor Obligate.J Bacteriol,2007,189: 4020-4027.)。本发明涉及的荚膜多糖外排膜蛋白(suga),其序列如SEQ ID: No.4所示,与来源于扭脱甲基杆菌AM1的荚膜多糖外排膜蛋白(suga)相比,其第8位的氨基酸从丙氨酸(A)突变到甘氨酸(G)(A8G)。
本发明涉及一种核糖核苷二磷酸还原酶α亚基(nrd),其功能为把核苷酸催化为脱氧核糖核苷酸。本发明涉及的核糖核苷二磷酸还原酶α亚基(nrd),其序列如SEQ ID:No.5所示,与来源于扭脱甲基杆菌AM1的核糖核苷二磷酸还原酶α亚基(nrd)相比,其第662位的氨基酸从谷氨酰胺(Q)突变到亮氨酸(L)(Q662L)。
本发明涉及一种反式硫酸酶(metY)(也称为O-乙酰高丝氨酸氨基羧基丙基转移酶)。本发明涉及的反式硫酸酶(metY),其序列如SEQ ID:No.6所示,与来源于扭脱甲基杆菌AM1的反式硫酸酶(metY)相比,从第370为的氨基酸从天冬酰胺突变到天冬氨酸(N370D)。
本发明涉及一种家族转录调控因子(gntR),家族转录调控因子在细菌基因组中广泛存在,目前在古细菌和细菌基因组中已发现2000多个gntR家族的转录调控因子,gntR转录调控因子通过变构效应对细菌代谢、毒力和耐药基因的表达进行调控。本发明涉及的家族转录调控因子(gntR),其序列如SEQ ID:No.7所示,与来源于扭脱甲基杆菌AM1的家族转录调控因子(gntR)相比,其第197位的氨基酸从脯氨酸(P)突变到丙氨酸(A)(P197A)。
此外,本发明还涉及锌镉钴和铅外排系统蛋白质(zntA),其与细胞内重金属离子的转运相关。硝酸氰化物水合酶和载脂蛋白N-酰基转移酶(alip),以及电子转移黄素蛋白亚基β(elec),其起到传递电子作用。
通过研究发现上述本发明涉及的七个蛋白质即NADPH依赖性(黄素单核苷酸)FMN还原酶(arsH)、重金属外排泵蛋白质(acrB)、天冬氨酸-tRNA合成酶(aspS)、荚膜多糖外排膜蛋白质(suga)、核糖核苷二磷酸还原酶α亚基 (nrd)、反式硫酸酶(metY)以及家族转录调控因子(gntR)与能够耐受高浓度甲醇性状有关。
本发明涉及的gntR(SEQ ID:No.7)更有利于M.extorquens AM1耐受高浓度甲醇。革兰氏阴性菌外排泵系统的底物范围非常广泛,能够与多种化合物包括抗生素等结合,从而使细菌能够适应多种复杂的环境。
本发明涉及的蛋白质与细胞的有毒化合物外排相关的(1)荚膜多糖外排膜蛋白(suga)(SEQ ID:No.4)以及(2)重金属外排泵蛋白质(acrB)(SEQ ID:No.2)。革兰氏阴性细菌能够分泌多种多糖,有的会直接分泌到胞外,用作为细胞外多糖(extracellularpolysaccharides,EPS),有的与细胞结合,形成荚膜多糖(capsular polysaccharidesCPS),有的形成细胞外膜脂多糖 (lipopolysaccharides LPS)(Yuan B,Cheng A,WangM.Polysaccharide export outer membrane proteins in Gram-negativebacteria..Future Microbiol.,2013,8: 525-35.)。目前,革兰阴性菌通过外膜的多糖排出机制尚不清楚,荚膜多糖外排膜蛋白与荚膜多糖的组装密切相关(Yuan B,Cheng A,WangM. Polysaccharide export outer membrane proteins in Gram-negative bacteria..Future Microbiol.,2013,8:525-35.),荚膜多糖是致病菌重要的毒力因子,与细胞耐干燥性能呈正相关并可能会受胞外渗透压的调控(Ophir T,Gutnick D L.A role forexopolysaccharides in the protection of microorganisms from desiccation.Appl.Environ.Microbiol.,1994,60:740-745.)。有关甲基营养菌方面的研究中,更多关注其独特的一碳代谢途径,而对于细胞膜多糖方面的研究非常少,目前本发明人仅发现在研究RuMP循环的M.flagellatus兼性甲基营养菌的基因组过程中认为荚膜多糖外排膜蛋白(suga)可能与该菌能够利用葡萄糖作为碳源有关(Ludmila Chistoserdova,AllaLapidus,Cliff Han,et al. Genome of Methylobacillus flagellatus,MolecularBasis for Obligate.J Bacteriol, 2007,189:4020-4027.)。因此本发明人推测与细胞所处的干燥环境类似,有机溶剂也具有脱水作用。突变后的suga可能加速了荚膜多糖的转运,促进了荚膜多糖的组装,增加了M.extorquens AM1对高浓度甲醇的抵抗能力。
重金属外排泵(acrB)的原始基因的单一过表达不能使菌株获得高甲醇耐受性状,而本发明涉及的acrB(SEQ ID:No.2)的过表达能够使菌株获得高耐受性状。acrB蛋白是外排泵系统AcrAB-TolC的重要组成部分,目前表征最完善的外排泵是大肠杆菌的AcrAB-TolC,能够将多种物质从细胞周质或者内膜泵送到胞外。acrB泵主要与有毒化合物的结合有关。推测突变后的acrB 与胞内产生的有毒化合物(可能是甲醛)的结合能力加强,促进了甲醛的外排,减少甲醛在胞内积累,减少了甲醇对细胞的毒性。
与细胞呼吸作用密切相关的基因:NADPH依赖性(黄素单核苷酸)FMN 还原酶(arsH)单一基因过表达并不能提高甲醇耐受性,编码本发明涉及的 arsH(SEQ ID:No.1)的DNA过表达时,能够使菌株耐受高浓度的甲醇。目前,在NCBI数据库中有约9000个arsH相关序列,其中细菌中的ArsH序列占总量的97.7%。arsH基因功能研究集中于ArsH对有机砷的解毒功能,能够将三价砷氧化为低毒的五价砷化合物(Yang H C,Rosen B P.Newmechanisms of bacterial arsenic resistance.Biomed.J,2016,39:5-13.)。而作为一种黄素蛋白,ArsH通过NADPH和FMN之间的电子传递,参与细胞中的氧化还原反应(Chen J,Bhattacharjee H,Rosen B P.ArsH is an organoarsenical oxidase that confersresistance to trivalent forms of the herbicide monosodium methylarsenate andthe poultry growth promoter roxarsone.Mol Microbiol,2015, 96:1042-1052.),可能与M.extorquens AM1的甲醇氧化途径相关,但目前未有相关报道。
gntR家族转录调控因子在细菌基因组中广泛存在,目前在古细菌和细菌基因组中已发现2000多个gntR家族的转录调控因子,gntR转录调控因子通过变构效应对细菌代谢、毒力和耐药基因的表达进行调控,在医药领域相关研究报道比较多(徐红梅.GntR型转录因子SPD006省略球菌荚膜多糖的调控作用及机制研究[硕士学位论文],重庆:重庆医科大学检验医学院, 2015.)。本发明的研究表明gntR转录调控因子的原始基因(gntR)和编码本发明的gntR的DNA的单一过表达均能够提高菌株的甲醇耐受能力,但编码本发明的gntR(SEQID:No:7)的DNA的过表达带来的效果更明显。但目前尚无任何关于gntR与M.extorquensAM1甲醇耐受方面相关的研究报道。
与某些酶合成相关的基因如:天冬氨酸-tRNA合成酶(aspS)、反式硫酸酶(O-乙酰高丝氨酸氨基羧基丙基转移酶)(MetY)、核糖核苷二磷酸还原酶α亚基(nrd)基因的单一基因过表达并不能使菌株耐受高浓度甲醇,而编码本发明的aspS(SEQ ID:No:3),MetY(SEQID:No:6)和nrd(SEQ ID:No:5)的 DNA的单一基因过表达使菌株能够在高浓度甲醇中生长。推测可能与某些蛋白的合成相关。
在本文中使用的术语“氨基酸”表示包含丙氨酸(三字母代码:ala,单字母代码:A)、精氨酸(arg,R)、天冬酰胺(asn,N)、天冬氨酸(asp,D)、半胱氨酸(cys,C)、谷氨酰胺(gln,Q)、谷氨酸(glu,E)、甘氨酸(gly,G)、组氨酸(his,H)、异亮氨酸(ile,I)、亮氨酸(leu,L)、赖氨酸(lys,K)、甲硫氨酸 (met,M)、苯丙氨酸(phe,F)、脯氨酸(pro,P)、丝氨酸(ser,S)、苏氨酸(thr, T)、色氨酸(trp,W)、酪氨酸(tyr,Y)和缬氨酸(val,V)的天然存在的羧基α- 氨基酸的组。
在本文中使用的术语“编码序列”的意思是直接指定其蛋白质产物的氨基酸序列的核苷酸序列。编码序列的边界通常由开读框决定,所述开读框通常以ATG起始密码子或可供选择的起始密码子例如GTG和TTG开始,并且以终止密码子例如TAA、TAG和TGA结束。编码序列可以是DNA、cDNA 或重组核苷酸序列。
本发明中所述的DNA序列可以和其它调控序列结合在一起,产生重组载体,该载体可以包括一个或多个(数个)方便的限制位点以允许在这些位点插入或取代编码肽段的DNA序列。备选的,可以通过在适当的用于表达的载体中插入包含所述氨基酸序列的DNA序列来表达本文的DNA序列。在制备重组载体的过程中,将编码序列导入载体中,从而将该编码序列与适当的表达调控序列可操作地连接。启动子、转录信号、翻译终止信号以及其它调控序列是任何本领域普通技术人员能够可以根据常规选择而确定的。
根据本发明,还提供具有本发明的DNA的重组载体。重组载体是指包含使得该DNA编码的蛋白质能够在宿主细胞内表达的表达调控区的重组载体。具体地,通常是本发明的DNA和适合宿主微生物的启动子连接而得的载体,其中本发明的DNA的编码区域的5'末端侧连接于该启动子的下游。对于载体没有特殊限制,只要能够在宿主微生物内复制增殖即可,可以列举出质粒载体、穿梭载体和噬菌体载体。
用于表达编码本发明的酶蛋白质的DNA的启动子,通常可以使用宿主微生物所带有的启动子,但不限于此,可以适用任何启动子,只要是用于引发本发明的酶蛋白质的基因的转录的碱基序列即可。具体地,可以列举出乳糖操纵子的启动子、色氨酸操纵子的启动子、λ噬菌体来源的PL启动子、色氨酸乳糖杂合(tac)启动子(H.A.Bose等人,Proc.Natl.Acad.Sci.U.S. A.,Vol.80,p.21(1983))等。这些启动子中,出于提高表达效率的目的,也可以使用有诱导性的启动子。例如。对于上述乳糖操纵子的启动子的情况,可以通过添加乳糖或异丙基-β-D-硫代半乳糖苷(IPTG)来诱导基因表达。
根据本发明,还提供将本发明的DNA或重组载体导入宿主细胞而得到的转化体。对于导入本发明的DNA或重组载体的宿主没有特殊限制,可以适宜地使用埃希氏菌属(Escherichia)细菌例如大肠杆菌、放线菌属 (Actinomycetes)细菌、芽孢杆菌属(Bacillus)细菌、沙雷氏菌属(Serratia)细菌、假单胞菌属(Pseudomonas)细菌、棒杆菌属(Corynebacterium)细菌、短杆菌属(Brevibacterium)细菌、红球菌属(Rhodococcus)细菌、乳杆菌属 (Lactobacillus)细菌、链霉菌属(Streptomyces)细菌、栖热菌属(Thermus)细菌、链球菌属(Streptococcus)细菌、酵母菌属(Saccharomyces)酵母、毕赤酵母属(Pichia)酵母、克鲁维氏酵母属(Kluyveromyces)酵母、假丝酵母属 (Candida)酵母、裂殖酵母菌属(Schizosaccharomyces)酵母、德巴利氏酵母属 (Debaryomyces)酵母、耶氏酵母属(Yarrowia)酵母、隐球酵母属 (Cryptococcus)酵母、法夫酵母属(Xanthophyllomyces)酵母、曲霉属 (Aspergillus)霉菌、被孢霉属(Mortierella)霉菌、镰刀菌属(Fusarium)霉菌、裂殖壶菌(Schizochytrium)属、破囊壶菌(Thraustochytrium)属等。优选地,宿主细胞可以是大肠杆菌、放线菌、假单胞菌属细菌、酵母菌属酵母。
作为将基因导入上述宿主微生物的方法,可以采用利用感受态细胞法 [Journalof Molecular Biology,Vol.53,p.159(1970)]、乙酸锂法[Ito,H.等人,J. Bacteriol.,Vol.153,p.163(1983)]、原生质球法[Hinnen,A.,等人Proc.Natl. Acad.Sci.USA,Vol.75,p.1929(1978)]、电脉冲法[J.Indust.Microbiol.,Vol.5, p.159(1990)]等的转化法、使用噬菌体的转化法[E.Ohtsubo,Genetics,Vol.64, p.189(1970)]、接合转移法[J.G.C.Ottow,Ann.Rev.Microbiol.,Vol.29,p.80 (1975)]、细胞融合法[M.H.Gabor,J.Bacteriol.,Vol.137,p.1346(1979)]等。从这些方法中可以适宜选择适合宿主微生物的方法。
除了使用诸如上述的表达载体的表达方法以外,还可以通过将与启动子连接后的编码本发明的酶蛋白质的DNA直接导入宿主微生物的染色体中的同源重组技术、或者使用转座子、插入序列等进行导入的技术来进行表达。因此,本发明的转化体只要表达本发明的酶蛋白质即可,对于基因导入的方法没有限制。
实施例
在下述实施例中使用到的MC培养基如下。
10%(v/v)溶液A,0.1%(v/v)溶液B,0.1%(v/v)溶液C,1%(v/v)溶液D, 1%(v/v)甲醇。其中,溶液A、B、C和去离子水混匀后经高温高压灭菌,溶液D单独高温高压灭菌,甲醇单独过滤除菌。灭菌后把上述溶液混匀即得 MC培养基。若配制平板,则在此基础上加入1.5%琼脂粉。
溶液A:10g(NH4)2SO4,4.5g MgSO4·7H2O,33mg CaCl2·2H2O,定容至1L;
溶液B:13.4g Na3C6H3O7·2H2O,345.04mg ZnSO4·7H2O,198mg MnCl2·4H2O,5gFeSO4·7H2O,2.46g(NH4)6Mo7O24·4H2O,249.6mg CuSO4·5H2O,475.8mg CoCl2·6H2O,108.8mg Na2WO4·2H2O,定容至1L;
溶液C:300mg H3BO3,定容至1L;
溶液D:402g Na2HPO4·12H2O,130.5g KH2PO4,加500mL去离子水溶解,调节pH至6.8,定容至1L;
在实施例中如果没有额外描述通常使用如下的菌株培养方法:挑取单菌落接种到10mL培养基(50mL三角瓶)中,在30℃、170rpm的摇床培养至 OD600=3.0~4.0。将种子液转接至100mL三角瓶,利用30mL培养基控制起始OD600=0.25,在30℃,170rpm条件下摇床培养,进行传代培养或者发酵培养。
本发明实施例中采用的几种检测方法。
(1)菌体浓度检测(OD600)
利用分光光度计测定600nm处吸光度,根据分光光度法的测定原理,菌体浓度过高则用去离子水稀释,直到吸光度在0.2-0.8之间,以去离子水的吸光度作为吸光度零点。
(2)气相色谱法检测甲醇含量
甲醇标准曲线制作
用10mL容量瓶配1%(v/v)甲醇标准溶液(247.13mM),梯度稀释为123.57 mM、61.78mM、30.89mM、15.45mM、7.72mM、3.86mM和1.93mM甲醇标准溶液。1mL甲醇标准溶液转移至气相小瓶,采用气相色谱测甲醇含量并制作甲醇标准曲线。
发酵样品的检测
1mL经过培养得到的发酵液,经5000×g离心5min,上清液用0.22μm 滤器进行过滤,气相色谱检测甲醇的含量,色谱条件如下:
采用岛津GC-2010plus气相色谱,采用Agilent DB-Wax(30m×0.320mm ×0.25μmfilm,安捷伦公司,上海,中国)色谱柱。分析参数如下所示:
柱温:90℃
进样口:250℃
FID检测器:250℃
载气:He
载气线速度:50cm/s
进样量:1μL,分流比50
H2:air:He=40:400:30
采用外标法,标准曲线如图1所示。通过气相色谱的峰面积与标准曲线进行比对,获得液体中的甲醇浓度。
实施例1获得能够耐受高浓度甲醇的菌株
ARTP诱变条件的确定:
本实验使用的ARTP仪器由清华大学邢新会和张翀实验室与无锡源清天木生物技术有限公司(无锡,中国)共同研发ARTP-IIS型仪器),利用ARTP 进行诱变的操作条件控制如下:氦气流量,10slpm;输入功率,100W;菌体样品与等离子体射流入口距离,2mm。种子液培养后接种到发酵培养基,培养至对数期(约48h),扭脱甲基杆菌AM1-dcel(参见下表3)的细胞密度 OD600大约为3.0,取10μL菌液加到一个小铁片上,并无菌操作放置于ARTP 载物台,进行诱变。
致死率曲线:
用ARTP处理该扭脱甲基杆菌AM1-dcel菌株,处理时间:0s、30s、 60s、90s、120s来调整等离子体的作用剂量,将处理过的菌液转移到2.0mL 的EP管中,170rpm,30℃,培养2h,稀释20000倍后取100μL涂板,放于30℃培养箱静置培养5天,计数,以未经诱变的菌液作为对照,根据下述公式计算致死率,并作致死率曲线,如图2所示。在ARTP处理时间为 60s,达到最大致死率为58.25%。由此,后面选取60s作为诱变处理时间。
ARTP致死率=(不同ARTP处理剂量的菌落数/不用ARTP处理的对照菌落数)×100%
诱变后复苏:
ARTP处理60s,将小铁片放于2.0mL含有1.5mL的MC无菌培养基,在170rpm和30℃摇床培养2h,进行诱变细胞复苏。
适应性进化:
适应性进化中选取5%甲醇浓度作为进化的培养条件。将诱变复苏后的细胞培养物,取1mL于含有5%甲醇的30mL MC培养基(100mL三角瓶) 中培养,作为种子液(0代)。种子液OD600到3.0左右时候,接种并继续在5%甲醇浓度的MC培养基中传代,依次传代。传代过程中每隔24h测一次培养液的OD600数值,作为评价菌生长情况的指标。每隔48h转接一次,接种量为10%。传代过程中出现菌体密度下降时,重复诱变一次,获得大量突变,继续传代,直到菌株能够在5%浓度甲醇中生长;将菌液稀释20000倍,涂平板,在30℃培养箱静置培养5天;选取平板上较大菌落,单菌落接种,摇瓶培养,再次确认高耐受甲醇的性状。
通过检测第一轮诱变后,传代培养过程中的OD600,挑选OD600显著升高的菌株,继续传代培养,当OD600有所下降时,进行第二轮诱变,获得能够耐受5%(v/v)甲醇浓度的菌株,将该菌株命名为CLY-2-5。实验表明该菌株能够在6%(v/v)甲醇浓度的MC培养基中生长。
实施例2
通过比较基因组学解析,将获得的高浓度甲醇耐受菌CLY-2-5与原始菌扭脱甲基杆菌AM1-dcel进行比较,获得36个基因突变位点;通过过表达相应的基因,对突变基因功能确认。
以突变菌CLY-2-5的单菌落为模板,以arsH-F和arsH-R为引物,以得到的突变菌株为模板,PCR得到突变基因,在本文中称为M-arsH;以acrB-F 和acrB-R为引物,以得到的突变菌株为模板,PCR得到突变基因,在本文中称为M-acrB;以zntA-F和zntA-R为引物,以得到的突变菌株为模板,PCR 得到突变基因,在本文中称为M-zntA;以alip-F和alip-R为引物,以得到的突变菌株为模板,PCR得到突变基因,在本文中称为M-alip;以aspA-F 和aspA-R为引物,以得到的突变菌株为模板,PCR得到突变基因,在本文中称为M-aspS;以suga-F和suga-R为引物,以得到的突变菌株为模板,PCR 得到突变基因,在本文中称为M-suga;以elec-F和elec-R为引物,以得到的突变菌株为模板,PCR得到突变基因,在本文中称为M-elec;nrd-F和nrd-R 为引物,以得到的突变菌株为模板,PCR得到突变基因,在本文中称为M-nrd; MetY-F和MetY-R为引物,以得到的突变菌株为模板,PCR得到突变基因,在本文中称为M-MetY;gntR-F和gntR-R为引物,以得到的突变菌株为模板,PCR得到突变基因,在本文中称为M-gntR。
将pCM110质粒在大肠杆菌DH5a中进行扩增,提取质粒,进行XbaI 和hindIII双酶切以获得质粒片段,将获得的质粒片段分别与上述突变基因进行Gibson组装。
线性化基因片段可通过Gibson组装的方法构建载体,要求每个相邻基因片段末端都有20-40bp的重叠序列。Gibson组装构建载体的操作流程如下。
缓冲液储备液体系按照表1进行配制,其浓度为工作浓度的5倍。
表1缓冲液储备液成分
组分 用量
1M Tris-HCl缓冲液(pH 7.5) 3mL
2M MgCl2 150μL
10mM dNTP mixture 600μL
1M dTT 300μL
PEG-8000 1.5g
100mM NAD+ 300μL
灭菌去离子水 补充至6mL
其中Tris-HCl缓冲液和MgCl2溶液可长期常温保存,dTT和NAD+ 溶液现配现用,并在冰上操作。储备液配制完成后用水系无菌滤器过滤除菌。过滤后的储备液可按320μL分装在1.5mL无菌离心管中,并于-20℃保存。分别与PCR得到的各个突变基因的片段分别进行Gibson组装。
配制组装反应液:组装反应液体系按照表2进行配制。
表2 Gibson组装反应液成分
组分 用量
5×缓冲液储备液 320μL
10U/μL T5exonuclease 0.64μL
2U/μL Phusion DNA polymerase 20μL
40U/μL Taq DNA ligase 160μL
灭菌去离子水 补充至1.2mL
其中T5exonuclease酶活很高,加入量需要严格控制。当同源臂长度设计为20-150bp时,使用表2中的T5exonuclease浓度;当大于150bp时,加入量提高为3.2μL。反应液配制完成后按7.5μL分装在PCR管中,并于 -20℃保存,可保存一年。
Gibson组装反应:使用10μL反应体系,每管7.5μL组装反应液中可添加的基因片段溶液总量为2.5μL。当基因片段小于6kb时,各片段的添加量为10-100ng;如果基因片段更长,可适当增加其添加量,如150kb 的DNA片段可添加250ng。加入适量的基因片段后,混匀,将该10μL反应体系置于PCR热循环仪中50℃反应15-60min。对于基因片段较长或组装片段数目较多的反应,可适当延长反应时间。反应完成后于4℃暂时保存,可直接进行化学转化,也可以于-20℃保存,等待合适的时间进行转化。
通过上述实验构建如下质粒:pCM110-M-arsH,pCM110-M-acrB, pCM110-M-zntA,pCM110-M-alip,pCM110-M-aspS,pCM110-M-suga, pCM110-M-elec,pCM110-M-nrd,pCM110-M-MetY和pCM110-M-gntR。将上述质粒分别化转至DH5α培养,并进行单菌落PCR验证以确定质粒中的基因片段正确。
其中,下表3和表4分别列出了在本发明实施例中所使用的菌种、质粒与引物。
表3本发明实施例中使用的菌种、质粒
Figure BDA0001358934890000151
Figure BDA0001358934890000161
表4本发明中使用的引物
Figure BDA0001358934890000162
注:ctacgatgcccgcgcg和atgagggcggcgaagc为Gibson组装所需要的同源臂。
验证质粒正确后,提取质粒并电转至原始菌株AM1-dcel中,将含有质粒pCM110-M-arsH,pCM110-M-acrB,pCM110-M-zntA,pCM110-M-alip, pCM110-M-aspS,pCM110-M-suga,pCM110-M-elec,pCM110-M-nrd, pCM110-M-MetY和pCM110-M-gntR。分别命名为AM1-dcel-M-1, AM1-dcel-M-2,AM1-dcel-M-3,AM1-dcel-M-4,AM1-dcel-M-5,AM1-dcel-M-6,AM1-dcel-M-7,AM1-dcel-M-8,AM1-dcel-M-9, AM1-dcel-M-10。将5%(v/v)甲醇添加至MC培养基,100mL三角瓶,装液量30mL,30℃,170rpm下培养,以含有pCM110空质粒的原始菌作为阴性对照,通过生长曲线来确定是否具有高浓度甲醇耐受性能。
根据图3所示,各个质粒已经成功导入原始菌M.extorquens AM1中,以高耐受甲醇菌株CLY-2-5作为阳性对照,含有pCM110空质粒的原始菌作为阴性对照,在含有5%(v/v)甲醇的MC培养基中,进行菌株生长的表征。
通过重组菌生长表征的结果如图4所示。通过与高耐甲醇突变株及阴性对照菌株的生长曲线比较,可以确定M-elec,M-zntA,M-alip单一基因过表达不能使菌株具有高耐受甲醇的性状,M-arsH,M-acrB,M-aspS, M-suga,M-nrd,M-MetY和M-gntR单一基因过表达与高耐受甲醇的性状相关。培养至96h,CLY-2-5细胞密度增加了9.78(OD600), AM1-dcel-M-arsH(arsH)细胞密度增加了5.44(OD600), AM1-dcel-M-acrB(acrB)细胞密度增加了5.35(OD600), AM1-dcel-M-aspS(aspS)细胞密度增加了5.31(OD600), AM1-dcel-M-suga(suga)细胞密度增加了5.37(OD600),AM1-dcel-M-nrd(nrd) 细胞密度增加了5.30(OD600),AM1-dcel-M-MetY(metY)细胞密度增加了 5.24(OD600),AM1-dcel-M-gntR(gntR)细胞密度增加了5.30(OD600)。考虑到低拷贝质粒进行基因功能的验证,存在基因突变和基因量过表达两方面的影响。对这7个基因对应的原始基因进行再次表达,进一步明确突变基因的功能。
以原始菌为模板,扩增得到原始基因片段,将该基因片段分别与 pCM110质粒骨架进行Gibson组装,构建质粒pCM110-arsH, pCM110-acrB,pCM110-aspS,pCM110-suga,pCM110-nrd,pCM110-MetY 和pCM110-gntR。将质粒分别导入原始菌,进行单菌落PCR验证。
为了去除质粒拷贝数的影响,根据前文构建pCM110-M-arsH等含有突变基因质粒的方法,利用表4中的引物,以原始菌株作为模板,进行PCR 扩增,然后与pCM110质粒骨架进行Gibson组装,将构建完成的 pCM110-arsH,pCM110-acrB,pCM110-aspS,pCM110-suga,pCM110-nrd,pCM110-MetY和pCM110-gntR等质粒分别导入原始菌 AM1-dcel,构建菌株AM1-dcel-O-1、AM1-dcel-O-2、AM1-dcel-O-3、AM1-dcel-O-4、AM1-dcel-O-5、AM1-dcel-O-6、AM1-dcel-O-7。以高耐受甲醇菌株作为阳性对照,以含有pCM110空质粒的原始菌作为阴性对照,在含有5%(v/v)甲醇的MC培养基中,进行菌株生长表征。
通过研究发现M-arsH,M-acrB,M-aspS,M-suga,M-nrd,M-MetY,和M-gntR7个突变基因与高耐受甲醇性状有关。
如图6所示,含有未突变的相关基因片段的各质粒分别导入原始菌 AM1-dcel,以高耐受甲醇菌株作为阳性对照,以含有pCM110空质粒的原始菌作为阴性对照,在含有5%(v/v)甲醇的MC培养基中,进行菌株生长表征。
根据前文所述,得到M-arsH,M-acrB,M-aspS,M-suga,M-nrd, M-MetY,和M-gntR 7个突变基因与高耐受甲醇性状有关。验证相应的原始基因发现gntR原始基因与菌株耐受高浓度甲醇密切相关。培养至96h,高耐受甲醇菌株的细胞密度OD600增加了9.31(OD600),AM1-dcel-gntR(gntR)的细胞密度增加了4.53(OD600)。而其他6个基因只有突变基因才表现出与甲醇耐受性的相关性。但过表达突变的gntR基因和原始基因的细胞在含有5%(v/v)甲醇的MC培养基中的生长过程有显著不同,突变的gntR基因更有利于M.extorquens AM1耐受高浓度甲醇。革兰氏阴性菌外排泵系统的底物范围非常广泛,能够与多种化合物包括抗生素等结合,从而使细菌能够适应多种复杂的环境。本发明得到的突变基因中与细胞的有毒化合物外排相关的有:(1)荚膜多糖外排膜蛋白(suga)以及(2)重金属外排泵蛋白质(acrB)。革兰氏阴性细菌能够分泌多种多糖,有的会直接分泌到胞外,用作为细胞外多糖(extracellular polysaccharides,EPS),有的与细胞结合,形成荚膜多糖(capsularpolysaccharides CPS),有的形成细胞外膜脂多糖(lipopolysaccharides LPS)(Yuan B,Cheng A,Wang M.Polysaccharide export outer membrane proteins in Gram-negativebacteria..Future Microbiol., 2013,8:525-35.)。目前,革兰阴性菌通过外膜的多糖排出机制尚不清楚,荚膜多糖外排膜蛋白与荚膜多糖的组装密切相关(Yuan B,Cheng A,WangM. Polysaccharide export outer membrane proteins in Gram-negative bacteria..Future Microbiol.,2013,8:525-35.),荚膜多糖是致病菌重要的毒力因子,与细胞耐干燥性能呈正相关并可能会受胞外渗透压的调控(Ophir T,Gutnick D L.A role forexopolysaccharides in the protection of microorganisms from desiccation.Appl.Environ.Microbiol.,1994,60:740-745.)。有关甲基营养菌方面的研究中,更多关注其独特的一碳代谢途径,而对于细胞膜多糖方面的研究非常少,目前本发明人仅发现在研究RuMP循环的M.flagellatus兼性甲基营养菌的基因组过程中认为荚膜多糖外排膜蛋白(suga)可能与该菌能够利用葡萄糖作为碳源有关(Ludmila Chistoserdova,AllaLapidus,Cliff Han,et al.Genome of Methylobacillus flagellatus,Molecular Basisfor Obligate.J Bacteriol,2007,189:4020-4027.)。因此本发明的发明人推测与细胞所处的干燥环境类似,有机溶剂也具有脱水作用。突变后的suga可能加速了荚膜多糖的转运,促进了荚膜多糖的组装,增加了M.extorquens AM1对高浓度甲醇的抵抗能力。(2)重金属外排泵(acrB)的原始基因的单一过表达不能使菌株获得高甲醇耐受性状,而M-acrB的过表达能够使菌株获得高耐受性状。 AcrB蛋白是外排泵系统AcrAB-TolC的重要组成部分,目前表征最完善的外排泵是大肠杆菌的AcrAB-TolC,能够将多种物质从细胞周质或者内膜泵送到胞外。AcrB泵主要与有毒化合物的结合有关。推测突变后的acrB与胞内产生的有毒化合物(可能是甲醛)的结合能力加强,促进了甲醛的外排,减少甲醛在胞内积累,减少了甲醇对细胞的毒性。
与细胞呼吸作用密切相关的基因:NADPH依赖性(黄素单核苷酸)FMN 还原酶(arsH)单一基因过表达并不能提高甲醇耐受性,突变基因M-arsH单基因过表达,能够使菌株耐受高浓度的甲醇。目前,在NCBI数据库中有约 9000个ArsH相关序列,细菌中存在ArsH序列(97.7%),arsH基因功能研究集中于ArsH对有机砷的解毒功能,能够将三价砷氧化为低毒的五价砷化合物(Yang H C,Rosen B P.New mechanisms of bacterial arsenicresistance. Biomed.J,2016,39:5-13.)。而作为一种黄素蛋白,ArsH通过NADPH和 FMN之间的电子传递,参与细胞中的氧化还原反应(Chen J,Bhattacharjee H, Rosen B P.ArsHis an organoarsenical oxidase that confers resistance to trivalent forms ofthe herbicide monosodium methylarsenate and the poultry growth promoterroxarsone.Mol Microbiol,2015,96:1042-1052.),可能与 M.extorquens AM1的甲醇氧化途径相关,但目前未有相关报道。
gntR家族转录调控因子在细菌基因组中广泛存在,目前在古细菌和细菌基因组中已发现2000多个gntR家族的转录调控因子,gntR转录调控因子通过变构效应对细菌代谢、毒力和耐药基因的表达进行调控,在医药领域相关研究报道比较多(徐红梅.gntR型转录因子SPD006省略球菌荚膜多糖的调控作用及机制研究[硕士学位论文],重庆:重庆医科大学检验医学院, 2015.)。本文的研究表明gntR转录调控因子的原始基因(gntR)和突变基因(M-gntR)的单一过表达均能够提高菌株的甲醇耐受能力,但突变基因效果更明显。但目前尚无任何关于gntR与M.extorquens AM1甲醇耐受方面相关的研究报道。
与某些酶合成相关的基因如:天冬氨酸-tRNA合成酶(aspS)、反式硫酸酶(O-乙酰高丝氨酸氨基羧基丙基转移酶)(MetY)、核糖核苷二磷酸还原酶α亚基(nrd)基因的单一基因过表达并不能使菌株耐受高浓度甲醇,而突变后的M-aspS,M-MetY和M-nrd单一基因过表达使菌株能够在高浓度甲醇中生长。推测可能与某些蛋白的合成相关,由于缺乏相关的研究报道,目前难以获得具体的功能信息。
本发明涉及的氨基酸序列总结如下:
SEQ ID No.:1:本发明涉及的arsH的氨基酸序列
ValAspLysProGlnGlnProPheAlaAspGlyLeuProAsnLeuSerGluAlaHisAlaGluLeuProThrAlaGluArgValGlnAlaSerThrProLeuA laHisAlaProArgPheLeuIleLeuTyrGlySerLeuArgGluArgSerPheSerArgPheLeuAlaTyrGluAlaAlaArgLeuLeuGluAlaMetGlyGly GluValArgIlePheHisAlaHisGlyLeuProLeuProAspAspAlaThrAlaAspHisProLysValArgGluLeuArgGluLeuSerValTrpSerGluGl yGlnValTrpValSerProGluArgHisGlyAsnLeuThrGlyValMetLysSerGlnIleAspTrpLeuProLeuSerGluGlySerValArgProThrGlnG lyArgThrLeuAlaValMetGlnValSerGlyGlySerGlnSerPheAsnAlaValAsnSerLeuArgValLeuGlyArgTrpMetArgMetIleThrIleProAsnGlnSerSerValProMetAlaTyrLysGluPheAspGluAspGlyArgMetLysProGlyProLeuTyrAspArgIleValAspValCysGluGluLeu MetLysPheThrLeuLeuThrArgGlyArgAlaAspTyrLeuValAspArgTyrSerGluArgLysGluArgAspProAspArgLeuLysAlaValAlaAl aAspValGlyPheValArgAlaProSerAlaAlaArgAlaSer
SEQ ID No.:2:本发明的acrB的氨基酸序列
MetPheThrValLeuValSerGlnSerValArgAsnArgLeuLeuValLeuAlaLeuAlaAlaValLeuValLeuTyrGlyAlaPheThrAlaThrLysLeu ProValAspValPheProAspLeuAsnLysProThrValThrValMetThrGluAlaGluGlyTyrAlaProGlnGluValGluGlnLeuValThrTyrProIl eGluThrArgMetAsnGlyLeuProGlyValThrArgValArgSerValSerGlyValGlyLeuSerIleThrTyrValGluSerAspTrpGlyThrAspIleT yrArgAsnArgGlnValAlaGluArgLeuSerLeuValGlnAspGlnLeuProArgGlyValThrProValMetGlyProIleSerSerIleMetGlyGlnIleL euLeuValAlaValThrGlyGluThrAlaThrProMetGlnValArgGluValAlaAspPheThrIleArgProArgLeuLeuThrIleProGlyValAlaGlnValIleProIleGlyGlyGluValArgGlnPheArgValSerProAsnProAlaAlaMetArgAlaLeuGlyValThrAsnAlaGlnLeuGluThrAlaLeuAl aGlnPheGlyThrAsnAlaGlyGlyGlyPheThrAspGlnAsnAlaArgGluTyrLeuIleArgAsnIleGlyArgThrMetSerLeuAspAspLeuArgAs nLeuValValAlaThrValAlaAspAlaProValTyrLeuArgGlnLeuAlaGluValSerPheAlaAlaLysValLysArgGlyAspAlaGlyTyrMetAla LysProAlaValIleValSerValGluLysGlnProAspValAspThrValArgLeuThrArgSerIleGluThrAlaLeuLysGluLeuAsnProThrLeuPro GlyGlyIleLysAlaAspGlnValLeuPheArgGlnAlaAspPheIleGluThrSerIleArgAsnValGluArgValLeuValGluAlaValLeuValValAl aLeuValLeuPheAlaPheLeuLeuAsnValArgThrThrAlaIleSerLeuLeuAlaIleProValSerValLeuThrThrAlaLeuValPheHisLeuPheGl yLeuSerIleAsnThrMetThrLeuGlyGlyLeuAlaIleAlaIleGlyGluLeuValAspAspAlaValValAspValGluAsnIleTyrArgArgLeuGlyG luAsnArgLysAlaGlyAsnProArgSerThrPheGluValValValSerAlaSerAsnGluValArgSerGlyIleValTyrAlaThrLeuIleIleIleLeuVal PheValProLeuPheAlaLeuSerGlyIleGluGlyArgLeuPheAlaProLeuGlyGlnAlaTyrIleIleSerIleLeuAlaSerLeuLeuThrSerIleThrLe uThrProValLeuAlaSerTrpLeuLeuProGlyLeuArgAsnLeuGluGluHisAspSerArgLeuLeuLysLeuLeuLysArgGlyAsnAlaAlaLeuL euArgValAlaPheArgHisLysGlyLeuLeuValGlyThrValAlaAlaAlaValAlaAlaAlaGlyIleAlaAlaTrpAsnLeuProArgAlaPheLeuPro ProPheAsnGluGlySerPheThrValSerMetThrPheAsnProGlyIleSerLeuAlaGluSerAsnArgValGlyLeuIleAlaGluLysLeuLeuLeuGl uIleProGlyValLysAlaValGlyArgArgThrGlyArgAlaGluLeuAspGluHisAlaGluGlyValHisSerSerGluIleAspValAlaLeuAspAspG lyLeuLysArgProLysGlnAlaLeuValAlaAspIleArgGlyArgLeuGlyAlaLeuProValAlaValAsnValGlyGlnProIleSerHisArgLeuAsp HisMetLeuSerGlyValArgAlaGluIleAlaLeuLysValPheGlyAspAspLeuAspAlaLeuArgArgValAlaAsnGlyLeuArgAspArgLeuAl aLysIleProGlyLeuAlaAspLeuGlnValGluArgGlnValArgIleProGlnLeuGluValArgValAspTyrThrArgAlaAlaLeuTyrGlyValGln ProAlaAlaValValGluGlnIleSerArgLeuSerAsnGlyArgValValSerThrValValAspGlyValArgArgPheAspValValLeuArgLeuSerGl uAsnArgArgThrThrAlaGlyLeuGlyAspLeuLeuLeuGluThrProSerGlyTrpValProAlaArgGlnValAlaAspIleArgGluThrAspGlyPro AsnGlnIleLeuArgGluAsnAlaArgArgArgIleValValGlnAlaAsnThrThrAlaGluSerAspMetAlaThrIleValAlaAlaIleArgGluAlaVal AlaGlnGluProMetProProGlyPhePheThrSerLeuGluGlyThrPheGlnAlaGlnGluGluAlaSerArgThrIleAlaAlaLeuSerGlyLeuSerLe uAlaLeuValPheAlaIleLeuTyrSerArgTyrArgSerAlaAlaLeuAlaLeuIleIleMetGlyAsnValProValAlaLeuIleGlySerValAlaGlyLeuTrpLeuValGlyGlnProLeuSerValAlaSerMetIleGlyPheIleThrLeuThrGlyIleAlaAlaArgAsnGlyIleLeuLysIleSerHisTyrLeuAsnLe uSerLeuHisGluGlyValProPheGlyProGluLeuValValArgGlySerLeuGluArgLeuThrProValLeuMetThrAlaLeuSerAlaGlyValAla LeuLeuProLeuLeuTyrAspAlaAlaSerProGlyLysGluIleLeuHisProValAlaValThrIlePheGlyGlyLeuIleSerAlaThrLeuLeuAspThr PheLeuThrProValLeuPheLeuArgPheGlyArgArgProLeuGluArgLeuArgAlaLeuHisAlaGluAlaProAlaTyrProSerProAspGlyAla ProProArgProAlaGluAlaTyr
SEQ ID No.:3:本发明的aspS的氨基酸序列
MetHisArgTyrArgThrHisThrCysGlyAlaIleArgProSerAspValGlyGlnThrValArgLeuSerGlyTrpCysHisArgIleArgAspHisGlyGl yValLeuPheIleAspLeuArgAspHisTyrGlyLeuThrGlnCysValIleAspSerAspSerLysAlaPheLysAlaAlaGluThrAlaArgSerGluTrp ValIleArgIleAspGlyArgValArgThrArgProAlaGlyThrGluAsnAlaGluLeuProThrGlySerValGluValTyrIleAspAspLeuGluValLe uGlyProAlaGlyGluLeuProLeuProValPheGlyAspGlnGluTyrProGluGluThrArgLeuLysTyrArgPheLeuAspLeuArgArgGluLysL euHisAlaAsnIleMetLysArgGlyAlaIleValAspSerLeuArgArgArgMetArgGluGlyGlyPhePheGluPheGlnThrProIleLeuThrAlaSer SerProGluGlyAlaArgAspTyrLeuValProSerArgValHisProGlyLysPheTyrAlaLeuProGlnAlaProGlnGlnPheLysGlnLeuThrMetIl eAlaGlyPheAspArgTyrPheGlnIleAlaProCysPheArgAspGluAspAlaArgAlaAspArgSerProGlyGluPheTyrGlnLeuAspIleGluMet SerPheValThrGlnGluAspValPheGlnAlaValGluProValLeuArgGlyValPheGluGluPheAlaGlyGlyLysArgValThrLysGluPhePro ArgIleThrTyrAlaAspAlaMetLeuLysTyrGlyValAspLysProAspLeuArgAsnProLeuIleIleAlaAspValThrAspGluPheAlaAspAspA laValGluPheLysAlaPheLysGlyValIleLysSerGlyGlyValValArgAlaIleProAlaThrGlyAlaAlaGlyGlnProArgSerPhePheAspLysL euAsnAspTrpAlaArgSerGluGlyAlaProGlyLeuGlyTyrIleValPheGluGluGluGlyGlyAlaLeuThrGlyLysGlyProIleAlaLysPheIleP roAlaAlaIleGlnAlaArgIleAlaGluLysAlaGlyAlaLysAlaGlyAspAlaValPhePheAlaAlaGlyThrGluAlaLysAlaAlaGlyLeuAlaGly LysAlaArgIleArgIleGlyAspGluLeuLysLeuSerAspThrAspGlnPheAlaPheCysTrpValValAspPheProMetTyrGluTrpAsnGluGlu AspLysLysIleAspPheSerHisAsnProPheSerMetProAsnPheAspArgAspGluPheLeuAlaLeuGlyGluAlaAspSerGluArgIleLeuGlyIl eLysAlaPheGlnTyrAspIleValCysAsnGlyIleGluLeuSerSerGlyAlaIleArgAsnHisArgProAspValMetGluLysAlaPheAlaIleAlaGl yTyrGlyArgAspValLeuGluGluLysPheGlyGlyMetLeuAsnAlaLeuArgLeuAspAlaProProHisGlyGlyIleAlaProGlyValAspArgIle ValMetLeuLeuCysGluGluProAsnIleArgGluValValLeuPheProMetAsnGlnArgAlaGluAspLeuMetMetGlyAlaProAlaGluAlaThr ProLysGlnLeuArgGluLeuHisIleArgLeuAsnLeuProGluLysLysAla
SEQ ID No.:4:本发明的suga的氨基酸序列
MetLysCysAlaAlaAlaLeuGlyIleLeuAlaAlaAlaLeuAlaLeuProGlyCysSerValLeuProAlaAlaGlyProThrThrSerAlaIleGluSerGly AlaAspValAlaThrAlaGluGlyLeuPheAlaArgTyrGluIleIleAspIleThrProAlaLeuValGluAlaLeuArgThrArgProLeuAspSerLeuLeu ValThrPheGlyAspHisArgProSerValGluProValIleGlyValGlyAspSerValAlaValGlnValTrpGluAlaGlyAlaGlyGlyLeuPheSerGly ProLeuValSerAspArgPheSerAlaGlySerLysSerAlaThrIleProGluGlnValValGlyProAspGlyGlyIleThrValProTyrAlaGlyArgIleL ysValValGlyArgArgThrGlnAspValGlnAlaLeuIleGluThrGluLeuAlaGlyLysAlaIleGlnProGlnValLeuValSerValThrLysProValS erGlnSerValThrValSerGlyGluAlaAlaMetGlyLysArgValProLeuSerGlyArgGlyAspArgLeuLeuAspValIleAlaGlnAlaGlyGlyVal ArgThrProValSerGluThrPheValArgLeuSerArgGlyAsnArgThrValThrValProMetThrThrValValSerAsnProArgGluAsnIlePheVa lArgProAspAspThrLeuThrLeuValArgAspProGlnThrPheLeuAlaValGlyAlaLeuGlyAsnThrThrGluValProPheThrAlaAspGlyLe uThrLeuSerGlnAlaLeuAlaArgAlaSerGlyLeuArgGluPheGlnAlaAspProAlaGlyValPheIlePheArgTyrGluProAlaAlaValValArg ArgLeuArgProAsnSerProLeuLeuSerSerProGlnValProValValTyrArgValAsnLeuArgAspAlaGlnGlyMetPheLeuThrGlnSerPhe ArgMetArgAsnArgAspLeuValTyrValSerSerSerProPheAlaGluLeuGlyLysValLeuSerValPheSerThrValAlaSerProIleAlaAlaGly AlaSerIleTyrThrValThrArg
SEQ ID No.:5:本发明的nrd的氨基酸序列
MetArgPheGluArgArgTyrThrThrAlaGlyGlnSerProTyrAlaAlaIleAlaPheArgLysAlaValSerGluIleArgAsnProAspGlySerIleVal PheArgLeuAspGlyIleSerValProGluSerTrpSerGlnValAlaAlaAspValLeuAlaGlnLysTyrPheArgLysAlaGlyValProAlaArgLeuLy sLysValGluGluAsnSerValProSerPheLeuTrpArgAlaValProAspGluAlaAlaLeuAlaGluLeuProGluGluGluArgPheValSerGluIleS erAlaThrGlnValPheAspArgLeuAlaGlyCysTrpThrTyrTrpGlyTrpLysGlyGlyTyrPheSerSerGluGluAspAlaAlaAlaPheMetAspGl uLeuArgPheMetLeuAlaArgGlnMetValAlaProAsnSerProGlnTrpPheAsnThrGlyLeuHisTrpAlaTyrGlyIleAspGlyProSerGlnGlyHisPheTyrCysAspProLysThrGlyValLeuThrLysSerAlaThrAlaTyrGluHisProGlnProHisAlaCysPheIleGlnSerValGlnAspAspLe uValAsnGluGlyGlyIleMetAspLeuTrpValArgGluAlaArgLeuPheLysTyrGlySerGlyThrGlySerAsnPheSerMetLeuArgGlyGluAs nGluArgLeuGlyGlyGlyGlyLysSerSerGlyLeuMetSerPheLeuLysIleGlyAspArgAlaAlaGlyAlaIleLysSerGlyGlyThrThrArgArg AlaAlaLysMetValIleValAspIleAspHisProAspValGluAsnPheIleAspTrpLysValLysGluGluGlnLysValAlaAlaLeuValThrGlySer LysValValSerLysHisLeuThrAlaValMetLysAlaCysThrGlnCysGluAlaGluGlyAspAlaCysPheAspProGluArgAsnProAlaLeuLys ArgGluIleLysAlaAlaArgLysAlaMetValProAspAlaTyrIleLysArgValValGlnPheAlaArgGlnGlyPheThrLysIleAspPheProValTyr AspThrAspTrpAspSerGluAlaTyrLeuThrValAlaGlyGlnAsnSerAsnAsnSerValSerLeuThrAspGluPheLeuArgAlaValGluAlaAsp GlyProTrpSerLeuThrSerArgThrThrGlyLysValValLysThrProGlnAlaArgAspLeuTrpGluLysIleGlyGluAlaAlaTrpAlaSerAlaAs pProGlyLeuHisPheAsnThrThrMetAsnAspTrpHisThrCysProGluGlyGlyArgIleArgAlaSerAsnProCysSerGluTyrMetPheLeuAsp AspThrAlaCysAsnLeuAlaSerAlaAsnLeuLeuThrMetTyrAspArgGlnSerLysHisPheAspValGluAlaPheGluHisLeuAsnArgLeuTr pThrValValLeuGluIleSerValMetMetAlaGlnPheProSerLysGluIleAlaGluLeuSerTyrLysTyrArgThrLeuGlyLeuGlyTyrAlaAsnIl eGlyGlyLeuLeuMetThrMetGlyLeuProTyrAspSerAspLysGlyArgAlaLeuAlaGlyAlaLeuThrAlaIleMetThrGlyValAlaTyrAlaTh rSerAlaGluMetAlaAlaGluLeuGlyThrPheGluAlaTyrProAspAsnAlaAlaHisMetLeuArgValIleArgAsnHisArgArgAlaAlaHisGly GluValAlaGlyTyrGluGlyLeuAsnValSerProValProLeuAspHisAlaAsnIleProGlnAlaAspIleGlyAlaHisAlaArgAlaAlaTrpAspAr gAlaLeuSerLeuGlyGluLeuHisGlyTyrArgAsnAlaGlnAlaThrValIleAlaProThrGlyThrIleGlyLeuValMetAspCysAspThrThrGlyI leGluProAspPheAlaLeuValLysPheLysLysLeuAlaGlyGlyGlyTyrPheLysIleIleAsnArgAlaValProAspAlaLeuArgAlaLeuGlyTyr ArgGluSerGluIleAlaGluIleGluAlaTyrAlaValGlyHisGlySerMetGlyGlnAlaProAlaValAsnProGlySerLeuArgAlaLysGlyPheThr AspAspLysIleAlaAlaValGluAlaGlyLeuLysSerAlaPheAspIleLysPheValPheAsnArgTrpAsnLeuGlyAspAspPheLeuLysAspThr LeuLysValProAlaGluLysLeuAlaAspProThrPheGluLeuLeuProPheLeuGlyPheSerLysArgGluIleGluAlaAlaAsnThrHisValCysG lyAlaMetThrLeuGluGlyAlaProPheLeuLysProGluHisTyrAlaValPheAspCysAlaAsnProCysGlyArgThrGlyLysArgTyrLeuSerV alGluSerHisIleHisMetMetAlaAlaAlaGlnProPheIleSerGlyAlaIleSerLysThrIleAsnMetProAsnAspAlaThrValGluAspCysLysAla AlaTyrLeuLeuSerTrpArgLeuAlaLeuLysAlaAsnAlaLeuTyrArgAspGlySerLysLeuSerGlnProLeuAsnSerAlaLeuIleAlaAspAsp GluGluAspAlaAspGluAlaLeuGluAlaIleIleGlnAlaProAlaAlaAlaLysAlaThrAlaAlaAlaGluLysIleValGluArgValIleGluArgIleGl uArgIleArgSerArgGluLysMetProAspArgArgLysGlyTyrThrGlnLysAlaValValGlyGlyHisLysValTyrLeuArgThrGlyGluTyrAs pAspGlyArgLeuGlyGluIlePheIleAspMetHisLysGluGlyAlaThrPheArgSerLeuMetAsnAsnPheAlaIleAlaIleSerLeuGlyLeuGlnT yrGlyValProLeuGluGluTyrValGluAlaPheThrPheThrArgPheGluProAlaGlyPheValGlnGlyAsnAspAlaIleLysAsnAlaThrSerLeu LeuAspTyrValPheArgGluLeuAlaValSerTyrLeuGlyArgThrAspLeuAlaHisValAsnProAlaGluIleGlyGlyThrValLeuGlyGlyGly GluGlyAspThrThrArgGluSerAlaLysProAlaProAlaAlaSerAlaValValSerArgGlyLeuLeuArgGlySerAlaAspArgLeuThrLeuIleGl nGlyGlyProAlaGlyAlaThrThrGlyValAlaAlaAlaAlaThrGlyGlnSerAlaProAlaGlyGlyThrValHisAlaValArgGlyAlaThrAlaLeuL ysAlaGluProGlnSerValGlySerIleGluAlaLeuProPheAlaLysProGluProLysAlaGluArgThrValAlaAspArgArgAlaGluAlaLysMet LysGlyTyrValGlyGluAlaCysProGluCysAlaAsnPheThrLeuValArgAsnGlyThrCysLeuLysCysAspThrCysGlySerThrThrGlyCy sSer
SEQ ID No.:6:本发明的metY的氨基酸序列
MetThrAspArgGlnProGlyPheAsnThrLeuAlaIleHisAlaGlyAlaThrProAspProAlaThrGlyAlaArgAlaThrProIleTyrGlnThrThrSer PheValPheAspAspValAspHisAlaAlaSerLeuPheGlyLeuGlnAlaPheGlyAsnIleTyrThrArgIleThrAsnProThrAsnAlaValLeuGluG luArgIleAlaAlaLeuGluGlyGlyThrAlaAlaLeuAlaValAlaSerGlyHisAlaAlaGluPheLeuThrLeuHisAlaLeuMetGlnProGlyAspGlu PheIleAlaAlaAsnLysLeuTyrGlyGlySerIleAsnGlnPheAsnHisSerTyrLysAsnPheGlyTrpGlnValValTrpAlaAspThrAspAspProA spSerPheGluArgAlaIleThrProArgThrLysAlaIlePheCysGluSerIleAlaAsnProGlyGlyValIleThrAspIleAlaAlaLeuSerValIleAlaL ysArgHisAsnIleProLeuIleValAspAsnThrMetAlaThrProTyrLeuIleLysProPheGluHisGlyAlaAspIleValValHisSerAlaThrLysPhe LeuGlyGlyHisGlyAsnSerIleGlyGlyLeuIleValAspGlyGlyThrPheGlnTrpGlnGlyAspAlaArgTyrProMetLeuSerGluProArgProGl uTyrAlaGlyMetValLeuAlaGluThrPheGlyAsnPheGlyPheAlaIleAlaValArgValLeuSerLeuArgAspLeuGlyProSerLeuSerProPhe AsnAlaPheLeuIleLeuAsnGlyIleGluThrLeuProLeuArgMetGlnArgHisSerAspAsnAlaLeuLysValAlaThrPheLeuLysAsnHisAla AsnValAspTrpValSerTyrProGlyLeuGluSerAspArgTyrHisAlaLeuAlaGlnArgTyrThrProLysGlyAlaGlyAlaValPheThrPheGlyL euLysGlyGlyTyrGluAlaGlyValLysLeuValSerAsnLeuGlnLeuPheSerHisLeuAlaAspIleGlyAspThrArgSerLeuValIleHisProAla SerThrThrHisArgGlnLeuThrAspGluGlnLysArgAlaAlaGlyAlaGlyProGluValValArgLeuSerIleGlyIleGluAspAlaGlnAspLeuIleAspAspLeuAspAlaAlaLeuArgAla
SEQ ID No.:7:本发明的gntR的氨基酸序列
MetThrValAlaTrpThrProAspLeuLysArgTrpGlyLysProHisTyrLeuAlaIleAlaGluAlaLeuAlaGluAspIleArgThrGlyArgLeuThrPh eGlyThrArgLeuProThrGlnArgAlaLeuAlaGluAlaLeuAspLeuAsnPheThrThrValSerArgGlyTyrValGluAlaHisLysArgGlyLeuIle GluGlyArgValGlyGlnGlyThrPheValValAspProAlaArgSerAlaArgAlaGlyAlaAlaAlaGlyValProGlnValGlyProValAspPheThr MetAsnLeuProProGluProAspAlaProAlaLeuArgAlaArgMetGlnAlaSerPheAlaGluLeuSerGlyAsnLeuAlaAsnLeuLeuArgTyrGl nGlyPheGlyGlyThrAspAspAspLysGluAlaAlaLeuArgTrpLeuLysGlyArgGlyIleGluThrThrArgGluArgValLeuIleCysProGlyAla HisSerAlaLeuPheSerValLeuGlyGlnIleAlaArgSerGlyAspThrIleCysAlaGluArgIleThrTyrAlaGlyIleArgAlaLeuAlaAlaHisLeuG lyLeuArgLeuValGluLeuProMetAspArgHisGlyIleAspProAspAlaPheAlaAlaAlaCysThrLysValAlaProLysAlaIleTyrLeuAsnPro LeuLeuGlnAsnProThrThrAlaThrLeuSerArgThrArgArgGluAlaIleIleAlaValAlaArgArgTyrAlaValThrIleIleGluAspAspAlaTyr AlaArgIleCysProAlaProProProSerPheAlaGluLeuAlaProGluValThrTyrTyrValAlaGlyValAlaLysCysLeuGlyAlaGlyLeuArgLe uAlaPheLeuValAlaProSerAlaArgSerAlaLeuProLeuAlaGlyAlaLeuArgAlaAlaThrValMetAlaSerProIleSerThrAlaLeuThrThrAr gTrpIleMetAspGlyThrAlaAspAlaIleValGlnPheValArgGluGluSerAlaAlaArgGlnArgIleValThrSerLeuLeuProAlaGlyThrTyrTh rAlaAspProHisGlyPheHisValTrpIleThrLeuProGluGlyTrpThrArgSerAlaPheAlaSerGlnGlyArgSerAlaGlyLeuGlyValValGlySe rAspProPheCysValAlaGlyThrProProGluAlaAlaArgLeuCysLeuGlyGlyProSerThrArgGlnGlnIleThrHisGlyLeuGluValLeuAla HisAlaLeuGluGlySerProAlaLeuAlaSerThrTyrIle。
序列表
<110> 清华大学
<120> 与耐受高浓度甲醇相关的蛋白质
<130> PDK03518
<160> 7
<170> PatentIn version 3.5
<210> 1
<211> 255
<212> PRT
<213> 人工序列
<400> 1
Val Asp Lys Pro Gln Gln Pro Phe Ala Asp Gly Leu Pro Asn Leu Ser
1 5 10 15
Glu Ala His Ala Glu Leu Pro Thr Ala Glu Arg Val Gln Ala Ser Thr
20 25 30
Pro Leu Ala His Ala Pro Arg Phe Leu Ile Leu Tyr Gly Ser Leu Arg
35 40 45
Glu Arg Ser Phe Ser Arg Phe Leu Ala Tyr Glu Ala Ala Arg Leu Leu
50 55 60
Glu Ala Met Gly Gly Glu Val Arg Ile Phe His Ala His Gly Leu Pro
65 70 75 80
Leu Pro Asp Asp Ala Thr Ala Asp His Pro Lys Val Arg Glu Leu Arg
85 90 95
Glu Leu Ser Val Trp Ser Glu Gly Gln Val Trp Val Ser Pro Glu Arg
100 105 110
His Gly Asn Leu Thr Gly Val Met Lys Ser Gln Ile Asp Trp Leu Pro
115 120 125
Leu Ser Glu Gly Ser Val Arg Pro Thr Gln Gly Arg Thr Leu Ala Val
130 135 140
Met Gln Val Ser Gly Gly Ser Gln Ser Phe Asn Ala Val Asn Ser Leu
145 150 155 160
Arg Val Leu Gly Arg Trp Met Arg Met Ile Thr Ile Pro Asn Gln Ser
165 170 175
Ser Val Pro Met Ala Tyr Lys Glu Phe Asp Glu Asp Gly Arg Met Lys
180 185 190
Pro Gly Pro Leu Tyr Asp Arg Ile Val Asp Val Cys Glu Glu Leu Met
195 200 205
Lys Phe Thr Leu Leu Thr Arg Gly Arg Ala Asp Tyr Leu Val Asp Arg
210 215 220
Tyr Ser Glu Arg Lys Glu Arg Asp Pro Asp Arg Leu Lys Ala Val Ala
225 230 235 240
Ala Asp Val Gly Phe Val Arg Ala Pro Ser Ala Ala Arg Ala Ser
245 250 255
<210> 2
<211> 1048
<212> PRT
<213> 人工序列
<400> 2
Met Phe Thr Val Leu Val Ser Gln Ser Val Arg Asn Arg Leu Leu Val
1 5 10 15
Leu Ala Leu Ala Ala Val Leu Val Leu Tyr Gly Ala Phe Thr Ala Thr
20 25 30
Lys Leu Pro Val Asp Val Phe Pro Asp Leu Asn Lys Pro Thr Val Thr
35 40 45
Val Met Thr Glu Ala Glu Gly Tyr Ala Pro Gln Glu Val Glu Gln Leu
50 55 60
Val Thr Tyr Pro Ile Glu Thr Arg Met Asn Gly Leu Pro Gly Val Thr
65 70 75 80
Arg Val Arg Ser Val Ser Gly Val Gly Leu Ser Ile Thr Tyr Val Glu
85 90 95
Ser Asp Trp Gly Thr Asp Ile Tyr Arg Asn Arg Gln Val Ala Glu Arg
100 105 110
Leu Ser Leu Val Gln Asp Gln Leu Pro Arg Gly Val Thr Pro Val Met
115 120 125
Gly Pro Ile Ser Ser Ile Met Gly Gln Ile Leu Leu Val Ala Val Thr
130 135 140
Gly Glu Thr Ala Thr Pro Met Gln Val Arg Glu Val Ala Asp Phe Thr
145 150 155 160
Ile Arg Pro Arg Leu Leu Thr Ile Pro Gly Val Ala Gln Val Ile Pro
165 170 175
Ile Gly Gly Glu Val Arg Gln Phe Arg Val Ser Pro Asn Pro Ala Ala
180 185 190
Met Arg Ala Leu Gly Val Thr Asn Ala Gln Leu Glu Thr Ala Leu Ala
195 200 205
Gln Phe Gly Thr Asn Ala Gly Gly Gly Phe Thr Asp Gln Asn Ala Arg
210 215 220
Glu Tyr Leu Ile Arg Asn Ile Gly Arg Thr Met Ser Leu Asp Asp Leu
225 230 235 240
Arg Asn Leu Val Val Ala Thr Val Ala Asp Ala Pro Val Tyr Leu Arg
245 250 255
Gln Leu Ala Glu Val Ser Phe Ala Ala Lys Val Lys Arg Gly Asp Ala
260 265 270
Gly Tyr Met Ala Lys Pro Ala Val Ile Val Ser Val Glu Lys Gln Pro
275 280 285
Asp Val Asp Thr Val Arg Leu Thr Arg Ser Ile Glu Thr Ala Leu Lys
290 295 300
Glu Leu Asn Pro Thr Leu Pro Gly Gly Ile Lys Ala Asp Gln Val Leu
305 310 315 320
Phe Arg Gln Ala Asp Phe Ile Glu Thr Ser Ile Arg Asn Val Glu Arg
325 330 335
Val Leu Val Glu Ala Val Leu Val Val Ala Leu Val Leu Phe Ala Phe
340 345 350
Leu Leu Asn Val Arg Thr Thr Ala Ile Ser Leu Leu Ala Ile Pro Val
355 360 365
Ser Val Leu Thr Thr Ala Leu Val Phe His Leu Phe Gly Leu Ser Ile
370 375 380
Asn Thr Met Thr Leu Gly Gly Leu Ala Ile Ala Ile Gly Glu Leu Val
385 390 395 400
Asp Asp Ala Val Val Asp Val Glu Asn Ile Tyr Arg Arg Leu Gly Glu
405 410 415
Asn Arg Lys Ala Gly Asn Pro Arg Ser Thr Phe Glu Val Val Val Ser
420 425 430
Ala Ser Asn Glu Val Arg Ser Gly Ile Val Tyr Ala Thr Leu Ile Ile
435 440 445
Ile Leu Val Phe Val Pro Leu Phe Ala Leu Ser Gly Ile Glu Gly Arg
450 455 460
Leu Phe Ala Pro Leu Gly Gln Ala Tyr Ile Ile Ser Ile Leu Ala Ser
465 470 475 480
Leu Leu Thr Ser Ile Thr Leu Thr Pro Val Leu Ala Ser Trp Leu Leu
485 490 495
Pro Gly Leu Arg Asn Leu Glu Glu His Asp Ser Arg Leu Leu Lys Leu
500 505 510
Leu Lys Arg Gly Asn Ala Ala Leu Leu Arg Val Ala Phe Arg His Lys
515 520 525
Gly Leu Leu Val Gly Thr Val Ala Ala Ala Val Ala Ala Ala Gly Ile
530 535 540
Ala Ala Trp Asn Leu Pro Arg Ala Phe Leu Pro Pro Phe Asn Glu Gly
545 550 555 560
Ser Phe Thr Val Ser Met Thr Phe Asn Pro Gly Ile Ser Leu Ala Glu
565 570 575
Ser Asn Arg Val Gly Leu Ile Ala Glu Lys Leu Leu Leu Glu Ile Pro
580 585 590
Gly Val Lys Ala Val Gly Arg Arg Thr Gly Arg Ala Glu Leu Asp Glu
595 600 605
His Ala Glu Gly Val His Ser Ser Glu Ile Asp Val Ala Leu Asp Asp
610 615 620
Gly Leu Lys Arg Pro Lys Gln Ala Leu Val Ala Asp Ile Arg Gly Arg
625 630 635 640
Leu Gly Ala Leu Pro Val Ala Val Asn Val Gly Gln Pro Ile Ser His
645 650 655
Arg Leu Asp His Met Leu Ser Gly Val Arg Ala Glu Ile Ala Leu Lys
660 665 670
Val Phe Gly Asp Asp Leu Asp Ala Leu Arg Arg Val Ala Asn Gly Leu
675 680 685
Arg Asp Arg Leu Ala Lys Ile Pro Gly Leu Ala Asp Leu Gln Val Glu
690 695 700
Arg Gln Val Arg Ile Pro Gln Leu Glu Val Arg Val Asp Tyr Thr Arg
705 710 715 720
Ala Ala Leu Tyr Gly Val Gln Pro Ala Ala Val Val Glu Gln Ile Ser
725 730 735
Arg Leu Ser Asn Gly Arg Val Val Ser Thr Val Val Asp Gly Val Arg
740 745 750
Arg Phe Asp Val Val Leu Arg Leu Ser Glu Asn Arg Arg Thr Thr Ala
755 760 765
Gly Leu Gly Asp Leu Leu Leu Glu Thr Pro Ser Gly Trp Val Pro Ala
770 775 780
Arg Gln Val Ala Asp Ile Arg Glu Thr Asp Gly Pro Asn Gln Ile Leu
785 790 795 800
Arg Glu Asn Ala Arg Arg Arg Ile Val Val Gln Ala Asn Thr Thr Ala
805 810 815
Glu Ser Asp Met Ala Thr Ile Val Ala Ala Ile Arg Glu Ala Val Ala
820 825 830
Gln Glu Pro Met Pro Pro Gly Phe Phe Thr Ser Leu Glu Gly Thr Phe
835 840 845
Gln Ala Gln Glu Glu Ala Ser Arg Thr Ile Ala Ala Leu Ser Gly Leu
850 855 860
Ser Leu Ala Leu Val Phe Ala Ile Leu Tyr Ser Arg Tyr Arg Ser Ala
865 870 875 880
Ala Leu Ala Leu Ile Ile Met Gly Asn Val Pro Val Ala Leu Ile Gly
885 890 895
Ser Val Ala Gly Leu Trp Leu Val Gly Gln Pro Leu Ser Val Ala Ser
900 905 910
Met Ile Gly Phe Ile Thr Leu Thr Gly Ile Ala Ala Arg Asn Gly Ile
915 920 925
Leu Lys Ile Ser His Tyr Leu Asn Leu Ser Leu His Glu Gly Val Pro
930 935 940
Phe Gly Pro Glu Leu Val Val Arg Gly Ser Leu Glu Arg Leu Thr Pro
945 950 955 960
Val Leu Met Thr Ala Leu Ser Ala Gly Val Ala Leu Leu Pro Leu Leu
965 970 975
Tyr Asp Ala Ala Ser Pro Gly Lys Glu Ile Leu His Pro Val Ala Val
980 985 990
Thr Ile Phe Gly Gly Leu Ile Ser Ala Thr Leu Leu Asp Thr Phe Leu
995 1000 1005
Thr Pro Val Leu Phe Leu Arg Phe Gly Arg Arg Pro Leu Glu Arg
1010 1015 1020
Leu Arg Ala Leu His Ala Glu Ala Pro Ala Tyr Pro Ser Pro Asp
1025 1030 1035
Gly Ala Pro Pro Arg Pro Ala Glu Ala Tyr
1040 1045
<210> 3
<211> 604
<212> PRT
<213> 人工序列
<400> 3
Met His Arg Tyr Arg Thr His Thr Cys Gly Ala Ile Arg Pro Ser Asp
1 5 10 15
Val Gly Gln Thr Val Arg Leu Ser Gly Trp Cys His Arg Ile Arg Asp
20 25 30
His Gly Gly Val Leu Phe Ile Asp Leu Arg Asp His Tyr Gly Leu Thr
35 40 45
Gln Cys Val Ile Asp Ser Asp Ser Lys Ala Phe Lys Ala Ala Glu Thr
50 55 60
Ala Arg Ser Glu Trp Val Ile Arg Ile Asp Gly Arg Val Arg Thr Arg
65 70 75 80
Pro Ala Gly Thr Glu Asn Ala Glu Leu Pro Thr Gly Ser Val Glu Val
85 90 95
Tyr Ile Asp Asp Leu Glu Val Leu Gly Pro Ala Gly Glu Leu Pro Leu
100 105 110
Pro Val Phe Gly Asp Gln Glu Tyr Pro Glu Glu Thr Arg Leu Lys Tyr
115 120 125
Arg Phe Leu Asp Leu Arg Arg Glu Lys Leu His Ala Asn Ile Met Lys
130 135 140
Arg Gly Ala Ile Val Asp Ser Leu Arg Arg Arg Met Arg Glu Gly Gly
145 150 155 160
Phe Phe Glu Phe Gln Thr Pro Ile Leu Thr Ala Ser Ser Pro Glu Gly
165 170 175
Ala Arg Asp Tyr Leu Val Pro Ser Arg Val His Pro Gly Lys Phe Tyr
180 185 190
Ala Leu Pro Gln Ala Pro Gln Gln Phe Lys Gln Leu Thr Met Ile Ala
195 200 205
Gly Phe Asp Arg Tyr Phe Gln Ile Ala Pro Cys Phe Arg Asp Glu Asp
210 215 220
Ala Arg Ala Asp Arg Ser Pro Gly Glu Phe Tyr Gln Leu Asp Ile Glu
225 230 235 240
Met Ser Phe Val Thr Gln Glu Asp Val Phe Gln Ala Val Glu Pro Val
245 250 255
Leu Arg Gly Val Phe Glu Glu Phe Ala Gly Gly Lys Arg Val Thr Lys
260 265 270
Glu Phe Pro Arg Ile Thr Tyr Ala Asp Ala Met Leu Lys Tyr Gly Val
275 280 285
Asp Lys Pro Asp Leu Arg Asn Pro Leu Ile Ile Ala Asp Val Thr Asp
290 295 300
Glu Phe Ala Asp Asp Ala Val Glu Phe Lys Ala Phe Lys Gly Val Ile
305 310 315 320
Lys Ser Gly Gly Val Val Arg Ala Ile Pro Ala Thr Gly Ala Ala Gly
325 330 335
Gln Pro Arg Ser Phe Phe Asp Lys Leu Asn Asp Trp Ala Arg Ser Glu
340 345 350
Gly Ala Pro Gly Leu Gly Tyr Ile Val Phe Glu Glu Glu Gly Gly Ala
355 360 365
Leu Thr Gly Lys Gly Pro Ile Ala Lys Phe Ile Pro Ala Ala Ile Gln
370 375 380
Ala Arg Ile Ala Glu Lys Ala Gly Ala Lys Ala Gly Asp Ala Val Phe
385 390 395 400
Phe Ala Ala Gly Thr Glu Ala Lys Ala Ala Gly Leu Ala Gly Lys Ala
405 410 415
Arg Ile Arg Ile Gly Asp Glu Leu Lys Leu Ser Asp Thr Asp Gln Phe
420 425 430
Ala Phe Cys Trp Val Val Asp Phe Pro Met Tyr Glu Trp Asn Glu Glu
435 440 445
Asp Lys Lys Ile Asp Phe Ser His Asn Pro Phe Ser Met Pro Asn Phe
450 455 460
Asp Arg Asp Glu Phe Leu Ala Leu Gly Glu Ala Asp Ser Glu Arg Ile
465 470 475 480
Leu Gly Ile Lys Ala Phe Gln Tyr Asp Ile Val Cys Asn Gly Ile Glu
485 490 495
Leu Ser Ser Gly Ala Ile Arg Asn His Arg Pro Asp Val Met Glu Lys
500 505 510
Ala Phe Ala Ile Ala Gly Tyr Gly Arg Asp Val Leu Glu Glu Lys Phe
515 520 525
Gly Gly Met Leu Asn Ala Leu Arg Leu Asp Ala Pro Pro His Gly Gly
530 535 540
Ile Ala Pro Gly Val Asp Arg Ile Val Met Leu Leu Cys Glu Glu Pro
545 550 555 560
Asn Ile Arg Glu Val Val Leu Phe Pro Met Asn Gln Arg Ala Glu Asp
565 570 575
Leu Met Met Gly Ala Pro Ala Glu Ala Thr Pro Lys Gln Leu Arg Glu
580 585 590
Leu His Ile Arg Leu Asn Leu Pro Glu Lys Lys Ala
595 600
<210> 4
<211> 390
<212> PRT
<213> 人工序列
<400> 4
Met Lys Cys Ala Ala Ala Leu Gly Ile Leu Ala Ala Ala Leu Ala Leu
1 5 10 15
Pro Gly Cys Ser Val Leu Pro Ala Ala Gly Pro Thr Thr Ser Ala Ile
20 25 30
Glu Ser Gly Ala Asp Val Ala Thr Ala Glu Gly Leu Phe Ala Arg Tyr
35 40 45
Glu Ile Ile Asp Ile Thr Pro Ala Leu Val Glu Ala Leu Arg Thr Arg
50 55 60
Pro Leu Asp Ser Leu Leu Val Thr Phe Gly Asp His Arg Pro Ser Val
65 70 75 80
Glu Pro Val Ile Gly Val Gly Asp Ser Val Ala Val Gln Val Trp Glu
85 90 95
Ala Gly Ala Gly Gly Leu Phe Ser Gly Pro Leu Val Ser Asp Arg Phe
100 105 110
Ser Ala Gly Ser Lys Ser Ala Thr Ile Pro Glu Gln Val Val Gly Pro
115 120 125
Asp Gly Gly Ile Thr Val Pro Tyr Ala Gly Arg Ile Lys Val Val Gly
130 135 140
Arg Arg Thr Gln Asp Val Gln Ala Leu Ile Glu Thr Glu Leu Ala Gly
145 150 155 160
Lys Ala Ile Gln Pro Gln Val Leu Val Ser Val Thr Lys Pro Val Ser
165 170 175
Gln Ser Val Thr Val Ser Gly Glu Ala Ala Met Gly Lys Arg Val Pro
180 185 190
Leu Ser Gly Arg Gly Asp Arg Leu Leu Asp Val Ile Ala Gln Ala Gly
195 200 205
Gly Val Arg Thr Pro Val Ser Glu Thr Phe Val Arg Leu Ser Arg Gly
210 215 220
Asn Arg Thr Val Thr Val Pro Met Thr Thr Val Val Ser Asn Pro Arg
225 230 235 240
Glu Asn Ile Phe Val Arg Pro Asp Asp Thr Leu Thr Leu Val Arg Asp
245 250 255
Pro Gln Thr Phe Leu Ala Val Gly Ala Leu Gly Asn Thr Thr Glu Val
260 265 270
Pro Phe Thr Ala Asp Gly Leu Thr Leu Ser Gln Ala Leu Ala Arg Ala
275 280 285
Ser Gly Leu Arg Glu Phe Gln Ala Asp Pro Ala Gly Val Phe Ile Phe
290 295 300
Arg Tyr Glu Pro Ala Ala Val Val Arg Arg Leu Arg Pro Asn Ser Pro
305 310 315 320
Leu Leu Ser Ser Pro Gln Val Pro Val Val Tyr Arg Val Asn Leu Arg
325 330 335
Asp Ala Gln Gly Met Phe Leu Thr Gln Ser Phe Arg Met Arg Asn Arg
340 345 350
Asp Leu Val Tyr Val Ser Ser Ser Pro Phe Ala Glu Leu Gly Lys Val
355 360 365
Leu Ser Val Phe Ser Thr Val Ala Ser Pro Ile Ala Ala Gly Ala Ser
370 375 380
Ile Tyr Thr Val Thr Arg
385 390
<210> 5
<211> 1243
<212> PRT
<213> 人工序列
<400> 5
Met Arg Phe Glu Arg Arg Tyr Thr Thr Ala Gly Gln Ser Pro Tyr Ala
1 5 10 15
Ala Ile Ala Phe Arg Lys Ala Val Ser Glu Ile Arg Asn Pro Asp Gly
20 25 30
Ser Ile Val Phe Arg Leu Asp Gly Ile Ser Val Pro Glu Ser Trp Ser
35 40 45
Gln Val Ala Ala Asp Val Leu Ala Gln Lys Tyr Phe Arg Lys Ala Gly
50 55 60
Val Pro Ala Arg Leu Lys Lys Val Glu Glu Asn Ser Val Pro Ser Phe
65 70 75 80
Leu Trp Arg Ala Val Pro Asp Glu Ala Ala Leu Ala Glu Leu Pro Glu
85 90 95
Glu Glu Arg Phe Val Ser Glu Ile Ser Ala Thr Gln Val Phe Asp Arg
100 105 110
Leu Ala Gly Cys Trp Thr Tyr Trp Gly Trp Lys Gly Gly Tyr Phe Ser
115 120 125
Ser Glu Glu Asp Ala Ala Ala Phe Met Asp Glu Leu Arg Phe Met Leu
130 135 140
Ala Arg Gln Met Val Ala Pro Asn Ser Pro Gln Trp Phe Asn Thr Gly
145 150 155 160
Leu His Trp Ala Tyr Gly Ile Asp Gly Pro Ser Gln Gly His Phe Tyr
165 170 175
Cys Asp Pro Lys Thr Gly Val Leu Thr Lys Ser Ala Thr Ala Tyr Glu
180 185 190
His Pro Gln Pro His Ala Cys Phe Ile Gln Ser Val Gln Asp Asp Leu
195 200 205
Val Asn Glu Gly Gly Ile Met Asp Leu Trp Val Arg Glu Ala Arg Leu
210 215 220
Phe Lys Tyr Gly Ser Gly Thr Gly Ser Asn Phe Ser Met Leu Arg Gly
225 230 235 240
Glu Asn Glu Arg Leu Gly Gly Gly Gly Lys Ser Ser Gly Leu Met Ser
245 250 255
Phe Leu Lys Ile Gly Asp Arg Ala Ala Gly Ala Ile Lys Ser Gly Gly
260 265 270
Thr Thr Arg Arg Ala Ala Lys Met Val Ile Val Asp Ile Asp His Pro
275 280 285
Asp Val Glu Asn Phe Ile Asp Trp Lys Val Lys Glu Glu Gln Lys Val
290 295 300
Ala Ala Leu Val Thr Gly Ser Lys Val Val Ser Lys His Leu Thr Ala
305 310 315 320
Val Met Lys Ala Cys Thr Gln Cys Glu Ala Glu Gly Asp Ala Cys Phe
325 330 335
Asp Pro Glu Arg Asn Pro Ala Leu Lys Arg Glu Ile Lys Ala Ala Arg
340 345 350
Lys Ala Met Val Pro Asp Ala Tyr Ile Lys Arg Val Val Gln Phe Ala
355 360 365
Arg Gln Gly Phe Thr Lys Ile Asp Phe Pro Val Tyr Asp Thr Asp Trp
370 375 380
Asp Ser Glu Ala Tyr Leu Thr Val Ala Gly Gln Asn Ser Asn Asn Ser
385 390 395 400
Val Ser Leu Thr Asp Glu Phe Leu Arg Ala Val Glu Ala Asp Gly Pro
405 410 415
Trp Ser Leu Thr Ser Arg Thr Thr Gly Lys Val Val Lys Thr Pro Gln
420 425 430
Ala Arg Asp Leu Trp Glu Lys Ile Gly Glu Ala Ala Trp Ala Ser Ala
435 440 445
Asp Pro Gly Leu His Phe Asn Thr Thr Met Asn Asp Trp His Thr Cys
450 455 460
Pro Glu Gly Gly Arg Ile Arg Ala Ser Asn Pro Cys Ser Glu Tyr Met
465 470 475 480
Phe Leu Asp Asp Thr Ala Cys Asn Leu Ala Ser Ala Asn Leu Leu Thr
485 490 495
Met Tyr Asp Arg Gln Ser Lys His Phe Asp Val Glu Ala Phe Glu His
500 505 510
Leu Asn Arg Leu Trp Thr Val Val Leu Glu Ile Ser Val Met Met Ala
515 520 525
Gln Phe Pro Ser Lys Glu Ile Ala Glu Leu Ser Tyr Lys Tyr Arg Thr
530 535 540
Leu Gly Leu Gly Tyr Ala Asn Ile Gly Gly Leu Leu Met Thr Met Gly
545 550 555 560
Leu Pro Tyr Asp Ser Asp Lys Gly Arg Ala Leu Ala Gly Ala Leu Thr
565 570 575
Ala Ile Met Thr Gly Val Ala Tyr Ala Thr Ser Ala Glu Met Ala Ala
580 585 590
Glu Leu Gly Thr Phe Glu Ala Tyr Pro Asp Asn Ala Ala His Met Leu
595 600 605
Arg Val Ile Arg Asn His Arg Arg Ala Ala His Gly Glu Val Ala Gly
610 615 620
Tyr Glu Gly Leu Asn Val Ser Pro Val Pro Leu Asp His Ala Asn Ile
625 630 635 640
Pro Gln Ala Asp Ile Gly Ala His Ala Arg Ala Ala Trp Asp Arg Ala
645 650 655
Leu Ser Leu Gly Glu Leu His Gly Tyr Arg Asn Ala Gln Ala Thr Val
660 665 670
Ile Ala Pro Thr Gly Thr Ile Gly Leu Val Met Asp Cys Asp Thr Thr
675 680 685
Gly Ile Glu Pro Asp Phe Ala Leu Val Lys Phe Lys Lys Leu Ala Gly
690 695 700
Gly Gly Tyr Phe Lys Ile Ile Asn Arg Ala Val Pro Asp Ala Leu Arg
705 710 715 720
Ala Leu Gly Tyr Arg Glu Ser Glu Ile Ala Glu Ile Glu Ala Tyr Ala
725 730 735
Val Gly His Gly Ser Met Gly Gln Ala Pro Ala Val Asn Pro Gly Ser
740 745 750
Leu Arg Ala Lys Gly Phe Thr Asp Asp Lys Ile Ala Ala Val Glu Ala
755 760 765
Gly Leu Lys Ser Ala Phe Asp Ile Lys Phe Val Phe Asn Arg Trp Asn
770 775 780
Leu Gly Asp Asp Phe Leu Lys Asp Thr Leu Lys Val Pro Ala Glu Lys
785 790 795 800
Leu Ala Asp Pro Thr Phe Glu Leu Leu Pro Phe Leu Gly Phe Ser Lys
805 810 815
Arg Glu Ile Glu Ala Ala Asn Thr His Val Cys Gly Ala Met Thr Leu
820 825 830
Glu Gly Ala Pro Phe Leu Lys Pro Glu His Tyr Ala Val Phe Asp Cys
835 840 845
Ala Asn Pro Cys Gly Arg Thr Gly Lys Arg Tyr Leu Ser Val Glu Ser
850 855 860
His Ile His Met Met Ala Ala Ala Gln Pro Phe Ile Ser Gly Ala Ile
865 870 875 880
Ser Lys Thr Ile Asn Met Pro Asn Asp Ala Thr Val Glu Asp Cys Lys
885 890 895
Ala Ala Tyr Leu Leu Ser Trp Arg Leu Ala Leu Lys Ala Asn Ala Leu
900 905 910
Tyr Arg Asp Gly Ser Lys Leu Ser Gln Pro Leu Asn Ser Ala Leu Ile
915 920 925
Ala Asp Asp Glu Glu Asp Ala Asp Glu Ala Leu Glu Ala Ile Ile Gln
930 935 940
Ala Pro Ala Ala Ala Lys Ala Thr Ala Ala Ala Glu Lys Ile Val Glu
945 950 955 960
Arg Val Ile Glu Arg Ile Glu Arg Ile Arg Ser Arg Glu Lys Met Pro
965 970 975
Asp Arg Arg Lys Gly Tyr Thr Gln Lys Ala Val Val Gly Gly His Lys
980 985 990
Val Tyr Leu Arg Thr Gly Glu Tyr Asp Asp Gly Arg Leu Gly Glu Ile
995 1000 1005
Phe Ile Asp Met His Lys Glu Gly Ala Thr Phe Arg Ser Leu Met
1010 1015 1020
Asn Asn Phe Ala Ile Ala Ile Ser Leu Gly Leu Gln Tyr Gly Val
1025 1030 1035
Pro Leu Glu Glu Tyr Val Glu Ala Phe Thr Phe Thr Arg Phe Glu
1040 1045 1050
Pro Ala Gly Phe Val Gln Gly Asn Asp Ala Ile Lys Asn Ala Thr
1055 1060 1065
Ser Leu Leu Asp Tyr Val Phe Arg Glu Leu Ala Val Ser Tyr Leu
1070 1075 1080
Gly Arg Thr Asp Leu Ala His Val Asn Pro Ala Glu Ile Gly Gly
1085 1090 1095
Thr Val Leu Gly Gly Gly Glu Gly Asp Thr Thr Arg Glu Ser Ala
1100 1105 1110
Lys Pro Ala Pro Ala Ala Ser Ala Val Val Ser Arg Gly Leu Leu
1115 1120 1125
Arg Gly Ser Ala Asp Arg Leu Thr Leu Ile Gln Gly Gly Pro Ala
1130 1135 1140
Gly Ala Thr Thr Gly Val Ala Ala Ala Ala Thr Gly Gln Ser Ala
1145 1150 1155
Pro Ala Gly Gly Thr Val His Ala Val Arg Gly Ala Thr Ala Leu
1160 1165 1170
Lys Ala Glu Pro Gln Ser Val Gly Ser Ile Glu Ala Leu Pro Phe
1175 1180 1185
Ala Lys Pro Glu Pro Lys Ala Glu Arg Thr Val Ala Asp Arg Arg
1190 1195 1200
Ala Glu Ala Lys Met Lys Gly Tyr Val Gly Glu Ala Cys Pro Glu
1205 1210 1215
Cys Ala Asn Phe Thr Leu Val Arg Asn Gly Thr Cys Leu Lys Cys
1220 1225 1230
Asp Thr Cys Gly Ser Thr Thr Gly Cys Ser
1235 1240
<210> 6
<211> 426
<212> PRT
<213> 人工序列
<400> 6
Met Thr Asp Arg Gln Pro Gly Phe Asn Thr Leu Ala Ile His Ala Gly
1 5 10 15
Ala Thr Pro Asp Pro Ala Thr Gly Ala Arg Ala Thr Pro Ile Tyr Gln
20 25 30
Thr Thr Ser Phe Val Phe Asp Asp Val Asp His Ala Ala Ser Leu Phe
35 40 45
Gly Leu Gln Ala Phe Gly Asn Ile Tyr Thr Arg Ile Thr Asn Pro Thr
50 55 60
Asn Ala Val Leu Glu Glu Arg Ile Ala Ala Leu Glu Gly Gly Thr Ala
65 70 75 80
Ala Leu Ala Val Ala Ser Gly His Ala Ala Glu Phe Leu Thr Leu His
85 90 95
Ala Leu Met Gln Pro Gly Asp Glu Phe Ile Ala Ala Asn Lys Leu Tyr
100 105 110
Gly Gly Ser Ile Asn Gln Phe Asn His Ser Tyr Lys Asn Phe Gly Trp
115 120 125
Gln Val Val Trp Ala Asp Thr Asp Asp Pro Asp Ser Phe Glu Arg Ala
130 135 140
Ile Thr Pro Arg Thr Lys Ala Ile Phe Cys Glu Ser Ile Ala Asn Pro
145 150 155 160
Gly Gly Val Ile Thr Asp Ile Ala Ala Leu Ser Val Ile Ala Lys Arg
165 170 175
His Asn Ile Pro Leu Ile Val Asp Asn Thr Met Ala Thr Pro Tyr Leu
180 185 190
Ile Lys Pro Phe Glu His Gly Ala Asp Ile Val Val His Ser Ala Thr
195 200 205
Lys Phe Leu Gly Gly His Gly Asn Ser Ile Gly Gly Leu Ile Val Asp
210 215 220
Gly Gly Thr Phe Gln Trp Gln Gly Asp Ala Arg Tyr Pro Met Leu Ser
225 230 235 240
Glu Pro Arg Pro Glu Tyr Ala Gly Met Val Leu Ala Glu Thr Phe Gly
245 250 255
Asn Phe Gly Phe Ala Ile Ala Val Arg Val Leu Ser Leu Arg Asp Leu
260 265 270
Gly Pro Ser Leu Ser Pro Phe Asn Ala Phe Leu Ile Leu Asn Gly Ile
275 280 285
Glu Thr Leu Pro Leu Arg Met Gln Arg His Ser Asp Asn Ala Leu Lys
290 295 300
Val Ala Thr Phe Leu Lys Asn His Ala Asn Val Asp Trp Val Ser Tyr
305 310 315 320
Pro Gly Leu Glu Ser Asp Arg Tyr His Ala Leu Ala Gln Arg Tyr Thr
325 330 335
Pro Lys Gly Ala Gly Ala Val Phe Thr Phe Gly Leu Lys Gly Gly Tyr
340 345 350
Glu Ala Gly Val Lys Leu Val Ser Asn Leu Gln Leu Phe Ser His Leu
355 360 365
Ala Asp Ile Gly Asp Thr Arg Ser Leu Val Ile His Pro Ala Ser Thr
370 375 380
Thr His Arg Gln Leu Thr Asp Glu Gln Lys Arg Ala Ala Gly Ala Gly
385 390 395 400
Pro Glu Val Val Arg Leu Ser Ile Gly Ile Glu Asp Ala Gln Asp Leu
405 410 415
Ile Asp Asp Leu Asp Ala Ala Leu Arg Ala
420 425
<210> 7
<211> 464
<212> PRT
<213> 人工序列
<400> 7
Met Thr Val Ala Trp Thr Pro Asp Leu Lys Arg Trp Gly Lys Pro His
1 5 10 15
Tyr Leu Ala Ile Ala Glu Ala Leu Ala Glu Asp Ile Arg Thr Gly Arg
20 25 30
Leu Thr Phe Gly Thr Arg Leu Pro Thr Gln Arg Ala Leu Ala Glu Ala
35 40 45
Leu Asp Leu Asn Phe Thr Thr Val Ser Arg Gly Tyr Val Glu Ala His
50 55 60
Lys Arg Gly Leu Ile Glu Gly Arg Val Gly Gln Gly Thr Phe Val Val
65 70 75 80
Asp Pro Ala Arg Ser Ala Arg Ala Gly Ala Ala Ala Gly Val Pro Gln
85 90 95
Val Gly Pro Val Asp Phe Thr Met Asn Leu Pro Pro Glu Pro Asp Ala
100 105 110
Pro Ala Leu Arg Ala Arg Met Gln Ala Ser Phe Ala Glu Leu Ser Gly
115 120 125
Asn Leu Ala Asn Leu Leu Arg Tyr Gln Gly Phe Gly Gly Thr Asp Asp
130 135 140
Asp Lys Glu Ala Ala Leu Arg Trp Leu Lys Gly Arg Gly Ile Glu Thr
145 150 155 160
Thr Arg Glu Arg Val Leu Ile Cys Pro Gly Ala His Ser Ala Leu Phe
165 170 175
Ser Val Leu Gly Gln Ile Ala Arg Ser Gly Asp Thr Ile Cys Ala Glu
180 185 190
Arg Ile Thr Tyr Ala Gly Ile Arg Ala Leu Ala Ala His Leu Gly Leu
195 200 205
Arg Leu Val Glu Leu Pro Met Asp Arg His Gly Ile Asp Pro Asp Ala
210 215 220
Phe Ala Ala Ala Cys Thr Lys Val Ala Pro Lys Ala Ile Tyr Leu Asn
225 230 235 240
Pro Leu Leu Gln Asn Pro Thr Thr Ala Thr Leu Ser Arg Thr Arg Arg
245 250 255
Glu Ala Ile Ile Ala Val Ala Arg Arg Tyr Ala Val Thr Ile Ile Glu
260 265 270
Asp Asp Ala Tyr Ala Arg Ile Cys Pro Ala Pro Pro Pro Ser Phe Ala
275 280 285
Glu Leu Ala Pro Glu Val Thr Tyr Tyr Val Ala Gly Val Ala Lys Cys
290 295 300
Leu Gly Ala Gly Leu Arg Leu Ala Phe Leu Val Ala Pro Ser Ala Arg
305 310 315 320
Ser Ala Leu Pro Leu Ala Gly Ala Leu Arg Ala Ala Thr Val Met Ala
325 330 335
Ser Pro Ile Ser Thr Ala Leu Thr Thr Arg Trp Ile Met Asp Gly Thr
340 345 350
Ala Asp Ala Ile Val Gln Phe Val Arg Glu Glu Ser Ala Ala Arg Gln
355 360 365
Arg Ile Val Thr Ser Leu Leu Pro Ala Gly Thr Tyr Thr Ala Asp Pro
370 375 380
His Gly Phe His Val Trp Ile Thr Leu Pro Glu Gly Trp Thr Arg Ser
385 390 395 400
Ala Phe Ala Ser Gln Gly Arg Ser Ala Gly Leu Gly Val Val Gly Ser
405 410 415
Asp Pro Phe Cys Val Ala Gly Thr Pro Pro Glu Ala Ala Arg Leu Cys
420 425 430
Leu Gly Gly Pro Ser Thr Arg Gln Gln Ile Thr His Gly Leu Glu Val
435 440 445
Leu Ala His Ala Leu Glu Gly Ser Pro Ala Leu Ala Ser Thr Tyr Ile
450 455 460

Claims (4)

1.一种家族转录调控因子蛋白,其序列如SEQ ID:No.7所示。
2.一种DNA,其编码权利要求1所述的蛋白质。
3.一种重组载体,其具有权利要求2所述的DNA。
4.一种宿主细胞,其包含权利要求2所述的DNA或权利要求3所述的载体。
CN201710608354.8A 2017-07-24 2017-07-24 与耐受高浓度甲醇相关的蛋白质 Active CN109295016B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710608354.8A CN109295016B (zh) 2017-07-24 2017-07-24 与耐受高浓度甲醇相关的蛋白质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710608354.8A CN109295016B (zh) 2017-07-24 2017-07-24 与耐受高浓度甲醇相关的蛋白质

Publications (2)

Publication Number Publication Date
CN109295016A CN109295016A (zh) 2019-02-01
CN109295016B true CN109295016B (zh) 2021-11-02

Family

ID=65167103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710608354.8A Active CN109295016B (zh) 2017-07-24 2017-07-24 与耐受高浓度甲醇相关的蛋白质

Country Status (1)

Country Link
CN (1) CN109295016B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035595A1 (en) * 2007-09-10 2009-03-19 Mascoma Corporation Plasmids from thermophilic organisms, vectors derived therefrom, and uses thereof
CN102746391A (zh) * 2012-07-02 2012-10-24 中国科学院植物研究所 一种砷抗性相关蛋白PvArrp1及其编码基因和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2696869A1 (en) * 2007-08-31 2009-03-05 Basf Plant Science Gmbh Method for producing a transgenic plant cell, a plant or a part thereof with increased resistance to plant disease
ES2668457T3 (es) * 2010-08-12 2018-05-18 Mitsui Chemicals, Inc. Bacteria productora de alcohol isopropílico que tiene una productividad mejorada por destrucción de GntR
US20150315647A1 (en) * 2014-05-05 2015-11-05 The Florida International University Board Of Trustees Microbiome gene expression as a biomarker of arsenic exposure
CN105755016B (zh) * 2014-12-19 2019-10-01 上海交通大学 嗜铁素合成基因簇及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035595A1 (en) * 2007-09-10 2009-03-19 Mascoma Corporation Plasmids from thermophilic organisms, vectors derived therefrom, and uses thereof
CN102746391A (zh) * 2012-07-02 2012-10-24 中国科学院植物研究所 一种砷抗性相关蛋白PvArrp1及其编码基因和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
arsenical resistance protein ArsH [Methylorubrum extorquens];登录号:WP_015857310.1;《GenBank》;20160207;参见序列及相关信息 *
NADPH-dependent FMN reductase [Methylorubrum extorquens AM1];ACS41873.1;《GenBank》;20140131;参见序列及相关信息 *
New mechanisms of bacterial arsenic resistance;Hung-Chi Yang;《Biomedical Journal》;20160228;第39卷(第1期);第5-13页 *
嗜酸氧化亚铁硫杆菌ArsH蛋白铁还原酶活性的研究;莫宏宇;《中国优秀硕士学位论文全文数据库基础科学辑》;20120415(第4期);A006-194 *

Also Published As

Publication number Publication date
CN109295016A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
Kind et al. Metabolic engineering of cellular transport for overproduction of the platform chemical 1, 5-diaminopentane in Corynebacterium glutamicum
CA2700510C (en) Mutant microorganisms having high ability to produce putrescine and method for producing putrescine using the same
KR101814888B1 (ko) 5-아미노레불린산 고수율 균주 및 이의 제조방법과 응용
EP2411502B1 (en) Method for producting high amount of glycolic acid by fermentation
US20150072399A1 (en) Methods, Systems And Compositions Related To Reduction Of Conversions Of Microbially Produced 3-Hydroxypropionic Acid (3-HP) To Aldehyde Metabolites
MXPA04004194A (es) Sistema de recirculacion para la manipulacion de disponibilidad de nadh intracelular.
WO2015058179A1 (en) Methods of microbial production of excreted products from methane and related bacterial strains
CN112204146A (zh) 具有受抑制的乙醇产生途径的耐酸酵母及使用其生产乳酸的方法
Calvey et al. Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering
JP2021058184A (ja) 乳酸代謝及びアルコール生成の抑制された組み換え耐酸性酵母及びこれを用いた乳酸の製造方法
JP2022008224A (ja) 乳酸生産能が増加した組換え耐酸性酵母
CN102776157A (zh) 改进的酮还原酶多肽、其编码基因以及表达该多肽的细胞
CN109722459B (zh) 一种5-氨基乙酰丙酸高产菌株及其制备方法与应用
CN107619817B (zh) 生产3-脱氢莽草酸大肠杆菌重组菌株及其构建方法与应用
Marchal et al. A cytochrome cbb 3 (cytochrome c) terminal oxidase in Azospirillum brasilense Sp7 supports microaerobic growth
CN109295016B (zh) 与耐受高浓度甲醇相关的蛋白质
CN108998401B (zh) 一种生产3-氨基异丁酸的方法
CN108949649B (zh) 一种工程菌及其在生产左旋多巴中的应用
CN108949647B (zh) 一种工程菌及其在生产l-酪氨酸中的应用
Campos et al. The yiaKLX1X2PQRS and ulaABCDEFG gene systems are required for the aerobic utilization of L-ascorbate in Klebsiella pneumoniae strain 13882 with L-ascorbate-6-phosphate as the inducer
US20230126375A1 (en) Engineered bacteria and methods of producing sustainable biomolecules
KR20190097250A (ko) 신규한 효소를 사용한 메틸글리옥살의 히드록시아세톤으로의 전환 및 그의 적용
KR20100130564A (ko) 타우린 생성용 재조합 변이 미생물 및 이를 이용한 타우린의 제조방법
CN110760536A (zh) 甲醇生物转化菌株的构建方法以及构建的菌株和应用
TWI290175B (en) A method for promoting growth of gene recombinant cell and enhancing production of target gene product

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant